Avalanche Fatalities 0.5 miles south of Longs Pass
March 3rd, 2018
Report by Dallas Glass and Dennis D’Amico, Northwest Avalanche Center

Incident snapshot

Occurrence Time and Date (approximately): 11:00 am March 3rd, 2018
Time First Reported to SAR (approximately): 11:45 am
Recovery Time: The victims were recovered between 1120 am - 12:30 March 3rd, 2018
Lat/Lon: 47.440815, -120.936600 (Approximate burial sites)
Location: 0.5 mi south of Longs Pass, Kittitas Co, Okagonan-Wenatchee NF, WA

Number in Party: 4 Snowmobilers
Number Caught: 4 Snowmobilers
Number Partially Buried, Critical or Not-critical: 1 partially buried not-critical, 1 partially buried critical. (Critical means the head was buried)
Number Completely Buried: 2
Duration of Burial (estimated): Upper Victim: 15 -20 minutes. Lower Victim: 1 - 1.5 hrs.
Burial Depth to Face: Upper Victim: 2 ft (0.6 m). Lower Victim: 7.5 ft (2.3 m).
Number Injured: 1
Number Killed: 2

Avalanche Type: Hard Slab (HS)
Trigger: Snowmobile (AM)
Size: R2 / D2.5
Start Zone Aspect: SW-W
Start Zone Angle (estimated): Average 35°, Maximum 42°
Start Zone Elevation: Approximately 6100 ft

Height of Crown Face (estimated): average 2.5 to 3 ft (1 m)
Width of Fracture (estimated): average 450 to 500 ft (135 – 150 m)
Vertical Fall: Maximum 1500 ft (450 m)

Snowpack information from a nearby slope:
Slab Characteristics: F to P Hardness, Decomposing Fragments (1.0 mm) above Rounded Grains (0.3 mm)
Weak Layer Characteristics: Rounding Facets (1 mm), 2 cm thick
Bed Surface Characteristics: K Hardness, Clustered Rounded Grains (2-3 mm)

Burial involved a terrain trap: Gully, Trees and Rocks
Number of people that crossed start zone before avalanche: 12-15 Snowmobile passes
Avalanche occurred during: Descent
Location of group in relation to start zone during avalanche: One party member descending, two snowmobilers stationary mid-track, one stationary left of track.
Avalanche Safety Gear Carried: All: Avalanche transceivers, shovels and airbag packs. Probes were carried by 3 of 4 members. Riders 2 and 3 deployed their airbags. Riders 1 and 4 did not.

Avalanche Training and Experience at Activity: None of the riders had formal avalanche education training. A mix of snowmobile experience with 2 out of the 4 riders regarded as advanced riders.

Signs of Instability Noted by Group: None

Extent of Injuries or Cause of Death: Rider 1 sustained minor injuries. Rider 2 sustained a head injury with disrupted vision in his right eye, an unclassified right shoulder injury, injury to his left knee (MCL and ACL), and multiple complex fractures to his lower left leg. Riders 3 and 4 were ruled death by asphyxiation by the Kittitas County Coroner’s Office.

Avalanche Classification: HS-AMu-R2.5-D2-O

NWAC Forecast Zone: East Slopes Central - Lake Chelan to South of I-90

Avalanche Danger Rating: Considerable (Above Treeline). Moderate (Near and Below Treeline)

Avalanche and Terrain

The accident site is located just south of Longs Pass in an area commonly referred to as “The Funnel” by recreationalists. Members of the incident party called the area “The Waterfall” for the waterfall feature at the top of the main gully.

The area consists of four near and above treeline bowls that converge into a single track. The terrain is complex, with multiple aspects, avalanche start zones, rock outcrops, and cliff bands comprising the area. The shared track quickly becomes a deep and narrow gully. The gully is lined by very steep slopes and cliffs for most of its length. It is approximately 30-45 feet deep and 20 feet wide in most locations. The gully ends low in the runout. Vegetation clues in the runout indicate very large avalanches occasionally release in this area.

Of the potential start zones, only the center left bowl avalanched. Subtle ridges separating the bowls limited propagation. Debris from the avalanche extended from mid-slope to 150 feet below the bottom of the gully. Average debris depths were measured at 6-7 feet (200-230 cm) with the deepest measured deposit near Rider 4’s burial at 12+ feet (400 cm).

During the accident investigation, significant overhead hazard above the crown of the avalanche and in the adjacent bowls prevented safe access for a crown profile. A safe site on a nearby slope with a similar aspect and elevation to the avalanche were chosen for a snow profile.

Weather and Snowpack Summary

A high elevation and long duration rain event the first week of February created a layer of melt form grains that were subsequently buried by a few inches of snow on the night of February 8th. Several days of very cold and clear weather followed causing the layer of dry surface snow to facet. These near surface facets develop between February 8th and 13th. On the night of the 13th, new snow began to bury these near surface facets. An active weather pattern the last two weeks of February continued...
to add snow in a series of strong winter storms, creating an overlying slab. There are no weather stations in the immediate vicinity of the accident site.

Accident Summary

The four team members made plans to ride up the North Fork of the Teanaway River Rd; an area well known to Riders 2 and 3. The night before and the morning of their outing, the team checked the avalanche forecast. All four riders left the 29 Pines Campground around 0900 hours on March 3 and proceeded directly to the site where the accident later occurred. Upon arriving near the site, Riders 2 and 4 ascended the main gully to preview the terrain and assess conditions, while the remaining members waited near the bottom of the runout. Both riders felt comfortable with the snow conditions. Riders 2 and 3 made a second pass to assess conditions and did not find any notable observations.

All four riders then ascended the main gully to a bench just above the waterfall. Riders took turns high-marking in the bowls above their location. They made at least 12 passes on the slopes prior to the avalanche. Rider 1 decided to rest on a subtle ridge just north and upslope of the other riders. This was chosen as a safer resting location. Riders 3 and 4 waited on the bench mid-track in the avalanche path. Rider 2 (using Rider 1’s snowmobile) ascended the central bowl. On his descent, he observed the avalanche release. Rider 4 also noticed the avalanche and yelled to the other riders. All four riders were caught and carried downslope.

Rider 1 unsuccessfully attempted to start his machine. He then put-on and secured his helmet. Rider 1 was caught, carried, and buried up to his waist.

Rider 2 attempted to ride downhill and to his left to exit the avalanche but was overtaken. He used his radio in an attempt to alert the other riders of the avalanche. While being carried downslope, he deployed his airbag. Rider 2 was buried face-up, head uphill, with his legs slightly down and to the left. His left arm was free and snow nearly covered his head.

Riders 3 and 4 proceeded downhill into the gully, but were also overtaken by the avalanche. Rider 3 deployed his airbag. The inflated airbag was found detached from the pack near the toe of the avalanche debris by assisting rescuers. While Rider 4 was wearing an airbag, it was not deployed.

Rescue Summary

Rider 1 was able to self-extricate. He then proceeded on a snowmobile downhill with his avalanche transceiver out. As Rider 1 arrived at Rider 2’s location, Rider 2 had used his free hand to remove his helmet and clear snow from around his face. Rider 1 used his shovel to begin to extricate Rider 2. Once they were able to reach Rider 2’s avalanche transceiver, they turned it off and Rider 1 continued with his search. Rider 2’s radio was used to call for additional help. Several teams of snowmobilers in the area responded to the radio call and began traveling to the accident site.

Rider 1 used his transceiver to locate Rider 3 who was buried face downhill about 2 feet (60 cm) below the snow surface. Rider 3 was approximately 100 feet downhill of Rider 2. He was located and
extracted about 20 minutes after the avalanche occurred. Rider 3 was unresponsive and making agonal respirations. Rider 1 performed CPR on Rider 3.

Rescuers responding to Rider 1’s radio call arrived on-scene and assisted with the rescue. Several 911 calls were placed by multiple parties. It is unclear exactly how many assisting rescuers arrived at the scene. A radio relay was established between the accident site and a rider on a ridgeline near Hawkins Mountain. This rider was able to use cell coverage to communicate with Kittitas emergency services. Search and rescue were alerted at 1145.

Rider 4 was found by avalanche transceiver search. He was buried 150 feet downslope of Rider 3 underneath his snowmobile. He was buried 7 feet (230cm) under the snow. Rider 4 was recovered approximately 1-1.5 hours after the avalanche had occurred.

Kittitas SAR established a command post at 29 Pines Campground at 1339 hours. One of the assisting rescuers from the Hawkins Mountain group traveled from the accident site to 29 Pines Campground and assisted Kittitas SAR with information regarding the accident site.

Kittitas SAR utilized a helicopter from the King County Sheriff’s Office to evacuate Rider 2 from the scene and transport him to a medical facility.

The Northwest Avalanche Center was notified of the accident around 1215 hrs. A NWAC forecaster arrived at incident command at around 1530 hrs.

Rider 1 left the accident site and traveled to 29 Pines Campground. He briefly interacted with the Kittitas County Sheriff’s Office, SAR, and NWAC before they traveled to the accident site, arriving around 1700 hrs. Both bodies were located and removed from the accident site, then transported to 29 Pines Campground.

Additional Comments

There are three notable conclusions from this tragic and unfortunate event.

1. Persistent slab avalanches are difficult to assess. Often there are not obvious signs of instability. The team made two attempts to check conditions prior to committing to the terrain. While on the slope they made at least a dozen passes prior to the accident. At no point during the preceding hours did they notice any signs of unstable snow. The lack of obvious signs of instability well after a storm cycle are exactly what make Persistent Slabst for the backcountry traveler to manage.

2. Safe travel techniques help minimize group exposure in the event of an avalanche. This not only includes the moving members of the party, but also the stationary members. In this incident, the team’s positioning left them unintentionally exposed in the event of an avalanche and allowed all 4 members to be caught and carried.
3. While this avalanche was large enough to bury, injure, or kill a person on its own, the terrain trap in the form of a deep gully led to the severity of the avalanche. The narrow, deep, and confined gully created an inescapable space, concentrated the force of the avalanche, and produced deep debris deposits. Part of terrain assessment should be the evaluation of the consequences of the terrain. In this case, all four upper bowls funnel into this terrain trap, magnifying the consequences of an avalanche.
Avalanche crown and start zone. A portion of the crown is outlined in red in the bottom photo.
View up avalanche path (upper photo) and profile of secondary avalanche (bottom photo)
View up avalanche path from gully

Burial sites marked with ski poles, one snowmobile visible.
Organization: **NWAC**
Location: **The Funnel**
Lat/Lng: **47.44257, -120.92840**

Date: -- **Observer:** --

Snowpit depth: **140 cm** **Snowpack depth:** **301 cm**

<table>
<thead>
<tr>
<th>Elevation: 5,794 ft</th>
<th>Wind: Light, 315° NW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope: 32°</td>
<td>Blowing snow: Light, --</td>
</tr>
<tr>
<td>Aspect: 270° W</td>
<td>Precipitation: Snow - Light</td>
</tr>
<tr>
<td>Air temp.: -5.0°C</td>
<td>Foot Pen. (PF): 35 cm</td>
</tr>
<tr>
<td>Sky: Obscured</td>
<td>Ski Pen. (PS): --</td>
</tr>
</tbody>
</table>

Date: 20180304
NWAC Staff: D. Glass and J. Hirshberg
East Slopes Central - Lake Chelan to South of I-90

Issued: 8:12 PM PST Friday, March 2, 2018 by Josh Hirshberg

NWAC avalanche forecasts apply to backcountry avalanche terrain in the Olympics, Washington Cascades and Mt Hood area. These forecasts do not apply to developed ski areas, avalanche terrain affecting highways and higher terrain on the volcanic peaks above the Cascade crest level.

The Bottom Line: You can trigger Persistent Slab avalanches that could break widely over terrain features. Put a wide buffer of terrain between where you travel and open slopes over 35 degrees as well as large avalanche paths. Reduce your risk of triggering a Wind Slab avalanche by avoiding fresh wind drifts and cross loaded features on steep slopes at upper elevations.

Elevation

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Saturday</th>
<th>Outlook for Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above Treeline</td>
<td>Considerable</td>
<td>Moderate</td>
</tr>
<tr>
<td>Near Treeline</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Below Treeline</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Avalanche Problems for Saturday

Wind Slab

Wind slabs can take up to a week to stabilize. They are confined to lee and cross-loaded terrain features and can be avoided by sticking to sheltered or wind scoured areas.

Persistent Slab

Persistent slabs can be triggered by light loads and weeks after the last storm. You can trigger them remotely and they often propagate across and beyond terrain features that would otherwise confine wind and storm slabs. Give yourself a wide safety buffer to handle the uncertainty.
Avalanche Forecast for Saturday

You are most likely to trigger Wind Slab avalanches above treeline, today. You can avoid these avalanches by staying off of recent snow drifts, deeply pillowed features, and fresh cornices on slopes 35 degrees and steeper. These areas may exist far below ridge-lines and on mid-slope cross-loaded features. In some location soft non-wind-effected snow may cover new wind slabs making them harder to identify.

It's currently much easier to trigger dangerous Persistent Slab avalanches on the East side of the Cascades compared to the West Slopes. Several old weak layers exist in the snowpack. In many areas with deeper snowpack, you may get little warning signs of a Persistent Slab avalanche. While these avalanches are difficult to trigger, they are also very difficult to predict. They have a low likelihood of triggering but high consequences. A resulting avalanche will likely be large enough to kill you. Put a wide margin of terrain between you and any slopes 35 degrees and steeper where you suspect the Persistent Slab problem. Continue to be cautious and stay away from steep, open slopes large avalanche paths. If you experience collapsing or audible whumphs, avoid any nearby avalanche terrain. Snow profiles and snowpack tests can help confirm the presence of a weak layer but cannot prove its absence.

Avalanche Summary

Up to a foot of snow has fallen with variable snow totals around the East Slopes since Wednesday. This fresh snow has fallen on a variety of snow surfaces including thin sun crust, uneven wind surfaces, and soft unconsolidated snow. Moist snow surfaces and roller balls may be found at lower elevations.

A number of potential persistent weak layers exist in the snowpack around the eastern Cascades. Two common layers that have been reported in many locations are a facet/crust combination buried on 2/23 and a facet/crust layer buried on 2/13. The exact layer and depth depend on aspect, elevation, and proximity to the Cascade crest. A high level of uncertainty remains surrounding these layers.

The upper (shallower 2/23) layer can be found 1-2 feet below the snow surface on steeper slopes that have received direct sun. Small weak facets have been found in other regions surrounding a thin sun crust formed early last week and buried during last weekend’s storms.

The deeper (2/13) facet/crust combination is typically found 2-3 feet below the snow surface. This layer has been around for two weeks with two confirmed skier triggered avalanches and more recent collapsing and whumphing. With significant new snow added to the snowpack last weekend, this layer may be reactive in areas where we have not seen previous avalanche activity nor snowpack test results. These weak sugary facets are located above a firm wide spread crust buried on Feb 5th.

While several layers exist in the snowpack, there are no significant layers of concern below the 2/5 crust.

Observations

North

On Friday, observers in the Washington Pass area reported continued test results indicating the potential for triggering Persistent Slab avalanches on the 2/13 facets.

On Tuesday and Wednesday, avalanche professionals near Washington Pass observed small wind slabs near ridgeline and localized cracking. Moderate, gusty winds were transporting snow.

On Monday, the crown of a large avalanche was visible on Scaffold Ridge (Twisp River) in the North Cascades. Interestingly the red line in the photo marked the initial crown width that released Sunday and the remainder of the slab released sometime later Monday morning.

Avalanche professionals in the Washington Pass area reported a cycle of large avalanches on the 25th. This is consistent with avalanche cycles that occurred throughout much of the Cascades.

Large natural slab avalanche visible on Scaffold Ridge in the North Cascades, starting zone about 7300’. Image, Matt Firth

Central

On Friday, NWAC observers Matt Primomo and Matt Schonwald traveled in the Bean Creek area north of Cle Elum. On both south and northeast slopes, they reported large and small column tests indicating potential for human triggering on the 2/13 facets. This weak layer was 3-4 feet below the surface. They also found the 2/23 facets about 2 feet below the surface on a south aspect at 5450ft.

On Wednesday, An avalanche professional in the Chiwakum Mountains reported collapses and whumps on the 2/13 buried facet layer. Depth to the layer was highly variable (1-3 feet). Another observer triggered an avalanche almost 3 feet deep on a small steep slope near McCue Ridge.

Another avalanche professional in the Chiwaukum mountains traveled in a low-elevation terrain on a N-NW aspect and found the 2" thick 2/13 buried facet layer well preserved and 16” down. He also observed moist surface snow conditions up to 3400 feet with lots of roller balls.

Mountain Weather Synopsis for Saturday & Sunday
A trough sits over the U.S. west coast with an embedded closed low off the coast of central Oregon slowly drifting south on Saturday, while a second closed low within the same trough is spinning over southern Alberta on Saturday morning and will drift north and slightly west today and tonight. The diverging lows will move moisture away from the forecast area. Convection is in the forecast and is bringing deeper cumulus clouds to most mountain locations this afternoon, with some scattered moderate-intensity snow showers mostly south of I-90. Tonight, the low off the coast of Oregon ejects east as the trough begins moving eastward. On Saturday as the trough exits, a very weak shortwave trough will rotate around the Alberta low, bringing another chance of light snow shower activity late Sunday and Sunday night. Snow levels will be below pass level throughout the short-term forecast period.

24 Hour Quantitative Precipitation ending at 4 am

<table>
<thead>
<tr>
<th>Location</th>
<th>Sun</th>
<th>Mon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hurricane Ridge</td>
<td>0</td>
<td>lt .10</td>
</tr>
<tr>
<td>Mt Baker Ski Area</td>
<td>0</td>
<td>lt .10</td>
</tr>
<tr>
<td>Washington Pass</td>
<td>0</td>
<td>lt .10</td>
</tr>
<tr>
<td>Stevens Pass</td>
<td>0</td>
<td>lt .25</td>
</tr>
<tr>
<td>Snoqualmie Pass</td>
<td>0</td>
<td>lt .25</td>
</tr>
<tr>
<td>Mission Ridge</td>
<td>0</td>
<td>lt .10</td>
</tr>
<tr>
<td>Crystal Mt</td>
<td>lt .10</td>
<td>lt .10</td>
</tr>
<tr>
<td>Paradise</td>
<td>lt .10</td>
<td>.25 - .50</td>
</tr>
<tr>
<td>White Pass</td>
<td>lt .10</td>
<td>.25</td>
</tr>
<tr>
<td>Mt Hood Meadows</td>
<td>lt .25</td>
<td>.25</td>
</tr>
<tr>
<td>Timberline</td>
<td>lt .25</td>
<td>.25 - .50</td>
</tr>
</tbody>
</table>

LT = less than; WE or Water equivalent is the liquid water equivalent of melted snow in hundredths of inches. As a rough approximation 1 inch of snow = about .10 inches WE, or 10 inches of snow = about 1 inch WE.

Snow Level/Freezing Level in feet

<table>
<thead>
<tr>
<th>Day</th>
<th>Olympics Cascades</th>
<th>Northwest Cascades</th>
<th>Central Cascades</th>
<th>South Cascades</th>
<th>Easterly Flow in Passes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturday Afternoon</td>
<td>2000'</td>
<td>1500'</td>
<td>2500'</td>
<td>2500'</td>
<td>2000'</td>
</tr>
<tr>
<td>Saturday Night</td>
<td>1000'</td>
<td>0'</td>
<td>0'</td>
<td>1000'</td>
<td>2000'</td>
</tr>
<tr>
<td>Sunday Morning</td>
<td>1500'</td>
<td>500'</td>
<td>0'</td>
<td>1000'</td>
<td>1500'</td>
</tr>
<tr>
<td>Sunday Afternoon</td>
<td>2000'</td>
<td>2000'</td>
<td>2500'</td>
<td>3000'</td>
<td>3000'</td>
</tr>
<tr>
<td>Sunday Night</td>
<td>1000'</td>
<td>1000'</td>
<td>1000'</td>
<td>1000'</td>
<td>1500'</td>
</tr>
</tbody>
</table>

Cascade Snow / Freezing Levels noted above refer to the north (approximately Mt Baker and Washington Pass), central (approximately Stevens to White Pass) and south (near Mt Hood). Freezing Level is when no precipitation is forecast.

* Note that surface snow levels are common near the passes during easterly pass flow and may result in multiple snow / freezing levels.

USE AT YOUR OWN RISK

This Backcountry Avalanche Forecast is provided in conjunction with the US Forest Service, and is intended for personal and recreational purposes only. Safe backcountry travel requires preparation and planning, and this information may be used for planning purposes but does not provide all the information necessary for backcountry travel. Advanced avalanche education is strongly encouraged.

The user acknowledges that it is impossible to accurately predict natural events such as avalanches in every instance, and the accuracy or reliability of the data provided here is not guaranteed in any way. This forecast describes general avalanche conditions and local variations will always occur. This forecast expires 24 hours after the posted time unless noted otherwise.
Comments: NWAC forecaster Dallas Glass visited the site on the afternoon of March 3rd and returned on the 4th with NWAC forecaster Josh Hirshberg to gather additional avalanche details and support SAR on-scene.

Location:
State: WA County: Kittitas Forest: Okanogan-Wenatchee Peak, Mtn Pass, or Drainage: Start zone: 0.5 mi S of Longs Pass Burial site: 0.3 mi N of Esmeralda Basin/N Fork Teanaway Rd TH Site Name: Colloquial names: “The Funnel or The Waterfall” Lat/Lon or UTM: 47.440815, -120.936600 (approx. burial sites)

Avalanche Characteristics:
Type: HS Aspect: SW-W Trigger: AM Slope Angle: Avg 35°, Max 42° Size: R 2 \ D 2.5 Elevation: 6100 m / ft

Sliding surface (check one): 2/13 interface ☐ In new ☐ New / old ☐ In old ☐ G round

Avalanche Incident Report: Short Form

Occurrence Date (YYYYMMDD): 20180303 and Time (HHMM): Approx: 1100

Reporting Party Name and Address:
Northwest Avalanche Center
7600 Sandpoint Way NE Bld 1
Seattle, WA 98115

Avalanche Characteristics:
Type: HS Aspect: SW-W Trigger: AM Slope Angle: Avg 35°, Max 42° Size: R 2 \ D 2.5 Elevation: 6100 m / ft

Sliding surface (check one): 2/13 interface ☐ In new ☐ New / old ☐ In old ☐ G round

Location:
State: WA County: Kittitas Forest: Okanogan-Wenatchee
Peak, Mtn Pass, or Drainage: Start zone: 0.5 mi S of Longs Pass
Burial site: 0.3 mi N of Esmeralda Basin/N Fork Teanaway Rd TH
Site Name: Colloquial names: “The Funnel or The Waterfall”
Lat/Lon or UTM: 47.440815, -120.936600 (approx. burial sites)

Equipment Carried

1 2 3 4 5
☐ Transceiver ☐ Shovel
☐ Probe ☐ Airbag

Experience at Activity

1 2 3 4 5
☐ Unknown ☐ Novice
☐ Intermediate ☐ Advanced

Avalanche Training

1 2 3 4 5
☐ Unknown ☐ None
☐ Some ☐ Advanced

Burial involved a terrain trap? ☐ no ☐ yes → type: Gully, Trees, and Rocks
Number of people that crossed start zone before the avalanche: 12-15 Snowmobile passes
Location of group in relation to start zone during avalanche: ☐ high ☐ middle ☐ low ☐ below ☐ all ☐ unknown
Avalanche occurred during ☐ ascent ☐ descent: One member descending, two stationary mid-track together, one stationary left of track.
The four team members made plans to ride up the North Fork of the Teanaway River Rd; an area well known to Riders 2 and 3. The night before and the morning of their outing, the team checked the avalanche forecast. All four riders left the 29 Pines Campground around 0900 hours on March 3 and proceeded directly to the site where the accident later occurred. Upon arriving near the site, Riders 2 and 4 ascended the main gully to preview the terrain and assess conditions, while the remaining members waited near the bottom of the runout. Both riders felt comfortable with the snow conditions. Riders 2 and 3 made a second pass to assess conditions and did not find any notable observations.

All four riders then ascended the main gully to a bench just above the waterfall. Riders took turns high-marking in the bowls above their location. They made at least 12 passes on the slopes prior to the avalanche. Rider 1 decided to rest on a subtle ridge just north and upslope of the other riders. This was chosen as a safer resting location. Riders 3 and 4 waited on the bench mid-track in the avalanche path. Rider 2 (using Rider 1’s snowmobile) ascended the central bowl. On his descent, he observed the avalanche release. Rider 4 also noticed the avalanche and yelled to the other riders. All four riders were caught and carried downslope.

Rider 1 unsuccessfully attempted to start his machine. He then put-on and secured his helmet. Rider 1 was caught, carried, and buried up to his waist.

Rider 2 attempted to ride downhill and to his left to exit the avalanche but was overtaken. He used his radio in an attempt to alert the other riders of the avalanche. While being carried downslope, he deployed his airbag. Rider 2 was buried face-up, head uphill, with his legs slightly down and to the left. His left arm was free and snow nearly covered his head.

Riders 3 and 4 proceeded downhill into the gully, but were also overtaken by the avalanche. Rider 3 deployed his airbag. The inflated airbag was found detached from the pack near the toe of the avalanche debris by assisting rescuers. While Rider 4 was wearing an airbag, it was not deployed.

Rescue Summary Include: description of initial search, report of accident, organized rescue, etc.

Rider 1 was able to self-extricate. He then proceeded on a snowmobile downhill with his avalanche transceiver out. As Rider 1 arrived at Rider 2’s location, Rider 2 had used his free hand to remove his helmet and clear snow from around his face. Rider 1 used his shovel to begin to extricate Rider 2. Once they were able to reach Rider 2’s avalanche transceiver, they turned it off and Rider 1 continued with his search. Rider 2’s radio was used to call for additional help. Several teams of snowmobilers in the area responded to the radio call and began traveling to the accident site.

Rider 1 used his transceiver to locate Rider 3 who was buried face downhill about 2 feet (60 cm) below the snow surface. Rider 3 was approximately 100 feet downhill of Rider 2. He was located and extracted about 20 minutes after the avalanche occurred. Rider 3 was unresponsive and making agonal respirations. Rider 1 performed CPR on Rider 3.

Rescuers responding to Rider 1’s radio call arrived on-scene and assisted with the rescue. Several 911 calls were placed by multiple parties. It is unclear exactly how many assisting rescuers arrived at the scene. A radio relay was established between the accident site and a rider on a ridgeline near Hawkins Mountain. This rider was able to use cell coverage to communicate with Kittitas emergency services. Search and rescue were alerted at 1145.
Rider 4 was found by avalanche transceiver search. He was buried 150 feet downslope of Rider 3 underneath his snowmobile. He was buried 7 feet (230cm) under the snow. Rider 4 was recovered approximately 1-1.5 hours after the avalanche had occurred.

Kittitas SAR established a command post at 29 Pines Campground at 1339 hours. One of the assisting rescuers from the Hawkins Mountain group traveled from the accident site to 29 Pines Campground and assisted Kittitas SAR with information regarding the accident site.

Kittitas SAR utilized a helicopter from the King County Sheriff’s Office to evacuate Rider 2 from the scene and transport him to a medical facility.

The Northwest Avalanche Center was notified of the accident around 1215 hrs. A NWAC forecaster arrived at incident command at around 1530 hrs.

Rider 1 left the accident site and traveled to 29 Pines Campground. He briefly interacted with the Kittitas County Sheriff’s Office, SAR, and NWAC before they traveled to the accident site, arriving around 1700 hrs. Both bodies were located and removed from the accident site, then transported to 29 Pines Campground.

Attach additional pages as needed. Include weather history, snow profiles, reports from other agencies, diagram of site, photographs, and any other supporting information

See https://www.nwac.us/accidents/accident-reports/ for full report.

Please send to: CAIC; 325 Broadway WS1; Boulder CO 80305; caic@state.co.us and to the nearest Avalanche Center.