Park Butte Avalanche Fatality
March 10th, 2018

Report by Lee Lazzara and Dennis D’Amico, Northwest Avalanche Center
Recovery details provided by Whatcom County Sheriff’s Office

Incident snapshot

Occurrence Time and Date: 930 -10 am (estimated) on March 10th, 2018
911 Call: 1015 am
Recovery: Afternoon of March 10th by Snohomish County Helicopter Rescue Team
Lat/Lon: 48.71667 -121.85589 (Avalanche Crown)
Location: Park Butte, Whatcom Co., Mount Baker National Recreation Area, MBS NF, WA

Number in Party: 10-12 snowmobilers were on-scene, unknown if all were in same party
Number Caught: 1 Snowmobiler
Number Partially Buried, Critical: 1 (Critical means the head was buried)
Number Killed: 1
Duration of Burial: 20 min (estimated)

Avalanche Type: Hard Slab (HS)
Trigger: Snowmobile (AM)
Size: R3 / D3
Start Zone Aspect: Northeast
Start Zone Angle: Average 45°
Start Zone Elevation: 5400 ft

Height of Crown Face (estimated): 4 ft (1.2 m) average, 5 ft (1.5 m) maximum
Width of Fracture (estimated): 200 ft (60 m) average
Vertical Fall: 1000 ft (300 m) average

Slab Characteristics: 4F- to 1F+ Hardness, grain type/size not measured
Weak Layer Characteristics: 4F Hardness, Facets (2 mm), 3 cm thick
Bed Surface Characteristics: K Hardness, Melt Freeze Crust

Burial involved a terrain trap: Yes, Trees
Number of people that crossed start zone before avalanche: 0
Avalanche occurred during: Descent

Avalanche Rescue Gear Carried by Group: Transceivers, shovels, probes. The victim reportedly was wearing an airbag pack and deployed the airbag.
Cause of death: Unknown (Pending coroner’s report, trauma suspected)
Avalanche Classification: HS-AMu-R3-D3-O
NWAC Forecast Zone: West Slopes North – Canadian Border to Skagit River (includes Mt. Baker)

Avalanche Danger Rating (All Elevation Bands): Considerable

Avalanche and Terrain

The accident site investigation was carried out by NWAC Professional Observer Lee Lazzara and Simon Trautman (NAC/NWAC) on March 11th. They departed from the designated snowpark on USFS Road 13 to Schriebers Meadow at 8:30 am. They traveled by snowmobile and then skis to the accident site. Due to the overhead hazard at the accident site, NWAC staff members were not able to record a complete crown profile.

The avalanche on Park Butte occurred on a NE facing slope at 5400’. The small bowl where it was triggered is initially very steep at the top with an average slope angle of 45 degrees. The slope angle quickly eases to around 35 degrees or less in the first few hundred feet of the path before becoming steeper again as it rolls over into a shallow gully. This gully opens up and flattens out into a narrow debris fan (4500’) as it falls to the path terminus. Sparse small trees intrude into the path in this lower section. Trees up to 6” in diameter were snapped during the avalanche. A small amount of debris spilled over the right side of the gully into more densely treed terrain in the bottom third of the path.

Signs of wind loading around Park Butte included cornices extending from the summit ridge over the path (around Park Butte fire lookout in photos) and wind scoured surfaces on the ridgeline above the avalanche and on south facing slopes on the backside of Park Butte. The path had avalanched recently; old debris was covered with storm snow adjacent to the new debris from the fatal avalanche.

The avalanche had an average crown depth of 4 ft (120 cm) with some sections reaching 5 ft (150 cm) in depth. The crown was 200’ wide and the flanks extended down to the stauchwall 100’ vertical feet. It released on a 2-3 cm thick layer of 2 mm facets above a knife-hard melt-freeze crust. The slab itself was fairly uniform with a 4F- layer of new snow in the top 6” (15 cm), with slightly harder 4F layer below to 18” (45 cm) down from the surface. The remainder of the slab was 1F+ to the facet interface above the melt-freeze crust. It’s worth noting the bed surface, the 2/8 crust, was 4 ft down in this location but was found deeper (~6 ft) in other parts of the zone at similar elevations and aspect.

Snowpack and Weather

The month leading up to the Park Butte avalanche began with a period of very warm, wet precipitation and high freezing levels. Precipitation beginning on February 2nd fell primarily as rain, switching to snow in the evening of February 8th at the Heather Meadows weather station @ 4210’ (Mt. Baker Ski Area ~12 miles to the NE of accident site). Cold temperatures along with the diminishing but cold snowfall created a strong melt-freeze crust found in below and near treeline areas throughout the Cascades. The few inches of light density snow that fell on top of the freezing crust in turn faceted during the following period of cold temperatures and clear skies. The following weeks were marked by short periods of intense snowfall between long stretches of cold weather.
During this period, there was at least one snowmobile triggered avalanche in the Mt. Baker backcountry that appeared to be new snow and wind slab releasing on facets above the February 8th melt-freeze crust. Regionally, 7 avalanche fatalities in 5 separate incidents occurred in the Washington Cascades over 3 consecutive weekends, all involving some combination of faceted snow over melt-freeze crusts. The Park Butte fatality was the last in this series of tragic incidents.

On March 8th, a strong low pressure system with significant precipitation moved into the region. The Heather Meadows station @ 4210’ (see attached graph) registered 22” of snow with 2.4” of water equivalent from the morning of March 8th to the morning of March 9th. Most of this snow fell with near freezing temperatures at 4200’ and with sustained moderate to strong winds from the south. The NRCS SNOTEL site in the Middle Fork of the Nooksack (Lookout Mt @ 4970’-~8 miles to the NW of accident site) showed a 10” increase in snow depth from March 8th to 9th.

The morning of March 10th began mostly clear and cold. Temperatures at Heather Meadows warmed from the 21F @ 500hrs to 38F @ 1300hrs. Despite the rapid warm up, moderate south winds kept snow surfaces cool near ridgeline and on shaded aspects at most elevations. Cold snow surface conditions were noted adjacent to the avalanche path on March 11th. Light snow transport was noted throughout the region on March 10th due to south winds.

Accident Summary

The avalanche occurred on the morning of March 10th, 2018, estimated between 930-10 am. A group of snowmobilers were riding in a small bowl just east of and below the Park Butte Lookout. The victim and/or other members of this group had leveled out a runway to facilitate jumping from the ridgeline onto the slope below. The avalanche was triggered when the victim, the first snowmobiler to use the runway, jumped and landed on the slope. The vertical fall from the takeoff to the point of impact was estimated at 40 vertical feet. The victim and snowmobile were both caught and carried to near the toe of the avalanche path.

Rescue Summary

Due to the complex nature of the terrain between where the avalanche was triggered and where the victim was buried, observed snowmobile tracks indicate many members of the group who went to the burial location traveled an indirect route around Cathedral Crag. Cathedral Crag is small rocky peak 0.5 mi NE of Park Butte.

The Whatcom County Sheriff’s Office interviewed two members of the party following the incident. 911 was called at 10:15 am on March 10th. The victim’s burial duration was roughly 20 minutes. He was found with a transceiver search, the top of his helmet barely visible below the snow surface. According to party members who were interviewed, the victim was wrapped around a tree and showed signs of trauma. The victim was airlifted from the accident site by the Snohomish Helicopter Rescue Team on the afternoon of March 10th.
Victim’s landing spot is visible above crown. Unknown whether the tracks on left occurred before or after the slide.

Overview of start zone and upper track. Park Butte is to the right of the avalanche path.
Looking down at the landing spot and avalanche start zone from ridge (5440’). The crown is visible below the small tree.
Looking down lower path

Looking uphill at the avalanche path. Elev 4440 ft.
Sled burial location near the toe of the debris. Elev 4320 ft.
West Slopes North - Canadian Border to Skagit River
Issued: 6:45 PM PST Friday, March 9, 2018 by Robert Hahn

NWAC avalanche forecasts apply to backcountry avalanche terrain in the Olympics, Washington Cascades and Mt Hood area. These forecasts do not apply to developed ski areas, avalanche terrain affecting highways and higher terrain on the volcanic peaks above the Cascade crest level.

The Bottom Line: Several overlapping avalanche problems will create dangerous avalanche conditions Saturday. Avoid steep slopes over 35 degrees where avalanches start. Expect changing conditions through the day as warming and a strong sun effect the snow surface making it easier to trigger all avalanches.

Elevation Summary

<table>
<thead>
<tr>
<th>Elevation</th>
<th>Saturday</th>
<th>Outlook for Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above Treeline</td>
<td>Considerable</td>
<td>Considerable</td>
</tr>
<tr>
<td>Near Treeline</td>
<td>Considerable</td>
<td>Considerable</td>
</tr>
<tr>
<td>Below Treeline</td>
<td>Considerable</td>
<td>Considerable</td>
</tr>
</tbody>
</table>

Avalanche Problems for Saturday

Wind Slab

Wind slabs can take up to a week to stabilize. They are confined to lee and cross-loaded terrain features and can be avoided by sticking to sheltered or wind scoured areas.

Loose Wet

Loose wet avalanches occur where water is running through the snowpack, and release at or below the trigger point. Avoid terrain traps such as cliffs, gullies, or tree wells. Exit avalanche terrain when you see pinwheels, roller balls, a slushy surface, or during rain-on-snow events.

Persistent Slab

Persistent slabs can be triggered by light loads and weeks after the last storm. You can trigger them remotely and they often propagate across and beyond terrain features that would otherwise confine wind and storm slabs. Give yourself a wide safety buffer to handle the uncertainty.
Persistent Deep Slab

Deep, persistent slabs are destructive and deadly events that can take months to stabilize. You can trigger them from well down in the avalanche path, and after dozens of tracks have crossed the slope. Give yourself a wide safety buffer to handle the uncertainty, potentially for the remainder of the season.
Avalanche Forecast for Saturday

A new persistent slab avalanche problem has been observed in the Stevens Pass area and in locations along the Eastern Cascades. Newly buried surface hoar and facets have resulted in several avalanches on a variety of aspects (E, SE, S, NW) between 4400-5400 feet. Current observations have not found this layer in other Western Regions. However, use caution. If you experience sudden collapses, shooting cracks, or whumping noises, avoid all nearby avalanche terrain.

You will be able to trigger wind slabs on lee slopes and cross-loaded features. Use visual clues such as snow drifts, uneven snow surfaces, and fresh cornices to identify and avoid nearby slopes where the wind has deposited snow.

Expect new rollerballs, pinwheels, and small loose wet avalanches to occur on sunny aspects throughout the day. These conditions will occur first on steep rocky slopes receiving direct sunshine. Stay off of steep slopes where you see signs of wet surface snow conditions.

Persistent and deep persistent slab avalanche may still occur. To avoid these low likelihood - high consequence situations, stay out of large open slopes that may harbor this difficult to predict and manage avalanche problem. While it is difficult to trigger these types of avalanches, smaller surface avalanches such as loose wet and wind slabs may step down, failing into deeper older layers.

Avalanche Summary

Several new avalanches were reported Friday. Small natural wind slab avalanches were observed near Alpental Ski area on steep NE facing terrain at 5400’. A cornice triggered wind slab was observed in the Crystal Backcountry on a E slope at 6400’. Several very large new crowns estimated to be 4-5’ tall were observed in the Sourdough Mountains NE of Mt Rainier. These avalanches were seen on NE facing slopes around 6500’. Most of these avalanches occurred Thursday night into Friday morning.

New snow fell across the western regions of the Cascades Thursday night and Friday. Significant changes in snow totals were experienced with elevation. Wet heavy snow and rain was observed in up to 5500’ Crystal, 4400’ Snoqualmie, and 4300’ farther north. Above these elevations, 12-20 inches of new storm snow accumulated.

Generally SW winds transported the snow in all regions forming new wind slabs on lee slopes and cross-loaded mid-slope features.

This new snow has fallen on a variety of old snow surfaces including settled cold snow and new melt-freeze crusts. There is potential in some locations that surface hoar and/or near surface facets were buried.

Several older persistent weak layers exist within the snowpack. On E-S-W aspects a thin facet-crust combo (2/23) can be found. Snowpack test results show this layer healing but it has been reactive in some snowpack tests. An older deeper and more widespread persistent weak layer has been observed for several weeks. Weak sugary facets (2/13) sit just above a firm crust formed and buried in early February (2/8). This crust is generally found about 3-4 feet below the snow surface.

There are no other significant layers of concern below the 2/8 crust.

Observations

Baker

An avalanche professional at Heather Meadows reported significant wind transportation of snow. He did not find a buried persistent weak layer below the recent storm snow in the locations he observed.

Snoqualmie

An avalanche professional at Alpental reported rain up to 4400 feet Thursday night. Two new natural wind slabs were observed in steep NE facing terrain.

South

NWAC professional observer Jeremy Allyn traveled in the Crystal Backcountry Friday. He found significant wind transportation of the new snow above 6000’. A cornice failure triggered a widely propagating wind slab 2 feet deep on an E aspect of East Peak. Observations generally demonstrated the new snow was bonding well to the old snow surface.

Crystal Mountain ski patrol reported several new large crowns seen across the White River valley in the Sourdough Mountains. Avalanches occurred on NE aspects and were estimated to be 4-5 feet deep. Wind transported snow was observed on the upper mountain.

Mountain Weather Synopsis for Saturday & Sunday

A fine weekend is in store for the Pacific Northwest with a fair helping of sunshine and rising freezing levels. Upper level ridging over eastern Washington/Oregon will slowly slide east today. A pair of weak upper level shortwaves embedded in SW flow aloft will traverse across Mt. Hood and the south Cascades late this afternoon and tonight. This may bring a stray shower, but most likely just result in an increase in high clouds over the area. Upper level ridging will further amplify as it retrogrades over the western US on Sunday. This will allow freezing levels to climb further. Offshore flow may create some local temperature inversions in the Cascades Passes today and tomorrow but overall easterly flow is not expected to have a large impact on temperatures/freezing levels. Dry and mild weather will continue Sunday night, but offshore flow will increase as a weak N-S oriented frontal boundary approaches 130W.
24 Hour Quantitative Precipitation ending at 4 am

<table>
<thead>
<tr>
<th>Location</th>
<th>Sun</th>
<th>Mon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hurricane Ridge</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mt Baker Ski Area</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Washington Pass</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stevens Pass</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Snoqualmie Pass</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mission Ridge</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Crystal Mt</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Paradise</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>White Pass</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mt Hood Meadows</td>
<td>lt .10</td>
<td>0</td>
</tr>
<tr>
<td>Timberline</td>
<td>lt .10</td>
<td>0</td>
</tr>
</tbody>
</table>

LT = less than; WE or Water equivalent is the liquid water equivalent of melted snow in hundredths of inches. As a rough approximation 1 inch of snow = about .10 inches WE, or 10 inches of snow = about 1 inch WE.

Snow Level/Freezing Level in feet

<table>
<thead>
<tr>
<th>Day</th>
<th>Olympics Cascades</th>
<th>Northwest Cascades</th>
<th>Central Cascades</th>
<th>South Cascades</th>
<th>Easterly Flow in Passes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturday Afternoon</td>
<td>6000'</td>
<td>5500'</td>
<td>5000'</td>
<td>5500'</td>
<td>6500'</td>
</tr>
<tr>
<td>Saturday Night</td>
<td>6000'</td>
<td>5500'</td>
<td>1000'</td>
<td>3000'</td>
<td>4500'</td>
</tr>
<tr>
<td>Sunday Morning</td>
<td>6000'</td>
<td>5500'</td>
<td>1000'</td>
<td>3000'</td>
<td>4500'</td>
</tr>
<tr>
<td>Sunday Afternoon</td>
<td>7000'</td>
<td>6500'</td>
<td>6500'</td>
<td>7000'</td>
<td>8000'</td>
</tr>
<tr>
<td>Sunday Night</td>
<td>8000'</td>
<td>7000'</td>
<td>4000'</td>
<td>6500'</td>
<td>8000'</td>
</tr>
</tbody>
</table>

Cascade Snow / Freezing Levels noted above refer to the north (approximately Mt Baker and Washington Pass), central (approximately Stevens to White Pass) and south (near Mt Hood). Freezing Level is when no precipitation is forecast.

* Note that surface snow levels are common near the passes during easterly pass flow and may result in multiple snow / freezing levels.

USE AT YOUR OWN RISK

This Backcountry Avalanche Forecast is provided in conjunction with the US Forest Service, and is intended for personal and recreational purposes only. Safe backcountry travel requires preparation and planning, and this information may be used for planning purposes but does not provide all the information necessary for backcountry travel. Advanced avalanche education is strongly encouraged.

The user acknowledges that it is impossible to accurately predict natural events such as avalanches in every instance, and the accuracy or reliability of the data provided here is not guaranteed in any way. This forecast describes general avalanche conditions and local variations will always occur. This forecast expires 24 hours after the posted time unless noted otherwise.
Avalanche Incident Report: Short Form

Occurrence Date (YYYYMMDD): 20180310 and Time (HHMM): 945

Comments: Lee Lazzara (NWAC) and Simon Trautman (NAC/NWAC) visited the incident site the day after the fatality. Details related to the recovery and the accident summary were provided to NWAC from the Whatcom County Sheriff's Office. The Sheriff's Office interviewed two party members. The time of the avalanche is estimated to have occurred between 9:30-10 am.

Reporting Party Name and Address:
Northwest Avalanche Center
7600 Sandpoint Way NE
Seattle, WA 98115

Avalanche Characteristics:

Type: HS
Aspect: NE
Trigger: AM
Size: R 3 \ D 3
Slope Angle: 45 deg avg
Elevation: 5400 m / ft
Depth to Face:

<table>
<thead>
<tr>
<th>Sliding surface (check one):</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In new</td>
<td>New/old</td>
<td>In old</td>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group

<table>
<thead>
<tr>
<th>Number of People</th>
<th>Time recovered</th>
<th>Duration of burial</th>
<th>Depth to Face</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caught</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partially Buried—Not critical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partially Buried—Critical</td>
<td>1</td>
<td>N/Av</td>
<td>20 min (estimated)</td>
</tr>
<tr>
<td>Completely Buried</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Location:

State: WA
County: Whatcom
Forest: Mt Baker National Recreation Area, Mt Baker-Snoqualmie NF
Peak, Mtn Pass, or Drainage: Park Butte
Site Name: Avalanche Crown

Dimensions

<table>
<thead>
<tr>
<th>Height of Crown Face</th>
<th>Width of Fracture</th>
<th>Vertical Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25 m / ft</td>
<td>60 m</td>
<td>300 m</td>
</tr>
</tbody>
</table>

Snow

<table>
<thead>
<tr>
<th>Snow</th>
<th>Hardness</th>
<th>Grain Type</th>
<th>Grain Size (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slab</td>
<td>4F- to 1F+</td>
<td>N/Av</td>
<td>N/Av</td>
</tr>
<tr>
<td>Weak Layer</td>
<td>4F</td>
<td>FC</td>
<td>2</td>
</tr>
<tr>
<td>Bed</td>
<td>Surface</td>
<td>K</td>
<td>MFcr</td>
</tr>
</tbody>
</table>

Thickness of weak layer: 3 mm / cm / in

Burial involved a terrain trap?

- no
- yes → type: Trees

Number of people that crossed start zone before the avalanche:

- 0

Location of group in relation to start zone during avalanche:

- high
- middle
- low
- below
- all
- unknown

Avalanche occurred during:

- ascent
- descent

Subject

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Gender</th>
<th>Address</th>
<th>Phone</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>M</td>
<td></td>
<td></td>
<td>Snowmobile</td>
</tr>
<tr>
<td>2</td>
<td>10-12 Snowmobilers</td>
<td>Unclear if all were in same group</td>
<td></td>
<td></td>
<td>Snowmobile</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equipment Carried

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transceiver</td>
<td>Shovel</td>
<td>Probe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experience at Activity

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>Novice</td>
<td>Intermediate</td>
<td>Advanced</td>
<td>Expert</td>
</tr>
</tbody>
</table>

Avalanche Training

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>None</td>
<td>Some</td>
<td>Advanced</td>
<td>Expert</td>
</tr>
</tbody>
</table>

Signs of Instability Noted by Group

- Unknown

Injuries Sustained

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extent of Injuries or Cause of Death

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphyxiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1
The avalanche occurred on the morning of March 10th, 2018, estimated between 930-10 am. A group of snowmobilers were riding in a small bowl just east of and below the Park Butte Lookout. The victim and/or other members of this group had leveled out a runway to facilitate jumping from the ridgeline onto the slope below. The avalanche was triggered when the victim, the first snowmobiler to use the runway, jumped and landed on the slope. The vertical fall from the takeoff to the point of impact was estimated at 40 vertical feet. The victim and snowmobile were both caught and carried to near the toe of the avalanche path.

Rescue Summary Include: description of initial search, report of accident, organized rescue, etc.
Due to the complex nature of the terrain between where the avalanche was triggered and where the victim was buried, observed snowmobile tracks indicate many members of the group who went to the burial location traveled an indirect route around Cathedral Crag. Cathedral Crag is small rocky peak 0.5 mi NE of Park Butte.

The Whatcom County Sheriff’s Office interviewed two members of the party following the incident. 911 was called at 10:15 am on March 10th. The victim’s burial duration was roughly 20 minutes. He was found with a transceiver search, the top of his helmet barely visible below the snow surface. According to party members who were interviewed, the victim was wrapped around a tree and showed signs of trauma. The victim was airlifted from the accident site by the Snohomish Helicopter Rescue Team on the afternoon of March 10th.

Attach additional pages as needed. Include weather history, snow profiles, reports from other agencies, diagram of site, photographs, and any other supporting information

Please see full report at https://www.nwac.us/accidents/accident-reports/

Please send to: CAIC; 325 Broadway WS1; Boulder CO 80305; caic@state.co.us
and to the nearest Avalanche Center.