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Abstract

Climate change–reflected in significant environmental changes such as warming, sea level

rise, shifts in salinity, oxygen and other ocean conditions–is expected to impact marine

organisms and associated fisheries. This study provides an assessment of the potential

impacts on, and the vulnerability of, marine biodiversity and fisheries catches in the Arabian

Gulf under climate change. To this end, using three separate niche modelling approaches

under a ‘business-as-usual’ climate change scenario, we projected the future habitat suit-

ability of the Arabian Gulf (also known as the Persian Gulf) for 55 expert-identified priority

species, including charismatic and non-fish species. Second, we conducted a vulnerability

assessment of national economies to climate change impacts on fisheries. The modelling

outputs suggested a high rate of local extinction (up to 35% of initial species richness) by

2090 relative to 2010. Spatially, projected local extinctions are highest in the southwestern

part of the Gulf, off the coast of Saudi Arabia, Qatar and the United Arab Emirates (UAE).

While the projected patterns provided useful indicators of potential climate change impacts

on the region’s diversity, the magnitude of changes in habitat suitability are more uncertain.

Fisheries-specific results suggested reduced future catch potential for several countries on

the western side of the Gulf, with projections differing only slightly among models. Qatar and

the UAE were particularly affected, with more than a 26% drop in future fish catch potential.

Integrating changes in catch potential with socio-economic indicators suggested the fisher-

ies of Bahrain and Iran may be most vulnerable to climate change. We discuss limitations of

the indicators and the methods used, as well as the implications of our overall findings for

conservation and fisheries management policies in the region.
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Introduction

Marine biodiversity, ecosystem health and fisheries are currently threatened by overfishing,

but also by pollution and other anthropogenic impacts [1]. Climate change further challenges

our ability to devise sustainable management and conservation plans to maintain ecosystem

services, as it has begun to alter ocean conditions, particularly water temperature and various

aspects of ocean biogeochemistry [2]. Marine biodiversity responds to shifting temperatures

and other ocean conditions through changes in organismal physiology and phenology, as well

as population dynamics and distributions [3–5]. These responses to ocean–atmospheric

changes have been projected to lead to altered patterns of species richness [6, 7], changes in

community structure [8] and ecosystem functions [9], and consequential changes in marine

goods and services [10–12].

Given the unique characteristics of the Arabian Gulf (also known as the Persian Gulf, and

referred to hereafter simply as the Gulf)—particularly its extreme environmental conditions,

the array of human disturbances it is exposed to, and the high sensitivity of its biota to environ-

mental fluctuations as species are close to their environmental limits [6, 13]—climate change

should have substantial implications for the Gulf’s marine ecosystems and fisheries. Extreme

seasonal temperatures and salinity fluctuations select for species with high tolerance or adapt-

ability to such short-term changes (e.g., as exhibited by some corals, see [14]). Consequently,

the Gulf is a region that is relatively species poor [15–18], at least in comparison with adjacent

systems such as the open Indian Ocean [17]. However, as part of the Western Indian Ocean

province of the Indo-West Pacific ecoregion [19], the Gulf is considered a biologically valuable

region [20]. The region’s biodiversity and its associated goods and services are expected to be

impacted by the synergistic effects of climate change (e.g., increases in temperature; declines in

oxygen content; sea level rise) and those of human activities such as oil extraction, desalination

of sea water, coastal development, and overfishing [21–25].

Although many marine organisms in the Gulf appear to have a high heat-tolerance relative

to populations in other parts of the world [26–29], warming, with changes of +0.57˚C recorded

between 1950 and 2010 [30], has already impacted some of the more vulnerable marine species

in the region [21]. For example, corals have been exposed to major disturbances [31], includ-

ing water temperatures between 35˚ and 37˚C at least five times since the late 1990s, causing

extensive coral bleaching [32] associated with considerable loss of coral cover [33, 34]. Overall,

about 70% of the Gulf’s reefs have essentially disappeared in a few decades [35] and this has

been associated with a significant decline in fish species richness. While substantial declines in

stress-sensitive species are expected with increasing temperatures, results from a number of

long-term studies investigating benthic community structure across the region suggest that

coral communities may persist within an increasingly disturbed future environment, albeit in

a much more structurally simple configuration [27, 31, 36].

So far, a comprehensive assessment of climate change impacts on the Gulf’s marine biodiver-

sity and fisheries has not been undertaken. By means of simulation modelling approaches, this

study aims to assess the impacts and understand the vulnerability of some of the Gulf’s key

marine species, its fisheries and national economies to climate change. We then discuss the

implications of these impacts for conservation and fisheries management policies in the region.

Materials and methods

Study area

The Gulf is bordered by Bahrain, Iran, Iraq, Kuwait, Oman, Qatar, Saudi Arabia and the United

Arab Emirates (UAE), all signatory members of the Regional Organization for the Protection of
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the Marine Environment (ROPME), created in 1978. It is bounded in the north, for the most

part, by the coast of Iran with the Shatt al-Arab river delta at the western end, and in the south,

mainly by the coasts of Saudi Arabia, with the eastern end being the north-western limit of the

Gulf of Oman at the Strait of Hormuz (24o to 30o30’N; 48o to 56o25’E1; see Fig 1).

Ecologically, the Gulf is a relatively shallow semi-enclosed marginal sea with a depth range

of 10 to 93 m, averaging 36 m, a length of 990 km, a width ranging between 56 km and 370

km, and a total surface area of 239,000 km2 [37]. It has a gently sloping terraced shelf punctu-

ated by numerous islands that formed as part of an extensive sabkha (i.e., salt flat [38]). Water

temperature ranges from 20o C in winter to more than 30o C in summer, with maximum salin-

ities of 48 psu [14], averaging 40 psu [39], and exceeding 70 psu in lagoons (e.g., in Saudi Ara-

bia) [15]. Freshwater influx into the Gulf originates from 200 underground water springs, 25

springs from the Zagros Mountain, and 8 major rivers, notably the Euphrates and Tigris,

which merge into the Shatt al Arab before flowing into the Gulf. These physical and environ-

mental conditions make the Gulf a sedimentary environment [40] that is conducive to the

Fig 1. The Gulf as defined in this study. The map shows the approximate extent of actual and/or claimed Exclusive Economic Zones (EEZs) as used here, notably to

allocate fisheries catches. Note that the maritime limits and boundaries shown on this map are not authoritative regarding the delimitation of international maritime

boundaries. Source: Natural Earth version 4.0.0 - http://www.naturalearthdata.com/. Map created using QGIS 2.8.2 –Wien.

https://doi.org/10.1371/journal.pone.0194537.g001
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growth of mangroves, algae and seagrass, providing refuge and forage for a multitude of

marine species, and also protecting the coastline from degradation [41].

Primary productivity is high at certain times of the year, with an increasing gradient in phy-

toplankton species richness and biomass from the Shatt Al-Arab area (low species diversity,

high biomass and production) to Kuwait, the Gulf of Oman, and the Strait of Hormuz (high

species diversity, low biomass and production [42]).

Projecting climate change impacts on marine biodiversity

To assess the impact of climate change on the Gulf’s marine biodiversity, we updated available

information on the ecology of 55 ‘priority species’, identified based on their contribution to

catches with additional species selected by regional stakeholders (i.e., governments, research-

ers, NGOs) that were part of the Local, National, and Regional Climate Change (LNRCC) Pro-

gramme of the Abu Dhabi Global Environmental Data Initiative (AGEDI). The programme is

stakeholder-driven with over 100 members, and feedback was parsed through two programme

coordinators, with a large number of members particularly concerned about sea turtles and

marine mammals. The selected priority species included 47 of the most important fish and

invertebrate species to fisheries in the Gulf (by weight), important biogenic features for marine

biodiversity (three species of seagrasses), and charismatic non-fish species that are also vulner-

able or endangered, such as the hawksbill (Eretmochelys imbricata) and green turtles (Chelonia
mydas), the dugong (Dugong dugon), and two species of dolphins (Sousa chinensis, Tursiops
aduncus) (S1 and S2 Tables).

The current and future distributions of the prioritized 55 marine species were here mod-

elled using an environmental niche approach, sensu [43]. This method quantifies the environ-

mental preferences (e.g., temperature, salinity, dissolved oxygen) of marine species and

projects their potential distribution according to present and future conditions.

To model species’ environmental niches we collated global occurrence records and envi-

ronmental data from a variety of sources. First, species presence/occurrence data were

obtained from the Ocean Biogeographic System (OBIS, http://www.iobis.org, accessed in

2015) and the Global Biodiversity Information Facility (GBIF, http://www.gbif.org, accessed in

2015). All points that fell outside known environmental preferences and geographic limits, as

defined in FishBase [44], SeaLifeBase [45] or obtained from OBIS-SEAMAP information

(http://seamap.env.duke.edu/, accessed in 2015), were removed. Second, a set of environmen-

tal parameters known to influence marine species distributions were gathered at a global

gridded scale. These included: sea surface temperature (SST) (1950–2013, [46]); sea bottom

temperature (1950–2013, [46]); sea surface and bottom salinity (1950–2013, [46]); sea surface

and bottom nutrient concentration (1950–2013, [46]); bathymetry (1950–2013, [46]); sea sur-

face and bottom oxygen concentration (1950–2013, [46]); chlorophyll a concentration (2006–

2015, [47]); particulate organic matter (2006–2015, [47]); and euphotic depth (2006–2015,

[47]). The spatial data for each annual environmental climatology were re-gridded onto 0.25o

latitude x 0.25o longitude resolution using a spline interpolation method [48].

The environmental niche of each species was quantified using three separate models: the

Non-Parametric Probabilistic Ecological Niche (NPPEN) model [49]; the Bioclimate analysis

and prediction (BIOCLIM) model [50], and the Ecological Niche Factor Analysis (ENFA)

model [51].

First, for each of the 55 focal species, the models quantified individual species’ environmen-

tal envelope by estimating the best combination of environmental conditions, based on all of

the parameters listed above, that describe its current global distribution. Sea surface and sea

bottom environmental conditions were used for pelagic and demersal species, respectively.
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Second, we used these species-specific environmental envelopes to project the probability of

occurrence of a given species in each spatial cell of the ocean according to environmental con-

ditions associated with that cell. Third, using projected future sea surface temperature and

salinity only, we projected ‘current’ (2000–2010), mid-21st century (2040–2050) and end of

21st century (2090–2100) species distributions, based on high-resolution modelled hydrologi-

cal conditions (temperature and salinity) of the Gulf provided by the Regional Oceanographic

Modelling group of the AGEDI LNRCC programme [52]. The oceanographic model projected

changes under the Representative Concentration Pathway (RCP) 8.5, representing a high-green-

house-gas-emissions, business-as-usual scenario [53]. For the current period, we calculated the

spatial anomalies of the high resolution (0.0275o latitude x 0.0275o longitude) model outputs

over a coarser resolution grid (0.25o latitude x 0.25o longitude). We attempted to use the best

available information to correct for systematic biases between the coarser global-scale and the

finer local-scale environmental data. Mesoscale patterns that are represented in the finer resolu-

tion dataset may be smoothed out when the data were aggregated to the coarser resolution. How-

ever, such mesoscale patterns are unlikely to dramatically alter the pattern of changes in

projected habitat suitability averaged at the Exclusive Economic Zone (EEZ) levels in our vulner-

ability analysis. We then applied the spatial anomalies of both the current and future periods to

the global environmental data described above to correct for the bias between modelled outputs

and global data products from the synthesis of observational data. This procedure helped retain

the high resolution spatial features of the model outputs. Next, we projected the spatial distribu-

tion of the 55 focal species using the three environmental niche models and the processed envi-

ronmental model outputs (i.e., based on climatological annual averages of predicted changes in

salinity and temperature). The projected current and future spatial distributions of each species

were further limited to the known depth range of the species and their affinity to the coast.

Using results from projected changes in distributions, we estimated the impacts of climate

change on the diversity of the 55 focal species using three indicators: rate of species invasion;

rate of species local extinction; and sum of habitat suitability index (i.e., index of habitat biodi-

versity suitability (HBS)). Rate of species invasion was calculated as the number of species

newly occurring in a cell by 2050 (average between 2040 and 2050) and 2090 (average between

2090 and 2100) relative to the number of species in that cell in 2010 (average between 2000

and 2010). Rate of species local extinction represents the number of species disappearing from

a cell in 2050 and 2090 relative to the number of species in that cell in 2010. Note that both

indicators evaluate “invasion” and “extinction” by comparing changes in temperature and

salinity of a cell with species’ environmental envelopes. Whether a certain species actually

invades a cell that falls within its climatology in the future may depend on factors outside of

the scope of this study. Changes in HBS were estimated by subtracting the sum of the probabil-

ity of occurrence for all species in 2050 and 2090 from that of 2010 for each cell. Note that

from here on onwards, when referring to habitat changes, we imply changes in the combina-

tion of temperature and salinity in the future compared to present conditions. In this context,

habitat does not denote biogenic features such as ‘reef’ or ‘seagrass’ for example, that hawksbill

turtle or dugong, respectively, may typically associate with for refuge and/or forage. In other

words, changes in habitat suitability for a species refers to the experienced combination of

changes in salinity and temperature at a given point in time by that species, relative to its niche

for those parameters, as defined by observed global occurrences. This is relevant for fish,

which constitute the largest proportion of the priority species identified, as habitat tends to be

determined by the water column for a significant portion of their life history, with two key

environmental parameters of this habitat being temperature and salinity. For some species

however, other factors may be more important in determining whether a given species’ real-

ized niche will entirely fill its new possible range extent.
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Vulnerability of charismatic species

In this study we focused on the following charismatic species: dugong (Dugong dugon), Indo-

Pacific humped-back dolphin (Sousa chinensis), Indo-Pacific bottlenose dolphin (Tursiops
aduncus), green turtle (Chelonia mydas), and hawksbill turtle (Eretmochelys imbricata). Cur-

rent and future habitat suitability of these species in the Gulf were projected using the model-

ling methods as described above. Thus, it may not include the full range of environmental and

ecological factors affecting the distribution of marine turtles and marine mammals. Also, we

did not predict habitat suitability for specific life stages (e.g., foraging or nesting populations),

which may be more or less sensitive to environmental changes. These methodological limita-

tions should be taken into account when interpreting our results, and the projected future dis-

tributions of charismatic species should be considered only as an indicator of their relative

vulnerability to climate change. Results are discussed in S1 Appendix in the context of (a) habi-

tat variables besides temperature and salinity that will be important in determining the popula-

tions of charismatic species’ future state under climate change; (b) where relevant, how

different life history stages may be affected; (c) their migratory behavior; and (d) local stressors

such as fisheries, shoreline development, dredging, and oil drilling, which are likely to repre-

sent more imminent and dangerous threats to these species’ survival than climate change.

Vulnerability of national economies to impacts on fisheries

The Intergovernmental Panel on Climate Change (IPCC) defines ‘vulnerability’ as “the degree

to which a system is susceptible to, and unable to cope with, adverse effects of climate change”

[54]. Vulnerability assessments have been used in various disciplines to assess the susceptibility

of natural or human systems to negative impacts as a result of human activities or natural pres-

sures [55]. A vulnerability assessment of fisheries to climate change involves understanding

the impacts of climate change on the biophysical and social components of marine ecosystems

[56–59]. Here, we chose to assess the relative vulnerability of each country’s fisheries to climate

change as a function of three dimensions: exposure, sensitivity and adaptive capacity [54, 56,

60–63]. Exposure is the nature and degree to which fisheries are exposed to climate change.

Sensitivity usually refers to the degree to which national economies are dependent on fisheries

and therefore sensitive to any changes in the sector. Adaptive capacity is the ability of a social

system in the current context to anticipate, respond and adjust to changes from climate

stresses, and to minimise, cope with, and recover from the consequences of climate change

[64]. Adaptive capacity includes elements of social capital, human capital, and the appropriate-

ness and effectiveness of governance structures [65].

We combined projections from ecological simulation models with indicators of the social-

economic realm to examine the vulnerability of the Gulf’s national economies to the potential

impacts of climate change on its marine fisheries. Note that for Saudi Arabia, Oman, and Iran,

countries with fisheries in other seas beyond the Gulf, relevant variables in the vulnerability

assessment were pro-rated to the proportion of total catches derived from the Gulf (S3 Table).

Catches used in this analysis were “reconstructed catches” as estimated as part of the global,

country-by-country research effort conducted by the Sea Around Us [66, 67] (see also S2

Appendix for a summary of key aspects of the methodology employed in this process as well as

key findings for relevant countries).

For each of the three dimensions (Exposure [E], Sensitivity [S], and Adaptive Capacity

[AC]), we selected a number of indicators, derived from separate sets of variables, to calculate

the overall vulnerability index (Table 1). Most indicators were based on the criteria and

assumptions listed in Allison et al. [56]. A comprehensive description of each indicator and its

calculation is provided in S3 Appendix.
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The vulnerability of each country to impacts on its fisheries due to climate change was cal-

culated by taking the unweighted average of the standardized indices for each dimension of

vulnerability. We took the average, because no clear understanding of the interaction among

these constituent components was available at the time analyses were undertaken. Compo-

nents can be summed or multiplied, or a particular indicator within a dimension may be given

more weight based on local evidence [61]. We made no a priori assumption about the impor-

tance of each dimension, or indicator within each dimension, in the overall sum to calculate

the vulnerability of each country to climate change (i.e., V = f (E, S, AC). Thus, each of the

indicators is viewed as having an equal contribution to a country’s overall vulnerability [85].

Previous studies have shown that vulnerability is robust to change in the weighting of its com-

ponents and to different methods of calculations [56, 86]. A country with a high vulnerability

score is assumed to have a combination of: (i) high exposure to climate change; (ii) high level

of fisheries contributions to its national economy and food security; and (iii) low ability to

respond and adapt to the risks posed by climate change.

Results

Vulnerability of marine biodiversity and fisheries to climate change

Meta-data for the 55 priority species, including habitat information, size, depth range and tro-

phic level are presented in S2 Table. The occurrence records (global) are presented in S1 Fig.

Occurrences for all of the species modelled have been recorded outside of the Gulf (i.e., the

Gulf represents a subset of the overall habitat that these species inhabit). Therefore, in model-

ling their distribution, we used the global occurrence records to capture the full range of envi-

ronmental preferences and tolerances of each species.

We predicted the current and future distributions of the 55 focal species for the period

2000–2010, 2040–2050 and 2090–2100. Projections of changes in marine species’ distributions

suggest that temperature-driven climate change is expected to have severe impacts on marine

biodiversity and fisheries in the Gulf. Noting that projections are possible changes in habitat

suitability as estimated by the methods used herein rather than actual predicted changes in

abundance, the models projected high rate of local extinction (up to 12% of initial species rich-

ness) by the end of the century relative to 2010 under the RCP 8.5 scenario (Fig 2). All results

are presented as multi-model ensemble averages. Presenting the results from just one model

would require scientists endorsing that specific model as possibly more valid than the others

(i.e., it has fewer biases, lower variability, and therefore greater reliability). As the climate sys-

tem is complex, current evidence indicates that it remains fundamentally impossible to

describe all of the climate’s processes in a single model, no matter how complex the model is,

with developers making choices with regards to what processes to include (and which to

exclude) and how to parameterize them. As a consequence, an ensemble of several models is

recommended to better account for structural and other uncertainties over time [87, 88].

Species invasion is low (up to 5% of initial species richness). Spatially, local extinction is low

to moderate in 2050, with highest species loss compared to 2010 projected along the northwest

coast of Bahrain and the UAE. By 2090 species loss has risen to affect the majority of the Gulf,

with highest numbers of species lost projected for the southwestern part of the Gulf, off the

coast of Saudi Arabia, Bahrain, Qatar and the UAE. In contrast, species invasion by 2050 and

2090 is similar and limited to areas in the northern part of the Gulf, off the coast of Kuwait and

northern Iran. This projected pattern appears to be robust, with overall congruence among all

three models’ results. A drastic reduction in the total habitat biodiversity suitability (HBS) for

all species by 2090 is shown in Fig 3. Climate-driven perturbations in local and regional envi-

ronmental conditions will make most of the southern Gulf unsuitable for species that are

Climate change impacts on the Arabian Gulf
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presently occurring there. Projected HBS for currently recorded species in the Gulf increases

in its northern part (Fig 3), potentially providing the only refuge for fauna. For example, for

Table 1. Indicators and their composite variables for each dimension used to assess the vulnerability of national economies to climate change impacts on fisheries.

Indicators Definition Composite index Variable1 Sources

Exposure

Change in

maximum catch

potential

Projected change in maximum catch potential of each marine

species exploited by each country, in the Gulf, under RCP 8.5 in

2090 relative to current status. The projected MCP of each species

caught by each country was calculated by assuming the future

MCP varies positively with the change in habitat suitability index.

Change in catch potential

from current status under

climate change

Percent change in maximum catch potential under climate

change

Results from environmental

niche model (ENM) and

fisheries modelling

Sensitivity

Employment Importance of the marine fishery sector to local livelihoods Number of fishers in the

marine fisheries sector

Number of fishers Teh and Sumaila [68]

Number of fishers relative

to other sectors

Proportion of economically active population (%) in the fishery

sector

LABORSTA [69]

Nutritional

dependence

Importance of fish as a source of nutrition and whether the

nutrition provided by fisheries is sufficient to support the health

of people in the country

Country’s dependence on

fish as a source of protein

Fish protein as proportion (%) of all animal protein consumed FAOSTAT [70]

Child malnutrition Proportion of children under five years old who are malnourished

(underweight)

WHO [71]

Economic

dependence

Dependence of a country’s economy on its fisheries sector Country’s dependence on

its fishery sector for

revenue

Landed values as proportion (%) of total GDP Sumaila et al. [72]; Swartz et al.

[73]; The Worldbank Group

[74]; Pauly and Zeller [75]

Fisheries export value Value of fisheries exports as proportion (%) of total exports FAO FishStatJ [76]; UN Trade

Statistics [77]; FAOSTAT [70]

Total fisheries landings Catch (tonnes) Pauly and Zeller [75]

Poverty rate Number of people below national poverty lines (% of population) CIA [78]; The WorldBank

Group [74]; El-Khoury [79];

NationMaster [80]

Coastal protection Importance of marine ecosystem services to minimise risks and

threats from climate change

Country’s dependence on

marine systems for coastal

protection

Number of people living in coastal areas of elevation

< 5 m (% of population)

The World Bank Group [74]

Country’s dependence on

marine systems for coastal

protection

Proportion of land area of elevation <5 m The World Bank Group [74]

Adaptive capacity

Health Average number of years that a person can expect to live Life expectancy Life expectancy at birth (years) The World Bank Group [74];

UNDP [81]

Education Education level Adult literacy rates Number of people over age 15 who can read and write, both sexes

(% of population)

UNDP [81]

School enrolment ratios Number of tertiary aged people enrolled in tertiary education,

both sexes (% of population)

UNDP [81]

Governance Public institutions’ ability to conduct public affairs, manage

public resources, effectively implement decisions, ensure the rule

of law, improve accountability, and tackle corruption. These are

generally seen as essential elements of a framework within which

economies can prosper.

Political stability and

absence of violence

Perceptions of the likelihood of political instability and/or

politically-motivated violence (-2.5–2.5)

Kaufman et al. [82]; The World

Bank Group [74]

Government effectiveness Perceptions of the quality of public services, the quality of the civil

service and its independence from political pressures, the quality

of policy formulation and implementation, and the credibility of

the government’s commitment to such policies (-2.5–2.5)

Regulatory quality Perceptions of the ability of the government to formulate and

implement sound policies that permit private sector development

(-2.5–2.5)

Rule of law Perceptions of the extent to which agents have confidence in and

abide by the rules of society, the quality of contract enforcement,

property rights, the police, and the courts (-2.5–2.5)

Voice and accountability Extent to which a country’s citizens are able to participate in

selecting their government, as well as freedom of expression,

freedom of association, and a free media (-2.5–2.5)

Control of corruption Perceptions of the extent to which public power is exercised for

private gain, including both petty and grand forms of corruption,

as well as "capture" of the state by elites and private interests.

(-2.5–2.5)

Fisheries

management

Resources allocated by a government to sustainably manage its

fisheries

Marine Protected Areas

(MPA)

Proportion of territorial sea protected (%) IUCN and UN Environment-

WCMC [83]

Size of the

economy

Countries with a stronger economy may be able to divert more

resources to respond and adapt to climate change

Gross Domestic Product

(GDP)

Total GDP The World Bank Group [74]

Employment

alternatives

Knowledge base and skill set of the workforce Economic complexity The amount of knowledge embedded within an economy, as

measured by the diversity and ubiquity of products in a country

MIT [84]

1 For Iran, Oman and Saudi Arabia based on dependence from the Gulf only or pro-rated to proportion of catch derived from the Gulf only.

https://doi.org/10.1371/journal.pone.0194537.t001
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Spanish mackerel (Scomberomorus commerson), the ensemble mean habitat suitability is pro-

jected to decrease in the southern Gulf because of ocean warming. By the end of the 21st cen-

tury, the only area with relatively higher habitat suitability for the species is projected to be

concentrated mostly in the northern Gulf. Such a shift closely matches the gradient in sea

water temperature for the Gulf predicted by Edson et al. [52].

The percent change in habitat suitability for all non-fish species in the Economic Exclusive

Zones (EEZs) of Gulf countries in 2050 and 2090 under the RCP 8.5 scenario, as an average

across all three models, is presented in S2 Fig.

Vulnerability of charismatic species

Habitat suitability for all five charismatic species taken together was projected to decline most

in the waters of countries on the western side of the Gulf. Areas off Oman, Bahrain and Qatar

were projected to be particularly affected (Fig 4), with a 36% drop in future habitat suitability,

followed by the UAE and Saudi Arabia. Waters of countries in the northern Gulf were pro-

jected to be less vulnerable. There is generally high agreement of results among the three envi-

ronmental niche models.

Our analyses also included looking at charismatic species individually (Fig 5). While models

showed varying ranges of loss in habitat suitability for dugong, marine turtles, and Indo-Pacific

dolphin, on the whole, future projections were largely inconclusive. For bottlenose dolphins, all

Fig 2. Projected change in species number (top), species invasion (middle) and extinction (bottom) in the Gulf by 2050 (left) and

2090 (right) relative to 2010. Results are presented for an average of the three niche models and for the RCP 8.5 scenario. The color bars

represent number of species. Source: Natural Earth version 4.0.0 - http://www.naturalearthdata.com/. Figure created using MATLAB

2017b.

https://doi.org/10.1371/journal.pone.0194537.g002

Fig 3. Change in habitat suitability for focal species in the Gulf in 2050 (left) and 2090 (right) relative to 2010. Results are presented for scenario RCP 8.5 and as

averages across all three models. A decline in habitat suitability (in percentage) is shown in red, whereas increases in habitat suitability are represented in blue. Source:

Natural Earth version 4.0.0 - http://www.naturalearthdata.com/. Figure created using MATLAB 2017b.

https://doi.org/10.1371/journal.pone.0194537.g003
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three environmental niche models projected large declines in habitat suitability under climate

change for most areas, with the exception of the northern region. S1 Appendix provides details

on charismatic species-specific analyses and results, as well as a discussion of our findings.

Projection results for all species included in this study can also be found at https://www.ccr-

group.org/copy-of-marine-inspector-resources and related links.

Vulnerability of national economies to climate change impacts on fisheries

While projections were slightly different among models, overall catch potential declined in

several countries on the western side of the Gulf (Fig 6). Qatar, Oman and the UAE were par-

ticularly affected, with a drop of more than 30% in future catch potential.

Fig 4. Change in habitat suitability for all charismatic species in the Economic Exclusive Zones (EEZs) of the Gulf in 2050 and 2090. Results are presented for

scenario RCP 8.5 and as averages across all three models. The error bars represent the intermodal range.

https://doi.org/10.1371/journal.pone.0194537.g004
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Fig 5. Change in habitat suitability for the 5 charismatic species in the Gulf in 2090 relative to 2010. Results are presented for scenario

RCP 8.5 and as averages across all three models. The species considered include Tursiops aduncus (top left), Sousa chinensis (top right),

Chelonia mydas (centre left), Eretmochelys imbricata (centre right), and Dugong dugon (bottom). The habitat suitability index is scaled from 0

to 1 and is the same for all species. Source: Natural Earth version 4.0.0 - http://www.naturalearthdata.com/. Figure created using MATLAB

2017b.

https://doi.org/10.1371/journal.pone.0194537.g005
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Results from the vulnerability assessment integrating changes in catch potential with socio-

economic indicators showed Bahrain and Iran as most vulnerable to the impacts of climate

change on fisheries (Table 2). Oman, the UAE and Iraq were labelled of “medium vulnerabil-

ity”, while Kuwait and Saudi Arabia exhibited the lowest vulnerability.

For both Oman and the UAE, vulnerability is mostly tied to the country’s exposure to cli-

mate change impacts (i.e., reduced future fisheries). Although the UAE’s economy is only

slightly dependent on fisheries (~0.08% of GDP), the country is highly exposed to climate

change impacts, therefore yielding a relatively high overall vulnerability score (0.50). While

Iraq has very low adaptive capacity, its exposure to climate change is very low, yielding a

Fig 6. Change in catch potential in the Economic Exclusive Zones (EEZs) of the Gulf in 2090. Results are for scenario RCP 8.5 scenario as predicted by an average of

the three niche models (BIOCLIM, NPPEN, and ENFA). The error bars represent inter-model range.

https://doi.org/10.1371/journal.pone.0194537.g006
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medium score for overall vulnerability (0.45). Bahrain and Iran’s fisheries ranked as the most

vulnerable when combining changes in catch potential with the nation’s socio-economic

framework (0.52). With a medium score for exposure and adaptive capacity, Bahrain is highly

dependent on fisheries for its economy as it scored the highest for employment, as well as eco-

nomic and coastal dependence on fisheries relative to other Gulf countries. While scoring rela-

tively low for exposure, Iran ranked second highest for its sensitivity and second last for its

adaptive capacity to climate change. This finding seems reasonable as Iran has the longest

coastline in the Gulf, derives the highest catch, and has the least employment alternatives in

the region. A map of the fisheries vulnerability index for each country is shown in Fig 7.

Discussion

Vulnerability of marine biodiversity and fisheries

Climate change is projected to have large impacts on marine biodiversity in the Gulf. Overall,

habitat suitability for all 55 priority marine species included in this study–based on their

importance to fisheries and selection by local stakeholders–is projected to undergo major

declines. These findings imply that under climate change, as modelled through changes in

salinity and temperature, local extinction rates are expected to increase considerably through-

out the Gulf. Impacts are predicted to be particularly high along the south and southwestern

coasts, where high rates of local extinction are projected by the end of the 21st century.

At a global level, hydrological and biogeochemical conditions in the Gulf are considered

highly specific. This area represents, for most of the environmental variables used to define the

current environmental niche of species considered, the extreme end of the environmental gra-

dient they inhabit [28, 29]. Consequently, most of the Gulf’s biodiversity can be classified into

two distinct types: 1. migrating species with a high tolerance to environmental variations (i.e.,

euryecious) and; 2. endemic or locally-adapted species with a coarse environmental range, but

highly adapted to the present environmental conditions in the Gulf (i.e., stenoecyous). The

Table 2. Relative vulnerabilities of national economies to climate change impacts on fisheries. Note that for Saudi Arabia, Oman, and Iran, countries with fisheries in

other seas beyond the Gulf, relevant variables in the vulnerability assessment were pro-rated to the proportion of total catches derived from the Gulf only. Countries’ rank-

ings are from most (1) to least vulnerable (8).

Country Exposure Sensitivity Adaptive capacity� Vulnerability Index Rank

Bahrain1 0.40 (5) 0.73 (1) 0.43 (4) 0.52 1

Iran 0.39 (6) 0.48 (2) 0.68 (2) 0.52 2

Oman2 0.90 (2) 0.13 (7) 0.47 (3) 0.50 3

United Arab Emirates3 0.96 (1) 0.38 (3) 0.14 (1) 0.50 4

Iraq4 0.10 (8) 0.34 (4) 0.92 (8) 0.45 5

Qatar5 0.76 (3) 0.22 (5) 0.35 (7) 0.44 6

Saudi Arabia6 0.58 (4) 0.09 (8) 0.37 (6) 0.35 7

Kuwait7 0.16 (7) 0.18 (6) 0.47 (5) 0.27 8

1 Fish protein as proportion (%) of all animal protein and economic diversity values are missing for Bahrain.
2 Poverty rate values are missing for Oman.
3 Percentage of children under five who are underweight and school enrolment ratio indices are missing for the UAE.
4 Number of fishers in the fisheries sector; number of people involved in fisheries relative to other economic sectors and economic diversity indices are missing for Iraq.
5 Fish protein as proportion (%) of all animal protein and poverty rate indices are missing for Qatar.
6 Fish protein as proportion (%) of all animal protein and poverty rate indices are missing for Saudi Arabia.
7 Fisheries export value as proportion (%) of total export value and poverty rate indices are missing for Kuwait.

� The higher the value of the adaptive capacity component, the less the capacity of a country to adapt to climate change.

https://doi.org/10.1371/journal.pone.0194537.t002
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main hotspots of biodiversity are located along coasts, particularly in the south-eastern part of

the Gulf and in specific regions where biogenic habitats such as coral reefs and seagrass are

found (e.g., area around the Khark, Qehm or Bahrain islands and nearby protected areas such

as in Heleh, Mond, Jubail or Haraye Khmair).

Although this study focused on 55 of the thousands of species occurring in the region, the

general pattern of response to climate change we find is likely to be applicable to many fishes

and invertebrates in the Gulf. Since most species are either highly adapted or at the edge of

their environmental ranges, their sensitivity to any environmental or habitat perturbation is

likely to be high. Thus, it is not surprising that projections of local species extinctions driven

by temperature and salinity changes are high. Model results showed ranges of species currently

occurring in the Gulf shifting poleward, from the eastern part of the Gulf to the coast of Iraq

and Iran, by 2090. As species’ northern expansion/range is limited by land, the scope for these

to adapt to warming through a poleward range shift is limited. Such a cul-de-sac effect would

increase the overall rate of local extinctions in the Gulf and has been projected to occur in

other semi-enclosed seas such as the Mediterranean [89]. While species may adapt by moving

Fig 7. Relative vulnerability of national economies in 2090 to climate change impacts on fisheries in the Gulf. Note that for Saudi Arabia, Oman, and Iran, countries

with fisheries in other seas beyond the Gulf, relevant variables in the vulnerability assessment were pro-rated to the proportion of total catches derived from the Gulf.

Source: Natural Earth version 4.0.0 - http://www.naturalearthdata.com/. Map created using QGIS 2.8.2 –Wien.

https://doi.org/10.1371/journal.pone.0194537.g007
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deeper [90], not all taxa will find suitable habitat in doing so, and the Gulf has a shallow depth

limit. Biodiversity losses due to climate change are likely to be exacerbated by other direct

human impacts such as pollution, eutrophication, and coastal reclamation [21, 24, 91]. Note,

that our study focuses on diversity losses of species currently inhabiting the region, and does

not consider possible invasion into the region by species from the Indian Ocean, that could

lead to a net increase in overall biodiversity.

Results also showed that a decline in species habitat suitability translated directly into a pro-

jected decrease in maximum fisheries catch potential, particularly along the southwestern

parts of the Gulf. We integrated these findings into a vulnerability assessment framework that

included indicators for countries’ socio-economic sensitivity and adaptive capacity. Findings

from this assessment showed that the countries that are most vulnerable to climate change

impacts on fisheries were not confined to the southwestern coast, but also included Iran and

Iraq. By integrating the ecological results of climate change impacts on marine biodiversity

into a more comprehensive socio-economic framework, this study’s findings highlight the

value of such an analysis (i) to assist national economies and societies to better anticipate, and

prepare adaptive mechanisms to cope with climate change impacts so that efforts can be

focused and prioritized; and (ii) to illustrate how social conditions can magnify or dampen cli-

mate change effects, in other words, climate change is best tackled by jointly addressing social

and ecological issues.

Robustness and uncertainty

Projecting climate change impacts on fishes and invertebrates. We evaluated the

impacts of climate change based on modelled species-specific preferred ranges and drove pro-

jections using predicted shifts in temperature and salinity. For marine fishes and invertebrates,

temperature is a primary climate stressor that affects their physiology, distribution and phenol-

ogy [5]. However, other factors, such as oxygen concentration, acidification, and changes in

ocean circulation can moderate a species response to temperature under climate change [2, 3,

90, 92, 93]. Thus, our projections are considered to be conservative because we did not account

for the potential additional or synergistic effects of changes in other ocean variables. Moreover,

the models used are based only on a species’ realised niche [43], with the projected distribu-

tions not taking into consideration other ecological dynamics and trophic interactions among

species that are at play and that may alter our results.

The accuracy of projections is also contingent on the outputs from regional oceanographic

models. We chose to use a regional oceanographic model because it provided us with high res-

olution projections of ocean conditions that are much more representative of the Gulf, com-

pared to outputs from global scale Earth System Models. The environmental niche models

applied in this study assume that species’ traits do not evolve as environmental conditions

change, but species may well adapt to warming through genetic or transgenerational adapta-

tions [29]. However, the extent of such adaptive responses may be limited, as suggested by the

substantially lower species diversity in the Gulf relative to the adjacent Indian Ocean where

conditions are not as extreme. The time frame over which they would have to evolve given the

pace at which climate change is advancing may also be too short. In addition, these projections

do not include how other human impacts such as changes in fishing effort may influence spe-

cies’ presence and distribution as well as biodiversity patterns.

Overall, the projected patterns of change in habitat suitability for marine fishes and inverte-

brates should provide useful indicators of climate change impacts on their diversity and mean-

ingfully inform the development of adaptation strategies. The magnitude of these changes

however is less certain.
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Projecting climate change impacts on charismatic species. The results of this study sug-

gest an increase in vulnerability of charismatic species to climate change in the Gulf. For

hawksbill turtles for example, habitat loss is projected to be most significant in south and

southwestern parts of the Gulf. Post-nesting tracks of 90 turtles showed these areas to currently

be the most important for this species [94]. Marine mammals generally have wider tolerance

windows for variations in sea temperature and salinity. Therefore, projected declines in habitat

suitability for dugong and dolphins may be overestimated. Overall, confidence in the projec-

tions of habitat suitability loss for charismatic species, as a result of future climate-mediated

changes in temperature and salinity, is much lower than for other groups. For all charismatic

species considered, changes in salinity and temperature may present stresses of relatively low

concern, particularly when compared to other threats these animals face (e.g., fishing bycatch,

loss of critical habitat due to pollution, eutrophication and coastal development, boat traffic,

oil and gas exploration, military exercises, and biotoxins associated with red tide events). A

more detailed discussion of findings is included in S1 Appendix.

Assessing socio-economic vulnerability to climate change impacts. Although the frame-

work used for assessing the vulnerability of national economies to climate change impacts on

fisheries is relatively comprehensive, some caveats and shortcomings in the approach remain

(see S3 Appendix for details by indicator and for select variables). For example, the exposure

dimension consists of one indicator (i.e., change in fisheries catch potential under climate

change), while the other two dimensions are made up of several indicators. Therefore, the

change in catch potential may be overrepresented in the overall vulnerability index. Moreover,

because previous studies have shown results between different measures of vulnerability to be

strongly correlated [86], we chose to give each indicator within a given dimension and each

dimension within the overall vulnerability index equal weighting. Based on local settings,

stakeholders may wish to give individual variables and/or indicators different weightings.

Projected changes in fish catches will impact the supply of fish available for local consump-

tion (i.e., food security) and exports (i.e., income generation). The magnitude of this impact

will require a detailed analysis of overlap between affected fish species and exported fish, as

well as countries’ reliance on imported fish to meet local demand. While detailed consider-

ations fall outside of the purview of this study, we suggest that national-level economic impacts

are likely to be relatively minor, given that fisheries exports constitute less than 0.5% of total

exports for all Gulf States. However, socio-economic impacts are likely to be comparatively

greater at localized scales where there is direct and heavy reliance on fishing activities to sup-

port household incomes and where catch declines may therefore reduce the purchasing power

of people to buy more nutritious food. Future studies may wish to be devoted to more compre-

hensive economic analyses of food supply/demand and trade, specifically addressing: the direct

impact of a reduction in catches on food security (and the local socio-economy), and the indi-

rect impacts on food security and local economies of a reduction in catches. Impacts are likely

to be most severe for those economies that may need to increase imports even more because

their own fisheries are suffering from climate change.

Generally, our results align well with a recent global vulnerability assessments of fisheries to

climate change [59]. Beyond some differences in methodology that may explain some differ-

ences, it is important to also note that our analyses focused on the Gulf region only. Some

countries with high vulnerability scores to climate change impacts (e.g., Oman, Saudi Arabia)

may in reality be less exposed to climate change than results suggest based on catches obtained

from, and climate change impacts on, another sea. Alternatively, given that previous studies

project high impacts of climate change on fisheries in the Indian Ocean [95, 96], the vulnera-

bility scores estimated for the Gulf may be conservative.
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While it would not be practical to make generalised statements on policy and adaptation

recommendations for all countries, this study shows that certain countries have comparatively

higher capacity to mitigate climate change impacts on fisheries than others. For instance, the

UAE appear to have reliable fisheries management, economic complexity, and a governance

structure that encourages transparency, political stability, and accountability relative to other

Gulf countries. These factors are all essential requirements for the design, implementation,

and long-term sustainability of climate change adaptation. Policies will have to tackle the

impacts of anticipated fisheries decline, to which the UAE are highly exposed to, such as

reduced fish supply, unemployment in the fishing and related sectors, and the downstream

effects on other sectors of the economy. Another approach is to address areas that contribute

to a country’s high sensitivity ranking. For example, the physical well-being of coastal commu-

nities in Bahrain is most predisposed to the negative effects of future sea level rise. This sug-

gests that precautionary actions should be taken to build infrastructure to make communities

safe. Relevant agencies should also prepare fishing dependent households to deal with potential

economic decline, through socio-economic development programmes such as financial plan-

ning education, and skills diversification.

Overall, characterization of the level of vulnerability to climate change of a fisheries-based

social-ecological system is an important first step, and our assessment provides a good general

indication of the potential vulnerability at the national level. Vulnerability assessments for

coastal communities to climate change impacts on fisheries would require more detailed, com-

munity-specific studies. For example, participatory-based assessments could factor in the

more subjective dimension of vulnerability of communities to climate stresses, helping to

ensure that results can be more closely linked to effective adaptation processes on the ground

[97]. This complementary methodology is also likely to have greater uptake and implementa-

tion potential. Ultimately, developing and strengthening a capacity to anticipate and act on

change is fundamental [56].

Adaptation to climate change impacts on biodiversity

Marine biodiversity was projected to be particularly vulnerable to climate change impacts

along the south and southwestern coasts of the Gulf, and efforts should probably prioritise

these areas. Multiple human stressors, such as habitat destruction and overfishing, are likely to

exacerbate this vulnerability. Indeed, the region’s ecosystems are under the more immediate

and ever-increasing pressures associated with the rapid development of economic, social and

industrial activities, making the Gulf one of the highest anthropogenically impacted regions in

the world [21, 22, 98]. Impacts of climate change on marine biodiversity may further affect the

integrity of local ecosystems and can be moderated by reducing stresses from overfishing and

destructive fishing practices; habitat degradation; pollution, including brine waste waters,

domestic sewage and runoff; oil and gas exploration; land-use transformation, land reclama-

tion, dredging activities and sedimentation. Therefore, effective implementation of ecosystem-

based management that considers a much wider range of environmental and human stressors

is fundamental to increasing the adaptive capacity of marine social-ecological systems to cli-

mate change. This includes strengthening the implementation and enforcement of current reg-

ulations and agreements to protect marine resources in the Gulf.

Adaptive marine conservation and management are important in uncertain future ocean

ecosystems [99]. The reduced predictability of marine ecosystems due to climate change will

make it more difficult to provide accurate assessments of the current and future status of

marine biodiversity. Also, changing baseline oceanographic and ecological conditions may

affect the effectiveness of existing conservation and management measures such as marine
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protected areas (MPAs). For example, by assessing the degree of future environmental change

within proposed protected areas, conservation planning may be used to protect against biodi-

versity loss [100]. Additional MPAs to develop national and regional networks of MPAs may

also increase the likelihood of effectively conserving species following climate change-induced

range shifts [101, 102]. Monitoring programmes that are designed for a changing ocean and

that incorporate collected data as well as adapt to analyses’ findings would allow future studies

to validate (and refine) modelling projections and are thus critical to adaptive systems. Struc-

tured, integrative monitoring programmes, should include data for indicators at the pressure,

state, and response levels, to allow finer-scale differentiation between climate change impacts

and localised disturbances. Such programmes should be designed together with and include

relevant stakeholders and be conducted at relevant spatial and temporal scales, thus allowing

for appropriate management decisions to be taken and rapidly implemented. The potential for

mal-adaptation and trade-offs from multiple adaptation actions should be evaluated. For

example, it is expected that the expansion of desalination facilities would significantly increase

average and maximum surface and bottom temperatures as well as average and maximum

salinity throughout the Gulf, further exacerbating the impacts of climate change on marine

species [103].

The sooner precautionary measures directly targeting fisheries effort (particularly in coun-

tries most affected by changes in catch potential) that also take into consideration future

changes are adopted, the smoother the transition will be. Such considerations should involve

wide-scale local stakeholder involvement at all levels to raise awareness and empower commu-

nities to aid in proposing solutions to tackle the required changes [104, 105]. Reducing com-

pounding stresses will also help further ensure the sustainable flow of ecosystem services into

the future.
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