Marin Shoreline
Sea Level Rise
Vulnerability Assessment
Table of Contents

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>i</td>
</tr>
<tr>
<td>Figures</td>
<td>viii</td>
</tr>
<tr>
<td>Tables</td>
<td>viii</td>
</tr>
<tr>
<td>Maps</td>
<td>xvi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxiv</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>xxv</td>
</tr>
<tr>
<td>Methods</td>
<td>xxvi</td>
</tr>
<tr>
<td>15-year Expectations</td>
<td>xxvii</td>
</tr>
<tr>
<td>Mid Century Expectations</td>
<td>xxx</td>
</tr>
<tr>
<td>End of Century Expectations</td>
<td>xxxii</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Methodology</td>
<td>6</td>
</tr>
<tr>
<td>Modeling Methods</td>
<td>6</td>
</tr>
<tr>
<td>Known Issues</td>
<td>15</td>
</tr>
<tr>
<td>Sea Level Rise Maps & FEMA</td>
<td>18</td>
</tr>
<tr>
<td>Assessment Methods</td>
<td>18</td>
</tr>
<tr>
<td>Phase 1: Exposure</td>
<td>18</td>
</tr>
<tr>
<td>Phases 2 & 3: Sensitivity & Adaptive Capacity</td>
<td>19</td>
</tr>
<tr>
<td>Phase 4: Risk & Onset</td>
<td>20</td>
</tr>
<tr>
<td>Other Considerations Methods</td>
<td>20</td>
</tr>
<tr>
<td>ASSET PROFILES</td>
<td>23</td>
</tr>
<tr>
<td>Asset Profile: Land</td>
<td>24</td>
</tr>
<tr>
<td>Acres</td>
<td>25</td>
</tr>
<tr>
<td>Near-term: Scenarios 1 & 2</td>
<td>25</td>
</tr>
<tr>
<td>Medium-term: Scenarios 3 & 4</td>
<td>26</td>
</tr>
<tr>
<td>Long-term: Scenarios 5 & 6</td>
<td>26</td>
</tr>
<tr>
<td>Vulnerable Parcels</td>
<td>27</td>
</tr>
<tr>
<td>Near-term: Scenarios 1 & 2</td>
<td>27</td>
</tr>
<tr>
<td>Medium-term: Scenarios 3 and 4</td>
<td>29</td>
</tr>
<tr>
<td>Long-term: Scenarios 5 & 6</td>
<td>30</td>
</tr>
<tr>
<td>Landfill Sites</td>
<td>34</td>
</tr>
<tr>
<td>Other Considerations</td>
<td>38</td>
</tr>
<tr>
<td>Economic</td>
<td>38</td>
</tr>
</tbody>
</table>

DRAFT: Marin Shoreline Sea Level Rise Vulnerability Assessment
TABLE OF CONTENTS

Environmental ... 39
Social Equity ... 40
Management ... 40
Asset Profile: Buildings ... 41
Structural Factors .. 42
Near-term: Scenarios 1 & 2 .. 43
 Flood Depth ... 45
Medium-term: Scenarios 3 & 4 .. 45
 Flood Depth ... 47
Long-term: Scenarios 5 & 6 .. 47
 Flood Depth ... 48
Public Facilities ... 51
 Schools (Private and Public) .. 51
Medical Facilities .. 52
Retirement and Assisted Living .. 53
Potential Damages .. 53
Other Considerations .. 58
 Economic ... 58
 Environmental .. 60
 Social Equity .. 60
 Management ... 61
Asset Profile: Roads, Trails, & Waterways ... 62
 Transit Service .. 76
 Bicycling ... 77
 Water Transportation .. 78
 Ferry Service .. 78
 Harbors and Marinas .. 78
 Airports .. 79
Other Considerations .. 88
 Economic ... 88
 Environmental .. 88
 Social Equity .. 88
 Management ... 89
Asset Profile: Water, Wastewater, Stormwater, Gas, Electricity, & Telecommunications ... 90
Potable Water .. 91
 North Marin Water District (NMWD) ... 91
TABLE OF CONTENTS

Marin Municipal Water District (MMWD) .. 91
Sewer Service ... 94
Sewerage Agency of Southern Marin (SASM) ... 95
Sausalito Marin City Sanitary District (SMCSD) .. 96
Sanitary District No. 2 ... 97
Las Gallinas Valley Sanitary District (LGVSD) .. 97
Ross Valley Sanitary District .. 97
San Rafael Sanitation District .. 97
Sanitary District No. 5 ... 98
Novato Sanitary District ... 98
On-site Waste Water Treatment (OWTS)... 98
Fuels (Home and Automotive) ... 101
Electricity .. 102
Telecommunications ... 105
Stormwater Systems ... 105
Other Considerations ... 110
Economic .. 110
Environmental .. 110
Social Equity .. 110
Management ... 110
Asset Profile: Agriculture .. 111
Other Considerations ... 112
Economic .. 112
Environment .. 112
Social Equity .. 112
Management ... 112
Asset Profile: Habitats & Wildlife ... 113
Beaches .. 114
Tidal Estuaries, Wetlands, & Marshes ... 115
Bay ... 116
Freshwater Resources ... 117
Wildlife & Endangered Species .. 118
Mammals .. 118
Fish .. 119
Birds ... 120
Insects ... 121
TABLE OF CONTENTS

- Plants .. 121
- Other Considerations ... 127
 - Economic .. 127
 - Environmental ... 127
 - Social Equity ... 127
 - Management ... 127
- Asset Profile: Recreation & Public Access .. 129
- Beaches .. 133
- Estuaries, Wetlands, & Marshes ... 133
- Freshwater Resources .. 133
- Federal Parks ... 134
- Bay .. 134
- Sporting Facilities .. 135
- Bikeways and Trails ... 135
- Private Recreation .. 136
- Other Considerations .. 142
 - Economic .. 142
 - Environmental ... 142
 - Social Equity ... 142
 - Management ... 142
- Asset Profile: Emergency Services ... 143
- Sheriff .. 143
- Fire Protection & Emergency Medical .. 143
- Local Police .. 144
- California High Patrol (CHP) .. 144
- Emergency Shelters .. 144
- Other ... 144
- Other Considerations .. 148
 - Economic .. 148
 - Environmental ... 148
 - Social Equity ... 148
 - Management ... 148
- Asset Profile: Cultural Resources .. 149
- Vulnerable Assets ... 150
 - Archaeological Sites .. 150
 - Fort Baker ... 152
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sausalito</td>
<td>152</td>
</tr>
<tr>
<td>Marinship, Sausalito</td>
<td>153</td>
</tr>
<tr>
<td>Belvedere</td>
<td>154</td>
</tr>
<tr>
<td>Tiburon</td>
<td>154</td>
</tr>
<tr>
<td>Angel Island</td>
<td>155</td>
</tr>
<tr>
<td>Larkspur</td>
<td>156</td>
</tr>
<tr>
<td>San Rafael</td>
<td>156</td>
</tr>
<tr>
<td>Hamilton Army Air Field</td>
<td>157</td>
</tr>
<tr>
<td>Other Considerations</td>
<td>160</td>
</tr>
<tr>
<td>Economic</td>
<td>160</td>
</tr>
<tr>
<td>Environmental</td>
<td>160</td>
</tr>
<tr>
<td>Social Equity</td>
<td>160</td>
</tr>
<tr>
<td>Management</td>
<td>160</td>
</tr>
<tr>
<td>COMMUNITY PROFILES</td>
<td>165</td>
</tr>
<tr>
<td>Municipality Profile: Sausalito</td>
<td>166</td>
</tr>
<tr>
<td>Vulnerable Assets</td>
<td>167</td>
</tr>
<tr>
<td>Land</td>
<td>167</td>
</tr>
<tr>
<td>Buildings</td>
<td>168</td>
</tr>
<tr>
<td>Transportation</td>
<td>172</td>
</tr>
<tr>
<td>Utilities</td>
<td>175</td>
</tr>
<tr>
<td>Working Lands</td>
<td>175</td>
</tr>
<tr>
<td>Natural Resources</td>
<td>175</td>
</tr>
<tr>
<td>Recreation</td>
<td>176</td>
</tr>
<tr>
<td>Emergency Services</td>
<td>176</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>183</td>
</tr>
<tr>
<td>Community Profile: Mill Valley</td>
<td>185</td>
</tr>
<tr>
<td>Vulnerable Assets</td>
<td>186</td>
</tr>
<tr>
<td>Land</td>
<td>186</td>
</tr>
<tr>
<td>Buildings</td>
<td>188</td>
</tr>
<tr>
<td>Transportation</td>
<td>191</td>
</tr>
<tr>
<td>Utilities</td>
<td>196</td>
</tr>
<tr>
<td>Natural Resources</td>
<td>196</td>
</tr>
<tr>
<td>Recreation</td>
<td>197</td>
</tr>
<tr>
<td>Emergency Services</td>
<td>197</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>197</td>
</tr>
<tr>
<td>Community Profile: Belvedere</td>
<td>201</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Vulnerable Assets ... 201
 Land 202
 Buildings 203
 Transportation 206
 Utilities 208
 Natural Resources 208
 Recreation 208
 Cultural Resources 208
 Emergency Services 209
Community Profile: Tiburon ... 213
Vulnerable Assets ... 214
 Land 214
 Buildings 215
 Transportation 218
 Utilities 221
 Natural Resources 221
 Recreation 221
 Emergency Services 226
 Cultural Resources 226
Community Profile: Corte Madera .. 226
Vulnerable Assets ... 227
 Land 227
 Buildings 228
 Transportation 231
 Utilities 234
 Natural Resources 234
 Recreation 235
 Emergency Services 235
 Cultural Resources 235
Community Profile: Larkspur ... 243
Vulnerable Assets ... 244
 Land 244
 Buildings 245
 Transportation 249
 Utilities 252
 Natural Resources 252
Table of Contents

- Recreation .. 252
- Emergency Services .. 252
- Cultural Resources .. 252
- Community Profile: San Rafael .. 261
 - Vulnerable Assets .. 262
 - Land ... 262
 - Buildings .. 264
 - Transportation .. 267
 - Utilities ... 274
 - Natural Resources .. 274
 - Recreation .. 274
 - Emergency Services .. 274
 - Cultural Resources ... 279
- Community Profile: Novato ... 282
 - Vulnerable Assets .. 283
 - Land ... 283
 - Buildings .. 284
 - Transportation .. 287
 - Utilities ... 292
 - Working Lands .. 292
 - Natural Resources .. 292
 - Recreation .. 292
 - Emergency Services .. 296
 - Cultural Resources ... 296
- Community Profile: Unincorporated Marin .. 298
 - Vulnerable Assets .. 299
 - Land ... 300
 - Buildings .. 303
 - Transportation .. 314
 - Utilities ... 323
 - Working Lands .. 332
 - Natural Resources .. 333
 - Recreation .. 333
 - Emergency Services .. 340
 - Cultural Resources ... 340
 - Conclusion .. 347
TABLE OF CONTENTS

15-year Expectations ... 347
Mid Century Expectations ... 350
End of Century Expectations ... 353
Bibliography .. 363
Appendix A: Vulnerability Assessment Interview Tool 371

Figures

Figure 3. BayWAVE Scenarios Associated Water Levels xxvii
Figure 6. Estimated Decreases in Marin County Land Area due to Sea Level Rise xxxvi
Figure 1. BayWAVE Process .. 6
Figure 2. Tidal Datum Comparing MHHW to Mean Sea Level and Low Water Levels 7
Figure 3. BayWAVE Scenarios Associated Water Levels 8
Figure 4. Inflow and Infiltration Sources to the Sanitary System Pipeline 94
Figure 5. Shoreline Habitat Zones .. 114
Figure 6. Estimated Decreases in Marin County Land Area due to Sea Level Rise 361

Tables

Table 1. Sea Level Rise Projections for San Francisco, CA Region xix
Table 2. BayWAVE Sea Level Rise Scenarios xix
Table 1. Sea Level Rise Projections for San Francisco, CA Region 7
Table 2. BayWAVE Sea Level Rise & Storms Scenarios 8
Table 3. Exposed Acres by Scenario .. 25
Table 4. Acreage Exposed in the Near-term 25
Table 5. Acreage Exposed in the Medium-term 26
Table 6. Acreage Exposed in the Long-term 27
Table 7. Number and Proportion of Vulnerable Parcels in the Near-term 28
Table 8. Vulnerable Parcels Land Uses in the Near-term 28
Table 9. Number & Proportion of Vulnerable Parcels by Community in the Medium-Term 30
Table 10. Vulnerable Land Uses in the Medium-term 30
Table 11. Vulnerable Parcels at MHHW by Community in the Long-term 31
Table 12. Number & Portion of Vulnerable Parcels in the Long-term 32
Table 13. Vulnerable Land Uses in the Long-term 32
Table 14. Portion of Land Use Vulnerable to Sea Level Rise by Community and Onset 35
Table 15. Assed Value of Vulnerable Parcels in Long-term Scenario 6 38
Table 16. Tax Generation for Parcels Vulnerable to Sea Level Rise Long-term Scenario 6 39
Table 17. Vulnerable Buildings by Scenario 43
Table 18. Physical Vulnerabilities of Buildings 43
Table 19. Vulnerable Buildings in the Near-term 44
Table 20. Vulnerable Buildings by Flooding* at MHHW in Near-term Scenario 1 45
Table 21. Vulnerable Buildings in the Medium-term 46
Table 22. Vulnerable Buildings by Average Flooding* at MHHW in the Medium-term 47
Table 23. Vulnerable Buildings in the Long-Term 47
Table 24. Number of Vulnerable Buildings by Average Flood* Level at MHHW in the Long-term 48
Table 25. Example Vulnerable Buildings* Assets Ranked By Onset and Flooding at MHHW 49
TABLE OF CONTENTS

Table 80. Tiburon Vulnerable Buildings Average Flood Depth* Estimates at MHHW .. 216
Table 81. Tiburon Vulnerable Buildings FEMA Hazus Damage Estimates for Long-term Scenario 6 216
Table 82. Tiburon Vulnerable Transportation Assets .. 218
Table 83. Example Tiburon Vulnerable Assets by Onset and Flooding at MHHW ... 226
Table 84. Corte Madera Exposed Acres ... 227
Table 85. Corte Madera Vulnerable Parcels at MHHW ... 227
Table 86. Corte Madera Vulnerable Parcels by Land Use ... 228
Table 87. Corte Madera Vulnerable Residential and Commercial Parcels ... 228
Table 88. Corte Madera Vulnerable Buildings by Scenario .. 229
Table 89. Corte Madera Vulnerable Buildings Average Flood Depths* at MHHW .. 229
Table 90. Corte Madera Vulnerable Buildings’ FEMA Hazus Storm Damage Cost* Estimates in Long-term Scenario 6 .. 229
Table 91. Corte Madera Vulnerable Transportation Assets .. 232
Table 92. Example Corte Madera Vulnerable Assets by Sea Level Rise Onset and Flooding at MHHW 236
Table 93. Larkspur Exposed Acreage .. 244
Table 94. Larkspur Vulnerable Parcels .. 244
Table 95. Larkspur Vulnerable Residential and Commercial Parcels ... 245
Table 96. Larkspur Vulnerable Parcels by Land Use ... 245
Table 97. Larkspur Vulnerable Buildings .. 246
Table 98. Larkspur Tidal MHHW Flood Depth Estimates for Vulnerable Buildings .. 246
Table 99. Larkspur Vulnerable Buildings FEMA Hazus Storm Damage Cost Estimates in Long-term Scenario 6 .. 246
Table 100. Larkspur Transportation Routes Vulnerable to Sea Level Rise and a 100-year Storm Surge 250
Table 101. Example Vulnerable Larkspur Assets by Onset and Flooding at MHHW ... 253
Table 102. San Rafael Exposed Acres .. 262
Table 103. San Rafael Vulnerable Residential and Commercial Parcels .. 263
Table 104. San Rafael Vulnerable Parcels by Land Use ... 263
Table 105. San Rafael Vulnerable Buildings by Scenario .. 264
Table 106. San Rafael Vulnerable Buildings Tidal Flooding* Estimates at MHHW .. 265
Table 107. San Rafael Vulnerable Buildings’ FEMA Hazus Storm Damage Cost* Estimates in Long-term Scenario 6 .. 265
Table 108. San Rafael Vulnerable Transportation Assets .. 268
Table 109. Example San Rafael Vulnerable Assets by Sea Level Rise Onset & Flooding at MHHW 279
Table 110. Novato Vulnerable Acreage ... 283
Table 111. Novato Vulnerable Parcels .. 284
Table 112. Novato Vulnerable Parcels by Land Use ... 284
Table 113. Novato Vulnerable Residential and Commercial Parcels .. 284
Table 114. Novato Vulnerable Buildings .. 285
Table 115. Novato Tidal MHHW Flood Depth Estimates for Vulnerable Buildings .. 285
Table 116. Novato Vulnerable Buildings FEMA Hazus Damage Cost* Estimates ... 285
Table 117. Novato Vulnerable Transportation Routes .. 288
Table 118. Example Novato Vulnerable Assets by Sea Level Rise Onset and Flooding at MHHW 297
Table 119. Unincorporated Marin Communities’ Acreage Exposed by BayWAVE Scenario 299
Table 120. Unincorporated Marin Vulnerable Parcels in the Near-term ... 301
Table 121. Unincorporated Marin Vulnerable Parcels in the Medium-term .. 301
Table 122. Unincorporated Marin Vulnerable Parcels in the Long-term ... 302
Table 123. Unincorporated Marin Vulnerable Buildings in the Near-term ... 303
Table 124. Unincorporated Marin Vulnerable Buildings in the Medium-term ... 304
Table 125. Unincorporated Marin Vulnerable Buildings in the Long-term ... 304
Table 126. Unincorporated Marin Vulnerable Buildings by Flood Depth at MHHW ... 312
Table 127. Unincorporated Vulnerable Buildings FEMA HAZUS Storm Damage Cost* Estimates in Long-term Scenario 6 .. 313
Table 128. Unincorporated Marin Roads Vulnerable to Sea Level Rise and a 100-year Storm Surge 315
Table 129. Vulnerable Agricultural Parcels and Acreage by Community ... 332
Table of Contents

Table 130. Unincorporated Marin Vulnerable Parks and Facilities ... 335
Table 131. Cultural Resource Assets Vulnerable to Sea Level Rise and a 100-year Storm Surge 340
Table 132. Example Unincorporated Marin Vulnerable Assets by Sea Level Rise Onset & Flooding at MHHW 342
Table 133. East Marin Assets Vulnerable to Sea Level Rise and a 100-year Storm Surge 356
Table 134. Interviewed Agencies and Managers ... 374

Maps

Map 1. BayWAVE Study Area.. xi
Map 131. Fifteen-year Expectation: Near-term Vulnerable Assets ... xiv
Map 132. Mid-century Expectation: Medium-term Vulnerable Assets ... xvii
Map 133. End of Century Expectations: Long-term Vulnerable Assets ... xx
Map 1. BayWAVE Study Area.. 3
Map 2. Northern Study Area Inland Extend of Scenario 6 .. 9
Map 3. Southern Study Area Inland Extent of Scenario 6 .. 10
Map 4. Northern Study Area Sea Level Rise Scenarios .. 11
Map 5. Southern Study Area Sea Level Rise Scenarios .. 12
Map 6. Northern Study Area Sea Level Rise and 100-year Storm Surge Scenarios 13
Map 7. Southern Study Area Sea Level Rise and 100-year Storm Surge Scenarios 14
Map 8. Northern Study Area Known Issues with CoSMoS Model .. 16
Map 9. Southern Study Area Known Issues with CoSMoS Model .. 17
Map 10. Northern Study Area Parcels Vulnerable to Sea Level Rise ... 36
Map 11. Southern Study Area Parcels Vulnerable to Sea Level Rise and a 100-year Storm Surge 37
Map 12. Northern Study Area Vulnerable Buildings .. 56
Map 13. Southern Study Area Vulnerable Buildings .. 57
Map 14. Manzanita Park & Ride Sea Level Rise Exposure .. 74
Map 15. Caltrans District 4 .. 75
Map 16. GGBHTD Headquarters & Bus Depot Sea Level Rise Exposure ... 76
Map 17. San Rafael Transit Center Sea Level Rise Exposure .. 77
Map 18. Larkspur Ferry Terminal Sea Level Rise Exposure ... 79
Map 19. Smith Ranch Airport Sea Level Rise Exposure ... 80
Map 20. Northern Study Area Study Area Roads, Trails, and Bike Paths Vulnerable to Sea Level Rise 84
Map 21. Southern Study Area Roads, Trails, and Bike Paths Vulnerable to Sea Level Rise 85
Map 22. Northern Study Area Vulnerable Transit, Air, and Marine Transportation Assets 86
Map 23. Southern Study Area Vulnerable Transit and Marine Transportation Assets 87
Map 24. Northern Study Area Vulnerable Water Service Assets ... 92
Map 25. Southern Study Area Vulnerable Water Service Assets ... 93
Map 26. SASM Exposure to Sea Level Rise ... 96
Map 27. Black Point Properties with Potentially Vulnerable OWTSs .. 98
Map 28. Unincorporated Tiburon Properties with Potentially Vulnerable OWTSs 99
Map 29. Southern Study Area Vulnerable Wastewater Assets .. 100
Map 30. Northern Study Area Vulnerable Natural Gas and Electric Assets .. 103
Map 31. Southern Study Area Vulnerable Natural Gas and Electric Assets .. 104
Map 32. AT&T Yard & Office at MHHW .. 105
Map 33. Northern Study Area Vulnerable Stormwater Management Assets .. 107
Map 34. Southern Study Area Vulnerable Stormwater Management Assets .. 108
Map 35. Northern Study Area Vulnerable Working Lands ... 111
Map 36. Southern Study Area Vulnerable Natural Resources .. 125
Map 37. Southern Study Area Vulnerable Natural Resources .. 126
Map 38. Marin County Area Bay Trail .. 136
Map 39. Northern Study Area Vulnerable Recreation Assets .. 140
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map 40. Southern Study Area Vulnerable Recreation Assets</td>
<td>141</td>
</tr>
<tr>
<td>Map 41. Northern Study Area Vulnerable Emergency Service Assets</td>
<td>146</td>
</tr>
<tr>
<td>Map 42. Southern Study Area Vulnerable Emergency Service Assets</td>
<td>147</td>
</tr>
<tr>
<td>Map 43. Archaeological surveying in Marin County</td>
<td>152</td>
</tr>
<tr>
<td>Map 44. Northern Study Area Vulnerable Cultural Resource Assets</td>
<td>162</td>
</tr>
<tr>
<td>Map 45. Southern Study Area Vulnerable Cultural Resource Asset</td>
<td>163</td>
</tr>
<tr>
<td>Map 46. Sausalito BayWAVE Scenarios</td>
<td>166</td>
</tr>
<tr>
<td>Map 47. Sausalito Vulnerable Buildings</td>
<td>171</td>
</tr>
<tr>
<td>Map 48. Sausalito Vulnerable Transportation Assets</td>
<td>174</td>
</tr>
<tr>
<td>Map 49. Sausalito Vulnerable Wastewater Assets</td>
<td>178</td>
</tr>
<tr>
<td>Map 50. Sausalito Vulnerable Natural Resource Assets</td>
<td>179</td>
</tr>
<tr>
<td>Map 51. Sausalito Vulnerable Recreation Assets</td>
<td>180</td>
</tr>
<tr>
<td>Map 52. Sausalito Vulnerable Emergency Service Assets</td>
<td>181</td>
</tr>
<tr>
<td>Map 53. Sausalito Vulnerable Cultural Resource Assets</td>
<td>182</td>
</tr>
<tr>
<td>Map 54. Mill Valley Sea Level Rise and 100-year Storm Surge Scenarios</td>
<td>185</td>
</tr>
<tr>
<td>Map 55. Mill Valley Vulnerable Buildings</td>
<td>190</td>
</tr>
<tr>
<td>Map 56. Mill Valley Vulnerable Transportation Assets</td>
<td>192</td>
</tr>
<tr>
<td>Map 57. Mill Valley Vulnerable Sanitary Sewer Assets</td>
<td>193</td>
</tr>
<tr>
<td>Map 58. Mill Valley Vulnerable Gas & Electric Assets</td>
<td>194</td>
</tr>
<tr>
<td>Map 59. Mill Valley Vulnerable Stormwater Assets</td>
<td>195</td>
</tr>
<tr>
<td>Map 60. Mill Valley Vulnerable Natural Resource Assets</td>
<td>198</td>
</tr>
<tr>
<td>Map 61. Mill Valley Vulnerable Recreation Assets</td>
<td>199</td>
</tr>
<tr>
<td>Map 62. Mill Valley Vulnerable Emergency Services</td>
<td>200</td>
</tr>
<tr>
<td>Map 63. Belvedere Sea Level Rise and 100-year Storm Surge Scenarios</td>
<td>201</td>
</tr>
<tr>
<td>Map 64. Belvedere Vulnerable Buildings</td>
<td>205</td>
</tr>
<tr>
<td>Map 65. Belvedere Vulnerable Transportation Assets</td>
<td>207</td>
</tr>
<tr>
<td>Map 66. Belvedere Vulnerable Cultural Resource Assets</td>
<td>209</td>
</tr>
<tr>
<td>Map 67. Belvedere Vulnerable Natural Resource Assets</td>
<td>210</td>
</tr>
<tr>
<td>Map 68. Belvedere Vulnerable Recreation Assets</td>
<td>211</td>
</tr>
<tr>
<td>Map 69. Belvedere Cultural Resource Assets</td>
<td>212</td>
</tr>
<tr>
<td>Map 70. Tiburon Sea Level Rise and 100-year Storm Surge Scenarios</td>
<td>213</td>
</tr>
<tr>
<td>Map 71. Tiburon Vulnerable Buildings</td>
<td>217</td>
</tr>
<tr>
<td>Map 72. Tiburon Vulnerable Transportation Assets</td>
<td>219</td>
</tr>
<tr>
<td>Map 73. Tiburon Vulnerable Stormwater Management Assets</td>
<td>220</td>
</tr>
<tr>
<td>Map 74. Tiburon Vulnerable Natural Resource Assets</td>
<td>223</td>
</tr>
<tr>
<td>Map 75. Tiburon Vulnerable Emergency Assets</td>
<td>224</td>
</tr>
<tr>
<td>Map 76. Tiburon Vulnerable Cultural Resource Assets</td>
<td>225</td>
</tr>
<tr>
<td>Map 77. Corte Madera Sea Level Rise and 100-year Storm Surge Scenarios</td>
<td>226</td>
</tr>
<tr>
<td>Map 78. Corte Madera Vulnerable Buildings</td>
<td>230</td>
</tr>
<tr>
<td>Map 79. Corte Madera Vulnerable Transportation Assets</td>
<td>233</td>
</tr>
<tr>
<td>Map 80. Corte Madera Vulnerable Wastewater Utility Assets</td>
<td>237</td>
</tr>
<tr>
<td>Map 81. Corte Madera Vulnerable Gas and Electric Assets</td>
<td>238</td>
</tr>
<tr>
<td>Map 82. Corte Madera Vulnerable Stormwater Utility Assets</td>
<td>239</td>
</tr>
<tr>
<td>Map 83. Corte Madera Vulnerable Natural Resource Assets</td>
<td>240</td>
</tr>
<tr>
<td>Map 84. Corte Madera Vulnerable Recreation Assets</td>
<td>241</td>
</tr>
<tr>
<td>Map 85. Corte Madera Vulnerable Emergency Service Assets</td>
<td>242</td>
</tr>
<tr>
<td>Map 86. Larkspur Sea Level Rise and 100-year Storm Surge Scenarios</td>
<td>243</td>
</tr>
<tr>
<td>Map 87. Larkspur Vulnerable Buildings</td>
<td>248</td>
</tr>
<tr>
<td>Map 88. Larkspur Vulnerable Transportation Assets</td>
<td>251</td>
</tr>
<tr>
<td>Map 89. Larkspur Vulnerable Cultural resource Assets</td>
<td>252</td>
</tr>
<tr>
<td>Map 90. Larkspur Vulnerable Wastewater Utility Asset</td>
<td>255</td>
</tr>
<tr>
<td>Map 91. Larkspur Vulnerable Gas and Electric Utility Assets</td>
<td>256</td>
</tr>
<tr>
<td>Map 92. Larkspur Vulnerable Stormwater Utility Assets</td>
<td>257</td>
</tr>
<tr>
<td>Map 93. Larkspur Vulnerable Natural Resource Assets</td>
<td>258</td>
</tr>
</tbody>
</table>
Table of Contents

Map 94. Larkspur Vulnerable Recreation Assets ... 259
Map 95. Larkspur Vulnerable Emergency Service Assets ... 260
Map 96. San Rafael Sea Level Rise and 100-year Storm Surge Scenarios 261
Map 97. Southern San Rafael Vulnerable Buildings .. 266
Map 98. San Rafael Vulnerable Transportation Assets .. 270
Map 99. San Rafael Vulnerable Wastewater Management Assets 271
Map 100. San Rafael Vulnerable Gas and Electric Assets ... 272
Map 101. San Rafael Vulnerable Stormwater Management Assets 273
Map 102. San Rafael Vulnerable Natural Resource Assets 276
Map 103. San Rafael Vulnerable Recreation Assets .. 277
Map 104. San Rafael Vulnerable Emergency Service Assets 278
Map 105. San Rafael Vulnerable Cultural Resource Assets 281
Map 106. Novato Sea Level and 100-year Storm Surge Scenarios 282
Map 107. Novato Vulnerable Buildings ... 286
Map 108. Novato Vulnerable Transportation Assets .. 289
Map 109. Novato Vulnerable Gas & Electric Asset ... 290
Map 110. Novato Vulnerable Stormwater Assets ... 291
Map 111. Novato Vulnerable Natural Resource Assets ... 294
Map 112. Novato Vulnerable Recreation Assets ... 295
Map 113. Novato Vulnerable Cultural Resource Assets .. 296
Map 114. Southern Unincorporated Marin Vulnerable Buildings 309
Map 115. Northern Unincorporated Marin Vulnerable Buildings 310
Map 116. Health Innovation Campus is Vulnerable to Sea Level Rise and a 100-year Storm Surge .. 311
Map 117. Northern Unincorporated Marin Vulnerable Transportation Assets 312
Map 118. Southern Unincorporated Marin Vulnerable Transportation Assets 321
Map 119. Northern Unincorporated Marin Vulnerable Potable Water Assets 324
Map 120. Black Point & Green Point Properties with Potentially Vulnerable OWTSs .. 325
Map 121. Unincorporated Tiburon Properties with Potentially Vulnerable OWTSs 326
Map 122. Northern Unincorporated Marin Vulnerable Stormwater Assets 327
Map 123. Southern Unincorporated Marin Vulnerable Stormwater Assets 328
Map 124. Northern Unincorporated Marin Vulnerable Gas and Electric Assets 330
Map 125. Southern Unincorporated Marin Vulnerable Gas and Electric Assets 331
Map 126. Unincorporated Marin Vulnerable Working Lands 332
Map 127. Northern Unincorporated Marin Vulnerable Natural Resource Assets 336
Map 128. Southern Unincorporated Marin Vulnerable Natural Resource Assets 337
Map 129. Northern Unincorporated Marin Vulnerable Recreation Assets 338
Map 130. Southern Unincorporated Marin Vulnerable Recreation Assets 339
Map 131. Fifteen-year Expectation: Near-term Vulnerable Assets 349
Map 132. Mid-century Expectation: Medium-term Vulnerable Assets 352
Map 133. End of Century Expectations: Long-term Vulnerable Assets 355
ACKNOWLEDGEMENTS

County of Marin Board of Supervisors

District 1- Damon Connolly
District 2- Katie Rice
District 3- Kathrin Sears
District 4- Steve Kinsey
District 5- Judy Arnold

Project Funders

County of Marin
California Coastal Conservancy

Primary Author

Bridgit Van Belleghem, AICP, BVB Consulting LLC

Additional Author

Alex Westhoff, Planner, AICP, County of Marin CDA

Project Manager

Chris Choo, Program Manager, County of Marin Department of Public Works

Executive Steering Committee

Damon Connolly, County of Marin Board of Supervisors (from September 2016)
Matthew Hymel, County Administrator, County of Marin Administrative Office
Steve Kinsey, County of Marin Board of Supervisors (through August 2016)
Eric Lucan, Council Person, Novato
Claire McAuliffe, Council Person, Belvedere
Jim McCann, City Manager, Mill Valley
Stephanie Moulton-Peters, Co-Chair, Council Person, Mill Valley
Kate Sears, Co-Chair, County of Marin Board of Supervisors

Policy Committee

Kay Coleman, Council Person, San Anselmo
Kate Colin, Council Person, San Rafael
Diane Furst, Council Person, Corte Madera
Alice Fredericks, Council Person, Tiburon
Kevin Haroff, Council Person, Larkspur
Katie Hoertkorn, Council Person, Ross
Steve Kinsey, County of Marin Board of Supervisors
Peter Lacques, Council Person, Fairfax
Eric Lucan, Council Person, Novato
Claire McAuliffe, Council Person, Belvedere
Stephanie Moulton-Peters, Council Person, Mill Valley
Kate Sears, Co-Chair, County of Marin Board of Supervisors
Ray Witty, Council Person, Sausalito

Technical Advisory Committee

Scott Anderson, Tiburon Director of Community Development
Kelly Crowe, Corte Madera Associate Engineer
Julie Eichner, Novato Public Works Director
Jonathon Goldman, Sausalito Public Works Director
Paul Jensen, San Rafael Community Development Director
Rob Marcario, San Anselmo Public Works Director
Jim McCann, Mill Valley City Manager
John Moe, PE, PLS, Ross, Moe Engineering, Inc.
Mary Nellis, Belvedere City Manager
Barbara Salzman, Marin Audubon Society
Elise Semonian, San Anselmo Planning Director
Neal Toft, Larkspur Planning and Building Director
Garret Toy, Fairfax City Manager

Additional Advisors

Federal Emergency Management Agency (FEMA)
State Coastal Conservancy
Executive Summary

Sea level in the San Francisco Bay Area has risen eight inches in the past century, and could rise up to 70 inches by the end of the century. Marin’s bay shoreline is vulnerable to sea level rise and intensifying storm patterns. The third National Climate Assessment cites strong evidence that the cost of doing nothing exceeds the costs associated with adapting to sea level rise by 4 to 10 times. Therefore, it is critical the County of Marin, incorporated jurisdictions, and special districts plan and prepare for the impacts of sea level rise to ensure a resilient county for present and future generations to ensure a resilient county for present and future generations.

The County of Marin Department of Public Works and Community Development Agency are the project leads for the Bay Waterfront Adaptation & Vulnerability Evaluation (BayWAVE) program. The program began in September 2015 with funding from County of Marin and additional financial support from the California Coastal Conservancy.

Several committees support the BayWAVE process. The Executive Steering Committee consists of County of Marin and local jurisdiction representatives. The Technical Advisory Committee includes staff from local, state, and federal agencies. Lastly, the Policy Committee includes elected officials from the participating jurisdictions. These committees serve as the beginning of the program’s goals to establish an efficient shared learning process and community messaging, and create a collaborative environment for preparing for sea level rise for all shoreline communities, and others inland, that could face the impacts of sea level rise in the coming decades. This effort may also support these communities in collaborating with and benefiting from the larger Bay Area region efforts underway.

The Vulnerability Assessment is an initial effort to identify the risks and exposure from sea level rise. Future tasks could include development of an adaptation report and may occur at different jurisdictions: local municipalities, service districts, and County of Marin could update general plans, master plans, capital improvement plans, hazard mitigation plans, and other relevant plans and procedures in the near future.

This effort is part of an ongoing scientific and public process to understand and prepare for sea level rise along the shoreline. This Vulnerability Assessment seeks to provide context and estimates of the physical and fiscal impacts across the County of Marin’s bayside shoreline over the coming decades. These data highlight the complexity of the potential impacts and the need for concerted and individual actions in the face of rising tides. The data can be used to prioritize efforts, seek funding, and shape policy and development discussions that will guide the plans mentioned above.

This document presents asset profiles describing the potential consequences of a no-action, or business as usual political environment, especially for existing development. Asset profiles present potential consequences for parcels and buildings, transportation networks, utilities, working lands, natural resources, recreational assets, emergency services, and cultural resources. Vulnerable assets are also presented by jurisdiction in community profiles to enable local professionals, officials, and residents to engage is local discussions and relate to their neighbors. The following exposed and vulnerable communities have community profiles and make up the 85,840 acre study area shown in Map 1.

- Municipalities
 - Belvedere
 - Corte Madera
 - Larkspur
 - Mill Valley
 - Novato
EXECUTIVE SUMMARY

- San Rafael
- Sausalito
- Tiburon

- Unincorporated Jurisdictions
 - Almonte
 - Bayside Acres
 - Bel Marin Keys
 - Black Point
 - California Park
 - Country Club
 - Greenbrae Boardwalk
 - Kentfield
 - Marin City
 - North Novato
 - Paradise Cay
 - Point San Pedro
 - San Quentin
 - Santa Venetia
 - St. Vincent's
 - Strawberry
 - Tamalpais Valley
 - Unincorporated Tiburon
 - Waldo Point Harbor

Each profile details key issues and geographic locations. Asset profiles include economic, environmental, equity, and management considerations related to sea level rise vulnerability. Each profile can be read independently of the others, enabling asset managers to focus on their professional area, and community members, elected officials, and others to read the analysis for a community as a whole.

Methods

Table 1 shows the range of sea level rise projections for California adopted by the National Research Council in 2012. Given the uncertainty in the magnitude and timing of future sea level rise, this Assessment uses a scenario based approach to assess a range of potential sea level rise impacts. The scenarios selected for this Vulnerability Assessment are derived from the U.S. Geological Survey (USGS) Coastal Storm Modeling System (CoSMoS) that combines global climate and wave models with projected sea level rise to identify areas that could be flooded across 10 different sea levels (ranging from 0 to 200 inches) and 4 storm severities (none, annual, 20-, 100-year storms) to total 40 possible combinations. All of these scenarios are viewable on the Our Coast Our Future (OCOF) Flood Map website.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Projected Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>by 2030</td>
<td>1.6 – 11.8 inches</td>
</tr>
<tr>
<td>by 2050</td>
<td>4.7 – 24 inches</td>
</tr>
<tr>
<td>by 2100</td>
<td>16.6 – 65.8 inches</td>
</tr>
</tbody>
</table>

Source: NRC 2012

Table 2. BayWAVE Sea Level Rise Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenario 1</td>
<td>10 inches</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>10 inches + 100-year storm surge</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>20 inches</td>
</tr>
<tr>
<td>Scenario 4</td>
<td>20 inches + 100-year storm surge</td>
</tr>
<tr>
<td>Scenario 5</td>
<td>60 inches</td>
</tr>
<tr>
<td>Scenario 6</td>
<td>60 inches + 100-year storm surge</td>
</tr>
</tbody>
</table>
The findings of this assessment are based on three sea levels and each sea level combined with a 100-year storm surge as shown in Table 2. Scenarios 1 and 2 represent the near-term, and correspond to the 2030 NRC projected sea level range. Scenarios 3 and 4 represent the medium-term and are within the 2050 NRC range. Scenarios 5 and 6 represent the long-term and correspond to the 2100 NRC range. Figure 2 presents another view of the BayWAVE scenario where the red lengths represent tidal flooding in sea level rise scenarios 1, 3, and 5, and the blue lengths represent the addition storm surge water level associated with scenarios 2, 4, and 6. Together these bands show the cumulative potential flooding in the near-, medium-, and long-terms.

Vulnerability is based on an asset’s exposure, sensitivity, and adaptive capacity to rising bay waters and storm surge threats. If an exposed asset is moderately or highly sensitive to sea level rise impacts, with low to no adaptive capacity, the asset is considered vulnerable. Vulnerable assets may be vulnerable to flooding and/or increased rates of subsidence over the coming decades. Extensive geographic mapping was conducted overlapping layers of assets from MarinMap and sea level rise extent and flood depth layers to determine exposure. To ascertain sensitivity and adaptive capacity, the project team interviewed 115 asset managers, for example, the heads of public works departments, using the BayWAVE Asset Vulnerability Assessment Tool to assess more than 350 built and natural resource assets. The interview results were combined with the geographic data to develop the Vulnerability Assessment.

15-year Expectations

Sea level rise flooding could reduce useable living space and adversely affect tourism, transportation, and natural attractions and resources within 15 years. The first threats are to buildings, roads, and original utility systems along the shoreline. Disruptive flooding to the road and utility networks could have regional ripple effects for extended periods of time. In the near-term, San Rafael and Southern Marin shoreline communities are most at risk to tidal and storm surge flooding.

In this near-term timeframe, tidal flooding at 10 inches of sea level rise (MHHW) could reach 5,000 acres, 1,300 parcels, and 700 buildings, potentially impacting tens of thousands of residents, employees, and visitors. Regular tidal flooding could adversely impact San Rafael east of US Highway 101, bayfront Belvedere and Tiburon, Greenbrae Boardwalk, Waldo Point, and Paradise Cay.

With an additional 100-year storm surge, the previously impacted acres, parcels, and buildings could face tidal and storm surge flooding. An additional 3,000 acres, 2,500 parcels, and 3,800 buildings could anticipate storm surge flooding. These figures amount to six percent of parcels and buildings in the study area. Storm surge flooding could impact north Novato at Goss Field, Black Point on the Petaluma River, lower Santa Venetia, Belvedere around the lagoon, bayfront Corte Madera, bayfront Mill Valley, Marinship in Sausalito, Tamalpais, and Almonte, in addition to the communities vulnerable to tidal flooding.

Eight miles of road could expect tidal flooding. Many of these flooded areas already experience seasonal and king tide flooding. These are:

- Manzanita, Almonte
- Miller Avenue in Mill Valley,
- the Marinship area in Sausalito,
- US Highway 101, Corte Madera, Larkspur, and
- State Route 37 in Novato.

This is expected to worsen in severity and become increasingly frequent. Tidal flooding would reach the Canal area of San Rafael, spreading to I-580.
EXECUTIVE SUMMARY

Several roads in Santa Venetia, Tamalpais, Belvedere, Mill Valley, Marin Lagoon of San Rafael, and bayfront Corte Madera and Larkspur would begin to experience seasonal, king tide, and storm surge flooding more frequently.

Water travel infrastructure could be compromised at ferry facilities in Larkspur, Tiburon, and Sausalito preventing commuters from traveling to work. Even if the facilities are able to handle near-term higher tides, providing safe parking and access to ferry users could prove challenging. Similar public and private marinas and boat launches along the bay in Sausalito, Mill Valley, Strawberry, Tiburon, Belvedere, Bel Marin Keys, and Black Point could be flooded out and unusable. Storm surges can be powerful enough to damage and sink boats. This is especially a concern for residential boats.

Southern Marin Fire Protection and Sausalito Police Department boats are included in the boats harbored in marinas vulnerable to sea level rise. The Castro Fire Station in San Rafael is vulnerable to tidal flooding in the near-term and the California Highway Patrol could expect storm surge flooding in this time period. Most concerning, however, is the potential inability of emergency professionals and vehicles to access people in or through flooded areas.

In addition, the marshlands that buffer the shoreline communities from high tides and storm surges could begin to see transitions in habitat, especially those in Southern Marin where they are typically bordered by urban development. Consequently, the waters here would get deeper and flood out the existing habitat, shifting high marsh to low marsh, low marsh to mud flat, and mud flats to open water. Without adequate light of shallow water, eelgrass beds would shrink. Collectively, these habitat shifts could have significant impacts on vulnerable species such as the salt marsh harvest mouse, Ridgway’s Rail, or the long-fin smelt.

IMPACTS AT-A-GLANCE: SCENARIO 2

<table>
<thead>
<tr>
<th>Impact Description</th>
<th>Impacted Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000 acres flooded @ MHHW</td>
<td>200,000+ residents plus commuting employees</td>
</tr>
<tr>
<td>8,000 acres flooded @ MHHW +100-year storm surge</td>
<td>2,000 agricultural acres (mostly ranch)</td>
</tr>
<tr>
<td>4,500 homes, businesses, & institutions</td>
<td>Property Owners County of Marin Municipalities Caltrans Sanitary Districts Water Districts Fire Districts Sausalito Police Department CHP SMART GGBHGD MTA PG&E AT&T CADFW</td>
</tr>
<tr>
<td>80 miles of wet road, 3 ferry landings, 5 marinas, 4 boat launches</td>
<td>Beaches Tidal Marshes Eelgrass beds Wetlands</td>
</tr>
</tbody>
</table>
In 15 years, high tides could threaten Marin's shoreline buildings, roads, and original utility systems. Damage and breakdowns in road and utility networks would impact the entire county, especially Southern Marin. Tidal flooding (red) could reach 5,000 acres, 1,300 parcels, 700 buildings, and 8 miles of road in San Rafael east of State Route 101, bayfront Belvedere and Tiburon, Greenbrae Boardwalk, Waiido Point, and Paradise Cay. A 100-year storm surge (pink) would flood these areas with storm surge flooding, and flood an additional 3,000 acres, 2,500 parcels, 3,800 buildings, and 20 miles of road in Novato, Black Point on the Petaluma River, lower Santa Venetia, Belvedere Lagoon, bayfront Corte Madera and Mill Valley, Marinship in Sausalito, Marin Lagoon in San Rafael, Tamalpais, and Almonte. Flooded ferry facilities would prevent commuters and visitors from traveling across the Bay. Boating facilities in Sausalito, Mill Valley, Strawberry, Tiburon, Belvedere, San Rafael, Bel Marin Keys, and Black Point may be inaccessible. This is especially a concern for marinas with residential boats and Southern Marin Fire and Sausalito Police boats. The Castro St. Fire Station in San Rafael is vulnerable to tidal flooding, though all emergency professionals would be denied vehicular access to people in vulnerable areas. Southern Marin marshlands would shift high marsh to low marsh to mud flat, and eelgrass beds could shrink under deeper, darker waters. These habitat shifts would have significant repercussions for plant, insect, fish, and animal species.
EXECUTIVE SUMMARY

IMPACTS AT-A-GLANCE: SCENARIO 4

<table>
<thead>
<tr>
<th>Impact Area</th>
<th>Quantity/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,700 acres flooded @ MHHW</td>
<td>200,000+ residents plus commuting employees</td>
</tr>
<tr>
<td>13,500 acres flooded @ MHHW +100-year storm surge</td>
<td>2,000 agricultural acres (mostly ranch)</td>
</tr>
<tr>
<td>Property Owners</td>
<td>County of Marin Municipalities</td>
</tr>
<tr>
<td>Caltrans</td>
<td>Sanitary Districts</td>
</tr>
<tr>
<td>Water Districts</td>
<td>Fire Districts</td>
</tr>
<tr>
<td>Sausalito Police Department</td>
<td>CHP</td>
</tr>
<tr>
<td>SMART</td>
<td>GGBHTD</td>
</tr>
<tr>
<td>MTA</td>
<td>PG&E</td>
</tr>
<tr>
<td>AT&T</td>
<td>CA DFW</td>
</tr>
<tr>
<td>Beaches</td>
<td>Tidal Marshes</td>
</tr>
<tr>
<td>Creeks</td>
<td>Eelgrass beds</td>
</tr>
<tr>
<td>Ponds</td>
<td>Wetlands</td>
</tr>
</tbody>
</table>

Regular high tide tidal flooding could adversely impact the same locations tidally flooded in the near-term, though more severely.

With an additional 100-year storm surge, the previously impacted acres, parcels, and buildings could face tidal and storm surge flooding, and an additional 7,000 acres, 2,200 parcels, and 3,600 buildings could anticipate storm surge flooding. These figures amount to eight percent of parcels and seven percent of buildings in the study area. Most levees south of Novato are not designed to withstand this level of flooding and could be overtopped. Storm surge flooding would impact the same locations as in near-term scenario 2, 10 inches with a 100-year storm surge, and extends further inland beyond the marshy areas of Mill Valley, Strawberry, San Rafael, St. Vincent’s, and North Novato.

Eighteen miles of roadway, ten more miles than in the near-term, could expect tidal flooding. Many of the impacted roads are the same as those impacted in the near-term, though much greater lengths could anticipate tidal flooding and flooding depths would increase. Storm surge flooding could reach a total of 44 additional miles of roadway. Water travel could experience similar outcomes as in the near-term, though the highest high tides and storms surges would cause even more damage than weathered twenty years earlier.

With respect to utilities, pipelines under vulnerable roads, and lateral pipes to vulnerable properties, would become squeezed between rising groundwater and the confining roadway. This could cause pipes to bend and break, and could even damage roadways. In the medium-term, impacts to the North Marin Water District service area would impact water service in Bel Marin Keys and unincorporated Novato. In fact, Bel Marin Keys already experiences seasonal saltwater contamination. Vulnerable substations, electrical transmission towers and lines, and underground natural gas pipelines along the shoreline would be compromised by flooding and subsidence. Disruptions or failures in this network could also have far reaching impacts in transportation, sanitary service, stormwater management facilities, food storage, communications, and general public safety.

This twenty inch increase in sea level would continue to shrink Southern Marin marsh and tidal habitats would continue to shrink, as would habitats along Point San Pedro and the Tiburon Peninsula.

Mid Century Expectations

In this medium-term timeframe, tidal flooding at 20 inches of sea level rise (MHHW) could reach nearly 7,000 acres, 3,000 parcels, and 2,000 buildings, potentially impacting even more residents, employees, and visitors than in the near-term.
EXECUTIVE SUMMARY

Complimentary recreational trails, parks, athletic facilities would experience reductions in capacity with increases in maintenance costs.

Mill Valley-Sausalito Path. Credit: J. Poskazner

Historic Flood on US Highway 101 and fronting marshes. Larkspur. Credit: Marin DPW
Map 132: Mid-century Expectation: Medium-term Vulnerable Assets

MEDIUM TERM

Scenario 3: 20 in. Sea Level Rise

Scenario 4: 30 in. Sea Level Rise + 100-year storm surge

Tidal flooding could reach 7,000 acres, 3,000 parcels, 2,000 buildings, and 18 miles of roadway in the same locations impacted in the near-term, though more severely. With a 100-year storm surge, the area vulnerable to tidal flooding would also experience storm surge flooding. An additional 7,000 acres, 2,200 parcels (8%), 3,660 buildings (7%), and 40 miles of roadway could anticipate storm surge flooding. Most levees south of Novato are not designed to withstand this level of flooding and would be overtopped. Storm surge flooding would extend further inland beyond the marshy areas of Mill Valley, Strawberry, San Rafael, St. Vincent’s, and North Novato. Water travel could experience similar outcomes as in the near-term, though the highest high tides and storm surges would cause even more damage than weathered twenty years earlier. Pipelines beneath flooded roads could become squeezed between rising groundwater and the roadway, cause pipes to bend and break, and even damage roadways. This is true for PG&E substations, electrical transmission towers and lines, and natural gas pipelines could be bent or broken by flooding, subsidence, and erosion, with far reaching impacts on utilities, buildings, and transportation. This ten inch increase in sea level would continue to shrink trapped beach and marsh habitats in Southern Marin. Shoreline parks and pathways would flood often.

Vulnerable Assets

- Schools
- Medical Facility
- Low-Enforcement
- Emergency Shelter
- Fire Station
- District Office
- Gas Pipe
- Electrical Transmission Tower
- Substation
- Transmission Lines

Disclaimer: Vulnerability Assessment maps, tables, etc., can be used as a resource to help identify potential hazard areas and vulnerable assets. Make Gravity and data providers here in, make no warranties of the accuracy or completeness of maps and data. Maps are representations and subject to future revision. Local site conditions must be examined. Commercial use is prohibited.
End of Century Expectations

In this long-term timeframe, tidal flooding at 60 inches of sea level rise (MHHW) could reach nearly 7,000 acres, 8,000 parcels, and 9,000 buildings, potentially impacting hundreds of thousands of residents, employees, and visitors. These figures amount to 13 percent of parcels and 12 percent of buildings in the study area. Regular tidal flooding could adversely impact the same locations impacted in the near- and medium-terms and significant portions of what would have previously only flooded from the 100-year storm surge. The additional areas that would tidally flood at 60 inches of sea level rise are:

- Tamalpais Valley,
- Mill Valley from the Richardson's Bay shoreline up to and beyond Camino Alto between Miller and East Blithedale Avenues,
- Mill Valley and Strawberry fronting US Highway 101 between Seminary Drive and Tiburon Boulevard,
- Santa Venetia north of N. San Pedro Boulevard,
- Cove Neighborhood, Tiburon,
- Belvedere Lagoon neighborhood,
- Paradise Cay,
- Marinier Cove, Marina Village, Madera Gardens, and major retail centers lining US Highway 101,
- Riviera Circle, Creekside, and Heatherwood neighborhoods, Larkspur,
- Interstate 580 and westward towards Andersen Drive in San Rafael and the community of California Park,
- Marin Lagoon and Peacock Gap neighborhoods, San Rafael,
- Bel Marin Keys northern and southern lagoon areas,
- Hamilton, Vintage Oaks, and pockets of development east of US Highway 101 at Rowland Boulevard and State Route 37 in Novato, and,
- North Novato at US Highway 101 and Binford Road.

In long-term scenario 6, storm surge flooding could occur on nearly 13,500 acres hosting 12,600 parcels with 12,000 buildings, potentially impacting 200,000 residents, thousands of employees, and several million visitors. These figures amount to nearly one-fifth of parcels and more than 15 percent of the buildings in the study area. Area that could anticipate storm surge flooding are:

a 2016 dollars
EXECUTIVE SUMMARY

- Sausalito west of Bridgeway,
- Marin City neighborhood,
- Mill Valley east of East Blithedale Ave at Alto Shopping Center,
- Las Gallinas and N. San Pedro Blvd, east of US Highway 101, San Rafael,
- Bayside Acres,
- Country Club, and
- Kentfield.

Tidal and storm surge flooding could cause significant economic losses. Minor storm impacts alone could account for $61 million in property damages. The market value of vulnerable single-family homes could exceed $20 billion in 2016 dollars. The assessed value, typically less than market value, for all the vulnerable parcels in the study area is $15.5 billion. By the end of the century, these figures could be even higher.

Southern Marin communities could be vulnerable to tidal flooding, and several more could expect storm surge flooding and may not be available when needed most. By this time, the Central Marin Police Department could have to wade through saltwater surrounding the site to reach Larkspur and Corte Madera residents in need.

Southern Marin marshes may no longer exist by the end of the century, destroying the habitat of several shoreline birds and mammals. Northern Marin marshes would become increasingly tidally influenced, with tide water reaching US Highway 101 in Bel Marin Keys and North Novato up the Petaluma River. Typically freshwater marshes west of US Highway 101, for example, Sutton Marsh, could also see damaging salinity impacts. Tidal marsh lands may increase in Northern Marin if they are not prevented from migrating inland.

In the long-term scenario, approximately 1,358 acres on 30 agricultural parcels could be vulnerable to sea level rise and storm conditions. Another 3,000 acres are public agency lands near Bel Marin Keys, Hamilton Field, and the Novato Sanitary District that are leased for agricultural use. Higher high tides could push brackish conditions inland, reducing grazing, manure spreading, and cultivation area. Moreover, reduced vehicular access on State Routes 37, 101, and other major roads could disrupt product distribution.

Finally, all of these assets contain or contribute to the well-being of the region’s cultural, archeological, and historic resources that constitute each community's sense of place. This is especially a concern for Sausalito, Tiburon, and Novato.

Flooding at the SASM and Novato Sanitary Wastewater Treatment Plants is a significant vulnerability that could arise, potentially disrupting hundreds of thousands of people. By this time, much of the low-lying shoreline sanitary sewer and stormwater infrastructure could be flooded out.

By the end of the century, sea level rise could have direct impacts to Tiburon Fire Station No. 1, Corte Madera Station No. 13, and Novato Atherton Avenue Fire Station. A few emergency shelters in

6 2016 dollars

China Camp Historic pier. December 2016 King Tide. Credit: Ron Rothbart

DRAFT: Marin Shoreline Sea Level Rise Vulnerability Assessment
By 2100, tidal flooding could reach nearly 7,000 acres, 8,000 parcels (13%), 9,000 buildings (12%), and 100 miles of road. Higher high tides could adversely impact the locations flooded in medium-term, and significant portions of the areas that previously suffered storm surge flooding. Tidal flooding would reach beyond the State Routes 101 and 80 in low-lying areas, into Southern Marin’s narrow valleys and creek sides, and over every levee in Marin County. A 100-year storm surge could flood these areas, and an additional 6,500 acres, 4,800 parcels (20% total), 3,000 buildings (15% total), and 30 miles of road, extending to Sausalito west of Bridgegway, Marin City housing, Mill Valley’s Alto Shopping Center, Las Gallinas and N. San Pedro Blvd. in San Rafael, Bayside Acres, Country Club, and Kentfield. Minor building damage could amount to $61 million (2018 dollars). Vulnerable single family homes exceed $20 billion in market value (2018 dollars). Several park and ride, hundreds of bus stops, and bus routes and SMART rail track, including the San Rafael Transit Center, could experience flooding. Disruptive flooding at the SASS and NSD wastewater treatment plants and pump stations would affect tens of thousands of people. Storm surges could flood Tiburon Fire Station No. 1, Corte Madera Fire Station No. 13, and Novato Altamura Ave. Fire Station. A few emergency shelters in Southern Marin flood at high tide, and many more could be closed during a storm. The Central Marin Police Department may have to navigate deep water to reach Larkspur and Corte Madera shoreline residents. In Southern Marin, mud flats and water would dominate existing marshes. In the north, tidal marshes could expand.
EXECUTIVE SUMMARY

A significant degree of uncertainty exists as to how soon these increases in sea level could occur because future carbon emissions are an unknown. However, even if global citizens stabilize carbon emissions, sea level rise would likely continue. Moreover, even if the growing global population reduces carbon emissions to levels where atmospheric concentrations decline, the decline will be slow and sea levels would still likely continue to rise for decades, and hundreds of years could pass before the sea level stabilizes or drops.\(^7\)\(^8\) If emissions continue to increase, the rate of sea level rise is also likely to increase and these assets could be vulnerable sooner than this assessment presents. Because of this uncertainty, this assessment is the first step in an iterative process that will need to be updated as additional science becomes available and adaptation efforts are implemented. The sea level rise preparation process will require consistent monitoring and evaluation to improve modeling assumptions and ensure preparation efforts are effective and efficient.

Hamilton Wetlands and Aramburu Wildlife Preserve were recently enhanced, and wetland restoration is in planning for Bothin Marsh, McInnis Park, and Novato’s baylands. Nonprofits are also working to include: Marin Audubon Society project in Corte Madera, and the Coastal Conservancy’s Bel Marin Keys restoration project once funds are secured.

Combined with potential losses in West Marin due to potential sea level rise, the impacts to Marin County will be significant across all asset categories. The image to the left combines estimates for land area that would be lost at MHHW across the near-term, 2030, the medium-term, 2050, and the long-term, 2100 scenarios applied to Western and Eastern Marin.

EXECUTIVE SUMMARY

With this vulnerability assessment, Marin County professionals, officials, residents, employees, and other Bay Area communities can gain an understanding of the potential fallout from higher high tides in a no action scenario. With this comprehensive view of the potential issues, Marin County communities can approach preparing for this shared concern with greater efficiency and collaboration.

Tiburon’s Main Street buildings are from the early 1900s, and are adjacent to the ferry terminal. Credit: Marin CDA

Low lying properties in Black Point. Credit: Marin CDA
Introduction

Climate change is affecting natural and built systems around the world, including the California coast. In the past century, average global temperature has increased about 1.4°F, and average global sea level has increased 7 to 8 inches. Sea level at the San Francisco tide gauge has risen 8 inches over the past century, and the National Research Council (NRC) projects that by 2100, sea level in California south of Cape Mendocino may rise 66 inches. The two major causes of global sea level rise are thermal expansion of warming oceans and the melting of land-based glaciers and polar ice caps.

While Marin’s shoreline already experiences regular erosion, flooding, and significant storm events, sea level rise will exacerbate these natural processes, leading to significant social, environmental, and economic impacts. The third National Climate Assessment cites strong evidence that the cost of doing nothing exceeds the costs associated with adapting to sea level rise by 4 to 10 times. Therefore, it is critical the County of Marin, municipalities, and special districts plan and prepare for the impacts of sea level rise to ensure a resilient county for present and future generations.

This publication presents the Bay Waterfront Adaptation and Vulnerability Evaluation (BayWAVE) for Marin’s San Francisco, Richardson’s, and San Pablo Bay communities’ built and natural assets. This effort is part of an ongoing scientific, collaborative, and public process to understand and prepare for sea level rise along the Marin shoreline. This Vulnerability Assessment seeks to provide context and estimates of the physical and fiscal impacts to shoreline over the coming decades. This analysis highlights the complexity of the potential impacts and the need for both concerted and individual actions in the face of rising tides. The data presented can be used to prioritize efforts, seek funding, and shape policy and development discussions.

The County of Marin Department of Public Works is the project lead for the Bay Waterfront Adaptation & Vulnerability Evaluation (BayWAVE) program. The program began in September 2015 with funding from County of Marin and additional financial support from the California State Coastal Conservancy. Several multi-jurisdictional committees guide the BayWAVE process. The Executive Steering Committee consists of County of Marin and local jurisdiction representatives to guide staff and provide direction at critical milestones. The Policy Committee is made up of elected officials from each city and the County of Marin. The Technical Advisory

Committee includes staff from local, state, and federal agencies. These committees are essential in achieving the BayWAVE goals to establish an efficient shared learning process and messaging platform, and create a collaborative environment to prepare for sea level rise. See the Acknowledgements for a complete list of committee participants.

This Vulnerability Assessment is advisory and not a regulatory document or legal standard of review for action the County of Marin, municipalities or other involved special governments may take. Such actions are subject to the applicable requirements in each jurisdiction’s governing documents and applicable state and local regulations.

The County of Marin, municipalities, and special jurisdictions participating in this assessment have engaged in sea level rise planning and climate action for several years. For example, Marin’s Countywide Plan (2007) addresses sea level rise in two policies: EH-3.k Anticipate Climate Change Impacts, Including Sea Level Rise and C-EH-22 Sea Level Rise and Marin’s Coast. Other local efforts include sea level rise white papers for San Rafael and Novato, the Here.Now.Us project started by Marin County Supervisor Kate Sears for Southern Marin, the Department of Public Works Richardson’s Bay Shoreline Study, Novato, Southern Marin, and Gallinas Watershed Program’s demonstration projects, and the Collaboration: Sea-level Marin Adaptation Response Team (C-SMART) Program for the West Marin coastline.

This assessment follows extensive efforts throughout the nation, state, and region to understand the science of sea level rise and the impacts it could have. The San Francisco Bay Conservation and Development Commission (BCDC) established the Adapting to Rising Tides program, which includes adaptation planning guidance, and local to regional case studies, and previously published Living with a Rising Bay: Vulnerability and Adaptation in San Francisco Bay and on the Shoreline and Innovative Wetland Adaptation Techniques. Most recently, BCDC released a Levee Overtopping Study that determines the water levels required to spill over the tops of levees into the areas the aim to protect. Pacific Gas & Electric (PG&E) also released a climate change vulnerability assessment for the Bay Area. In addition, the California Energy Commission (CEC) released Impacts of Predicted Sea-Level Rise and Extreme Storm Events on the Transportation Infrastructure in the San Francisco Bay Region.

Finally, released two years ago with special attention to climate change impacts is the Baylands Ecosystem Habitat Goals Science Update 2015.

In an effort to dovetail with these studies, goals, and regulations, this assessment applies and presents the best available sea level rise and storm surge science to Marin’s shoreline to generate an understanding of Marin’s potential future.

This Assessment examines lands on the Marin County bay shoreline from the Golden Gate Bridge to the Petaluma River (see Map 1). The study area is approximately 85,840 acres and comprises of the entire jurisdiction for each municipality and unincorporated community vulnerable to sea level rise under the BayWAVE scenarios. Communities exposed to sea level rise are:

- **Municipalities**
 - Belvedere
 - Corte Madera
 - Larkspur
 - Mill Valley
 - Novato
 - San Rafael
 - Sausalito
 - Tiburon

- **Unincorporated Jurisdictions**
 - Almonte
 - Bayside Acres
 - Bel Marin Keys
 - Black Point
 - California Park
 - Country Club
 - Greenbrae Boardwalk
 - Kentfield
 - Marin City
 - North Novato
 - Paradise Cay
 - Point San Pedro
 - San Quentin
 - Santa Venetia
 - St. Vincent’s
 - Strawberry
 - Tamalpais Valley
 - Unincorporated Tiburon
 - Waldo Point Harbor.
INTRODUCTION

Map 1. BayWAVE Study Area
经济，环境，权益，以及管理方面的考虑。每个案例都可以单独阅读，使资产管理者能够专注于一个专业领域，社区成员，官员和其他人可以阅读他们的社区作为一个整体。结论总结了由期间或海平面上升的初期影响导致的侵蚀，中长期影响，以及对不同资产类型和社区的影响。

关键发现包括：
- 南部马林县可能会遭受最严重的洪水影响，并可能经历这些影响的近期。
- 从马兰站交界处US 101的Evacuation和1号线路的Manzanita Interchange的访问将受到严重影响。
- 该评估基于FEMA的Hazard Damage评估，使用波浪，风和暂时的洪水来估计财产损失。
- 南部水力系统的发展将使废水处理设施和海平面上升的影响对南旧金山，Tamalpais，Almonte，Alto，Mill Valley，Novato和Bel Marin Keys的居民产生影响。
- 物理和经济影响会发生在收入和社会经济群体中。
- 加利福尼亚的潮间带（低于平均水位）将受到公共信任的影响。如海平面持续上升，私人财产将受到威胁。

评估与海平面上升相关的脆弱性。该评估由五个部分组成：（1）方法，（2）资产目录，（3）未合并的Unincorporated Marin，（4）分析和（5）结论。该方法详细说明了背景科学以及在BayWAVE过程中使用的研究方法。资产目录强调了沿海特征的易损性，如居民，雇员，以及游客将依赖于这些特征，如建筑物，道路，饮水，水井，化粪池等。市政目录列出易损性因素，在每个市政区域。未合并的Unincorporated Marin目录还提供了 Marin County的易损性分析。每个目录将突出明显的问题和地理位置。资产目录将显示初始的海平面上升。
INTRODUCTION

when flooded, would disrupt commuting, and regional and global travel.

- Sea level rise is one of several climate change impacts residents will likely face. Combined with typical hazards that already exist (e.g., liquefaction and ground shaking near fault lines, erodible soils, and heavy rainfall), Marin is more vulnerable than this assessment can describe.

This assessment is the first step in an ongoing iterative process. The sea level rise preparation process will require consistent monitoring and evaluation to improve modeling assumptions and ensure preparation efforts are effective and efficient. With this vulnerability assessment, Marin County professionals, officials, residents, employees, and other Bay Area communities can gain an understanding of the potential fallout from higher high tides in a no action scenario. With this comprehensive view of the potential issues, Marin County communities can approach preparing for this shared concern with greater efficiency and collaboration.

Marin Flood History

February 10th, 1925 More than seven inches of rain fell in the Ross Valley, overflowing creeks, and flooding streets. Extensive damage occurred to homes and infrastructure in San Anselmo, Ross and Kentfield.

1956-58 Corte Madera Creek experienced major flooding that prompted a large Army Corps of Engineers flood control project. Due to continuous flooding, the Kentfield Fire Department tied a rowboat to the Laurel/Sir Francis Drake sign for use.

January 1982 The ‘Great Storm of 1982,’ dumped sixteen inches of rain that killed four residents, destroyed 35 Marin homes, and damaged 2,900 more, totaling $80 million in damages.

\[15\] Source Unknown

\[17\] Marin Independent Journal. 2011. Highlights of Marin’s History, from 1850-2010

DRAFT: Marin Shoreline Sea Level Rise Vulnerability Assessment
METHODS

Methodology

The BayWAVE Vulnerability Assessment process (see Figure 1) is guided by CalAdapt through the following phases of analysis:

- **Phase 1 | Exposure**: Assess potential changes in water level from sea level rise, storm events, and geomorphic change to determine the built and natural assets that could be exposed to saltwater.
- **Phase 2 | Sensitivity**: Assess the degree of damage or disruption tidal and storm surge flooding could cause on the exposed assets.
- **Phase 3 | Adaptive Capacity**: Assess each asset’s adaptive capacity, or ability to respond successfully, to flooding, without human intervention.
- **Phase 4 | Potential Impacts**: Evaluate the potential consequences to the assets and larger context, assuming no intervention actions.
- **Phase 5 | Risk & Onset**: Describe the certainty and timing of impacts.

![Figure 1. BayWAVE Process](image)

Modeling Methods

Sea level rise estimates used in this analysis are from the USGS Coastal Storm Modeling Systems (CoSMoS) and are viewable online through the Our Coast Our Future (OCOF) Flood Map tool. OCOF was developed through a partnership of several notable institutions and agencies, and represents the best available sea level rise and storm science.

OCOF uses the USGS’s Digital Elevation Model (DEM) constructed for the region with 2-meter horizontal grid resolution based on North American Vertical Datum of 1988 (NAVD88) elevations, and USGS’s numerical modeling system called Coastal Storm Modeling System (CoSMoS) to produce a combination of 40 different sea level rise and storms scenarios. CoSMoS scales down global and regional climate and wave models to produce local hazard projections.

High quality elevation data incorporated in the DEM was used to create maps of mean higher high water (MHHW) tidal elevation, and provides the option to add storm surges of different magnitudes. Mean higher high water is the average of the higher high water level of each tidal day observed over the National Tidal Datum Epoch. Each day has two high tides, one typically higher than the other. The higher values are used for this analysis. Sometimes the higher high tide will be lower or higher than other days, however, several days of flooding a month, several months a year, or even once every year would be problematic depending on the resource being examined.

Note, also because the analysis uses high tide, properties near the inland extent of properties exposed to MHHW may not flood at low tides.

20. National Tidal Datum Epoch is the specific 18-year period adopted by the National Ocean Service as the official time segment over which tide observations are taken and reduced to obtain mean values (e.g., mean lower low water, etc.) for tidal data.

METHODS

On the other hand, these properties, and properties just beyond the inland extent of scenario 6, the most-severe scenario examined in this report, could experience flooding from the highest high tides, especially in combination with storms and/or king tides.

CoSMoS accounts for wave run-up and set-up, storm surge of the ocean, seasonal effects, tides, levees, river discharge, and wind from the San Francisco Bay. Note that this tool only accounts for bay water levels and does not assess fresh stormwater flooding upstream or changes in the shoreline (geomorphology) as erosion continues. Thus, storms used in this analysis include bay storm surge only, not additional freshwater creek flooding upstream. In addition, this analysis does not account for the ability of pump stations to drain flooded areas.

Table 1 shows the range of sea level rise projections for California adopted by the National Research Council in 2012. Given the uncertainty in the magnitude and timing of future sea level rise, this analysis uses a scenario-based approach to assess a range of potential sea level rise and storm surge exposure. The six USGS CoSMoS scenarios selected for the BayWAVE Vulnerability Assessment in Table 2 align with the NRC 2012 estimates as follows:

- Scenarios 1 and 2 represent the near-term projection anticipated by 2030.
- Scenarios 3 and 4 represent the medium-term projection anticipated by 2050.
- Scenarios 5 and 6 represent the long-term projection anticipated by 2100.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Projected Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>by 2030</td>
<td>1.6 – 11.8 inches</td>
</tr>
<tr>
<td>by 2050</td>
<td>4.7 – 24 inches</td>
</tr>
<tr>
<td>by 2100</td>
<td>16.6 – 65.8 inches</td>
</tr>
</tbody>
</table>

Table 2. BayWAVE Sea Level Rise & Storms Scenarios

<table>
<thead>
<tr>
<th>Sea Level Rise Scenario</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Near</td>
</tr>
<tr>
<td>2</td>
<td>Near</td>
</tr>
<tr>
<td>3</td>
<td>Medium</td>
</tr>
<tr>
<td>4</td>
<td>Medium</td>
</tr>
<tr>
<td>5</td>
<td>Long</td>
</tr>
<tr>
<td>6</td>
<td>Long</td>
</tr>
</tbody>
</table>

Source: National Oceanic and Atmospheric Administration. Credit: BVB Consulting LLC.

Source: NRC 2012

King tides preview future water levels. Mill Valley. 10:41 a.m., Nov. 25, 2015. Credit: LightHawk.
METHODS

Figure 3. BayWAVE Scenarios Associated Water Levels

Inches of Salt Water

Near-term

Medium-term

Long-term

0 25 50 75 100 125 150 175

Sea Level Rise

100-year Storm Surge

and less frequent storm surges such as the, 200-year, 400-year, annual, or 5-year storm surges. Less frequent larger storms would result in more severe flooding than presented in this report, whereas, smaller storm surges would produce less severe flooding.

Maps 2 and 3, on the following pages, show the furthest inland extent of scenario 6. Maps 4 and 5 show scenarios 1, 3, and 5, and Maps 6 and 7 show scenarios 2, 4, and 6. The shoreline is typically mapped in two maps: (1) the northern study area, north of Pt. San Pedro, and (2) the southern study area, south of Pt. San Pedro, halves of the study area. The call out circle maps show zoomed in images of locations that may be difficult to see. The circles do not indicate these do not indicate that there areas are more vulnerable than areas not depicted in the circular maps.

Figure 3 presents another view of the BayWAVE scenarios where the red lengths represent tidal flooding in sea level rise scenarios 1, 3, and 5, and the blue lengths represent the additional storm surge water level associated with scenarios 2, 4, and 6. Together these bands show the potential flooding in the near-, medium-, and long-term.

The odd numbered scenarios illustrate sea level rise only. Even numbered scenarios illustrate sea levels and incorporate the storm flooding from a future based 100-year storm surge. The scenarios include storm surges because storm surges have the potential to cause catastrophic damage. The CoSMoS model uses research and predictions for future storm patterns to create the future storm typology used in the BayWAVE scenarios. Future storms are anticipated to come from a southerly direction, as opposed to historic storms, which tend to come from the north. For more information on how storms were modeled see references on the OCOF website.

A 100-year storm surge has one percent chance of happening in any given year. Within a 30-year mortgage, a 100-year storm has a nearly 30 percent chance of occurring. Note that, as climate change continues, the 100-year storm surge level of flooding may occur more frequently, increasing the annual risk of this level storm occurring from a 100-year storm surge to a 50-year storm surge, for example. In addition, there are more frequent storm surges,

METHODS

Map 2. Northern Study Area Inland Extent of Scenario 6

Location Indicators
- Unincorporated
- Municipality
- Road
- Bay

Disclaimer: Vulnerability Assessment maps, tables, etc. can be used as a resource to help identify potential hazardous areas and vulnerable assets. Marin County, and data providers here, make no warranties of the accuracy or completeness of maps and data. Maps are representational and subject to future revision. Local site conditions must be examined. Commercial use is prohibited.
Map 3. Southern Study Area Inland Extent of Scenario 6

Inland Extent: Sea Level @ 60”+100-year Storm

Location Indicators

- Unincorporated
- Municipality
- Road
- Bay

1: Downtown San Rafael
2: Greenbrae/Larkspur
3: Corte Madera
4: Belvedere/Tiburon
5: Mill Valley
6: Waldo Pt. Harbor

Disclaimer: Vulnerability Assessment maps, tables, etc. can be used as a resource to help identify potential hazards areas and vulnerable assets. Marin County, and data providers here in, make no warranties of the accuracy or completeness of maps and data. Maps are representational and subject to future revision. Local site conditions must be examined. Commercial use is prohibited.
METHODS

Map 4: Northern Study Area Sea Level Rise Scenarios

BayWAVE Sea Level Rise (SLR) Scenarios
- Red: Scenario 1: 10” SLR
- Orange: Scenario 2: 20” SLR
- Blue: Scenario 5: 60” SLR

Location Indicators:
- Unincorporated
- Municipality
- Road
- Bay

Marin County

Disclaimer: Vulnerability Assessment maps, tables, etc., can be used as a resource to help identify potential hazardous areas and vulnerable assets. Marin County, and data providers here in, make no warranties of the accuracy or completeness of maps and data. Maps are representational and subject to future revision. Local site conditions must be examined. Commercial use is prohibited.

Date: 4/1/2017

By VB Consulting
METHODS

Map 6: Northern Study Area Sea Level Rise and 100-year Storm Surge Scenarios

BayWAVE: Sea Level Rise (SLR) & 100-year Storm Surge Scenarios

- Scene 2: 10\(^\circ\)SLR + Storm Surge
- Scene 4: 20\(^\circ\)SLR + Storm Surge
- Scene 6: 60\(^\circ\)SLR + Storm Surge

Location Indicators:
- Unincorporated
- Municipality
- Road
- Bay

Map 6:

1. Black Point/Green Point
2. U.S. Hwy. 101 @ Rowland Blvd.
3. Bel Marin Keys
4. Hamilton
5. Santa Venetia/Marin Lagoon
6. Buck’s Landing

Disclaimer: Vulnerability Assessment maps, tables, etc., can be used as a resource to help identify potential hazards and vulnerable assets. Marin County, and data providers herein, make no warranties of the accuracy or completeness of maps and data. Maps are representational and subject to future revision. Local site conditions must be examined. Commercial use is prohibited.
METHODS

According to the San Francisco Bay Conservation and Development Commission's *A Sea Level Rise Strategy for the San Francisco Bay Region* noted that it is particularly difficult to develop a strategy for dealing with sea level rise when the temperature increase scenarios yield a tenfold difference between the lowest and highest potential increases in the San Francisco Bay water level over the next 100 years.\(^{23}\)

This high degree of uncertainty, due differing assumptions in carbon emissions, in sea level rise modeling results in a range of onset predictions. Variances between the predictions increase further out in time. This uncertainty is heightened by the non-linear growth rate of sea level rise.\(^{24,25}\) Because of this variation, the BayWAVE scenarios do not focus on years, rather a framework of near-, medium-, and long-term scenarios. The OCOF tool enables the user to view the year a sea level projection could be met across the various published sea level estimates on the OCOF website.\(^{26}\)

Regardless, even if the world stabilizes carbon emissions, sea level rise will continue. Even if the global population reduces carbon emissions to levels where atmospheric concentrations decline, the decline will be slow, sea levels could continue to rise for decades, and hundreds of years could pass before sea level stabilizes or drops.\(^{26,27}\)

Known Issues

The USGS acknowledges local modeling issues at the Petaluma River where dense vegetation leads to a false elevation reading and thus, under-predicts the potential flooding extent. Maximum flood potential indicates more probable flooding extents in these locations. In addition, the 100-year storm scenario flooding extents in the vicinity of Petaluma River and Novato may be under-predicted. The modeling team manually adjusted parameters to show more probable flooding behavior. Local professionals also suspect that water absorbed by the marshes at China Camp State Park may yield less flooding than the model estimates.

In addition, several sites underwent, or are currently undergoing, elevation increases after the baseline imagery was taken in 2010. Thus, the model and maps may overestimate flooding. These projects are shown on Maps 8 and 9 and include:

- Waldo Point Harbor: Filled and elevated parking and entrance area.
- Rose Garden Neighborhood, Larkspur: This recently completed development was elevated to meet FEMA and County flood prevention requirements.
- Aramburu Island, Strawberry: This man-made barrier island off Harbor Point in Strawberry was improved in 2012 and offers enhanced protection from wave impacts during storms.
- Hospice and base of Call Park Hill: Recent construction may have elevated the site above 2010 elevations. This could result is less than flooding than estimated in this assessment.
- The Strand and Loch Lomond Marina, San Rafael: This project is near completion. The sites were filled with sediment and elevated to meet FEMA standards.
- Redwood Landfill: Roughly two feet in height was added to the external and internal levees after 2010.

Another issue arises with the Belvedere and Bel Marin Keys Lagoons. These lagoons are managed with tide gates that can close during high tides. The model treats these gates as open. So long as the tide gates and levees are not over topped, closing these protective devices could reduce flooding to properties on the lagoons in the near- and medium-terms.

Finally, note that the model does not take planned projects into consideration and assumes no action taken to prepare of adapt for sea level rise. Several projects along the shoreline are planned that could also help to reduce sea level rise flooding threats. These projects will be presented in the BayWAVE sea level rise early action report, the counterpart to this Assessment.
Map 8. Northern Study Area Known Issues with CoSMoS Model
Map 9. Southern Study Area Known Issues with CoSMoS Model
Sea Level Rise Maps & FEMA

Several shoreline communities already grapple with stormwater and storm surge flooding on a near yearly basis and qualify for federal flooding insurance under the Federal Emergency Management Agency (FEMA). FEMA maps flood prone area in maps called Flood Insurance Rate Maps (FIRMs). These maps, while related to flooding, do not consider future potential sea level rise flooding. As the sea level rises, FIRMs would need to be updated to represent the new existing conditions. Other major differences between FIRMs and the sea level rise maps in this assessment are:

- FIRMs are based on historic and current trends and assumptions. CoSMoS sea level rise maps are based on modeling of potential future conditions.
- FIRMs address bay surge and stormwater creek flooding. CoSMoS does not address stormwater creek flooding, and
- FIRMs can incorporate policy decisions to exclude the role of non-FEMA certified protective shoreline armor. CoSMoS is based solely on elevation, such that any shoreline armor that contributes to elevation is accounted for.

Assessment Methods

As described in CalAdapt, vulnerability is based on an asset’s exposure, sensitivity, and adaptive capacity to rising tides and bay surge threats. Such that, if an exposed asset is moderately or highly sensitive to sea level rise impacts, with low to no adaptive capacity, the asset is vulnerable.

Assets were identified using existing MarinMap geographic data layers for roads, trails, parks, public facilities, utility districts, buildings, and parcels, and Department of Fish and Wildlife sources for wildlife species, habitats, fishing piers, marinas, access points, and ports. The Technical Advisory Committee supplemented these data sources with additional assets. Note that not all vulnerable assets are mapped due to data conflicts or unavailable geographic data. This does not imply that an asset is not vulnerable. This is especially true for utility assets. The data layers generated span several years, and changes to the built environment may have occurred since the data was last updated. Where identified, these areas were manually adjusted to reflect known current conditions. For example, based on aerial imagery, Niel Cummings Elementary school appears to be one large building, however, upon site visit, it becomes clear the site has four buildings connected by awnings. Improving the data comprehensively was not within the scope of this analysis, thus buildings numbers may be slightly off in some locations.

Phase 1: Exposure

To determine what could be exposed to sea level rise at MHHW and/or a100-year storm surge, the six BayWAVE scenarios, identified asset locations, and aerial imagery were overlaid in ArcGIS, a geographic statistical computer program. Assets intersecting sea level rise and storm scenarios were identified as exposed, and further assessed for sensitivity and adaptive capacity to determine if the asset is vulnerable to:

- Extreme event flooding during the annual highest high tides and/or storm surges that cause nuisance flooding,
- Inundation at least, one high tide a day, several days a month, that results in chronic flooding,
- Erosion and geomorphic evolution from higher high tides and extreme storm events,
- Wave run up and high winds in extreme storm events,
- Saltwater intrusion,
- Rising water table, and/or
- Habitat shifts (applicable to natural resources).

In addition to geographic extent, CoSMoS GIS layers illustrating potential flood depth at MHHW were spatially joined with each vulnerable asset yielding average depths for scenarios 1, 3, and 5. Flood depth was calculated by converting GIS vector data to raster data to break the flood depth layer into thousands of cells, each with an assigned flood value. For roads, a high and low value was calculated on the line segment. Bridges are not quantitatively accounted for in this assessment. For buildings, cells underlying the building footprint were averaged to one flood depth at MHHW for scenarios 1, 3, and 5 for each building. Note that flood depth data is not available for all vulnerable areas and assets, especially those that exist in the bay beyond mean sea level and already subject to tidal influences. The data presented in this Assessment is for what is available and may not directly compare with data presented under exposure.

Flood depth figures are displayed in the onset and depth tables in each profile. In these tables, roads
were assigned high and low values along the exposed segments for each scenario. Exposed road mileage provided is road miles, not lane miles. Lane mileage would more than double the mileage figures presented in this assessment. Where buildings are presented as a neighborhood group, a maximum average flood depth is provided. Where data is available, additional analysis summarizes how many buildings in each community could flood by one-foot flood depth intervals for scenarios 1, 3, and 5.

Phases 2 & 3: Sensitivity & Adaptive Capacity
The project team interviewed more than 100 asset managers, such as fire chiefs, city planners, transportation agency staff, using the Asset Vulnerability Assessment Tool, available in Appendix A, to assess built and natural resource assets. The tool is designed based on previous pre- and post-disaster assessments conducted in the Bay Area, Southern California, New Orleans, New York City, and guidance from State of California and the U.S. EPA. 26,27,30,31,32,33,34

Several public agency professionals were interviewed due to a high number of public assets in the exposed areas. Homeowners’ association representatives were invited to be interviewed; however, home owners or non-public property owners were not individually interviewed. A list of interviews can be found in Appendix A.

Asset managers were interviewed in person or by phone to answer two primary questions:

1. How sensitive is the asset to each exposure or threat? 35
2. And if sensitive, what is the adaptive capacity, or the asset’s ability to maintain its function without further intervention (human action)? 36, 37, 38, 39

Any asset deemed moderately or highly sensitive to flooding or storm damage, with low to no adaptive capacity is considered vulnerable. Other questions about previous disruptions and the nature of potential disruptions were discussed to provide context to the qualitative statements. The interview results were combined with geographic data to develop this Vulnerability Assessment.

Additional analysis was conducted to determine the potential monetary losses from storm damages to buildings in scenario 6. Scenario 6 is chosen because it is the worst case scenario selected for assessment. This method applies damage levels to all vulnerable buildings in scenario 6 based on the FEMA HAZUS model intervals for yellow, minor damage of $5,000-17,000; orange, damage of $17,001+; and red, destroyed, post-disaster inspection tags. 40, 41 Information on the real estate website Zillow was used to estimate median market value of single-family homes in February 2016.

The vulnerabilities found in the assessment process are summarized in Asset, Municipal, and Unincorporated M_builtin Profiles.

32 CURRY-Tijuana River Valley - http://tnerr.org/curry/
41 2018 dollars
Phase 4: Risk & Onset

Risk & onset assess when and how likely impacts will occur to prioritize actions, though this alone may not be adequate criteria for decision-making. Onset is determined by the scenario an asset is exposed under. The scenario indicates a "no later than" timeline, as opposed to a "not until after" timeline, thus onset could occur before the snap shot in time represented by each scenario. Because of this, this assessment uses near-, medium-, and long-term labeling corresponding with the NRC ranges for before 2030, 2050, and 2100 respectively in Table 1.

All vulnerable assets are at risk of flooding and/or increasing rates of subsidence. Two types of flooding could occur, tidal flooding at MHHW or seasonal storm flooding. All assets that experience tidal flooding will also experience storm surge flooding. Tidal flooding at the average higher high tide could flood an asset once a day, several days a month. Each day has two high tides, thus it is possible that some properties could flood twice a day. Land that is flooded at this frequency is not useable for land based development. Storms surge flooding analyzed in this assessment is a 100-year storm surge, such that this storm has a 1 percent chance of occurring each year.

Other Considerations Methods

As adaptation planning moves forward, more detailed study and assessment across each of the 3 E's: economy, environment, and equity, will be critical. Moreover, the California Coastal Commission’s Sea Level Rise Policy Guidance calls for assessing these, legal consequences, and the cumulative and secondary consequences of the vulnerabilities.42 The “Other Considerations” section in each asset profile begins to identify issues and opportunities for each “E,” and management. These sections are informed through literature review, asset manager interviews, and policy discussions with professional staff.

Economic: Highlights costs of damage, or preparation, and the cost burden to residents. Potential economic issues and opportunities were determined using several geographic and tabular data sources maintained by the County of Marin, US Census, and Zillow. Note that population and monetary figures are based on current or historic values. Generally, both populations and property values are projected to grow, thus, this assessment underestimates the number of people and value of property that would be vulnerable in the future.

Environmental: Highlights how disruption to buildings, roads, septic systems, and other assets could have secondary impacts on the environment and wildlife. Environmental impacts were gathered from asset managers and literature review.

Equity: Highlights the disparity in cost burden across populations of different social and economic means, and how the social fabric of communities may shift. Several storms impacting the south (i.e. Hurricane Katrina, Hurricane Audrey) have “shown that natural disasters can cause the greatest harm to low-income communities and communities of color.”43 Populations that may be at higher risk include, low-income, limited English speaking, children, and those with limited mobility or sensory abilities.

Management: Highlights political and management issues that will need to be considered when planning for sea level rise to ensure the public health, safety, and welfare of East Marin residents.

To gain a better idea of these secondary consequences, asset managers were asked several questions about the nature of the damage or disruption that could happen, levels of risk, persons impacted, and if environmental, economic, equity, or political issues could arise. Potential secondary impacts include:44, 45

- Contaminant releases from industrial sites or storage tanks,
- Loss of habitat from increased erosion,
- Loss of jobs and revenue streams,
- Loss of community or sense of place,
- Increased need for government services or intervention, and
- Potential injury and loss of life.

Collectively these methods determine what is vulnerable to sea level rise on the Marin shoreline and at what levels of sea level rise impacts could be felt by. This analysis can be a useful in assessing asset and community sea level rise vulnerabilities, and developing adaptation strategies and policies well suited for this unique and valuable bay region.