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Abstract — The current wave of AI development, in the form
of deep learning neural networks, does not provide a transpar-
ent system of operation nor an intrinsic method of linear logi-
cal reasoning. Proposed here is a new paradigm of information
which utilizes a novel symbolic model that addresses the weak-
nesses of symbolic AI, and whose operation can be audited step
by step. This new model can be utilized to form a reasoning en-
gine that is able to think logically as human beings do, thus,
creating an AI that is truly intelligent.

1. Introduction

Today, the waters of artificial intelligence are mainly filled
by the relatively recent upsurge in deep learning, and neural
networks in general, known as connectionist AI [1]. These
systems demonstrate great capability for specific domains
[2], outdoing world-class human experts in such areas as
game playing [3] and visual recognition [4]. Two common
factors in developing such “intelligences” are deep neural
networks and massive amounts of data to train those net-
works. What forms when these technologies are imple-
mented are black boxes, where anything resembling reason-
ing is represented by matrices of numbers, and the resulting
“knowledge” is generally inapplicable to any other domain
but that of a specific one [5]. In this paper, in contrast, we
define a new paradigm that invokes the precision of sym-
bolic AI along with methods to overcome symbolic systems’
weaknesses. Definitions and functions, when implemented
in our system, are perfectly transparent and we may see, at
every step, why the reasoning process took the steps that it
did to reach its conclusion.

Trying to correct a faulty, many-dimensional problem
solved by a neural network is a challenge, as it is impossi-
ble to find exactly where the error lies [6]. However, in this
novel approach that we propose, it would be perfectly rea-
sonable to discover and surgically modify the main source of
the mistake. The transparency of operation is important for
domains in which verifiability is critical, and with this trans-
parency, we are able to apply the same methods in other do-
mains with ease. In addition, we can also observe whether
the problem it solves is the actual problem we were look-
ing to solve, rather than some coincidental solution. Biases
could also be traced through the logic in our system. We
would like to know the reason why, whenever the reasons
may be relevant.

This paper describes a new method of machine compre-
hension, using the basic “unit of reasoning” which we define

as a canonical. This method of machine comprehension is
fully transparent in its operation and capable of modeling
anything which can theoretically be understood by human
beings. We lay out how it is so fundamental: why it can be
called a “unit of reasoning” and why logical reasoning nat-
urally follows from the traversal of the structure when this
organization principle is applied to given data.

Fig. 1. System architecture

(Horizontal diagram available in Appendix)
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2. Theory of Information

From the ground up and the top down we introduce a new
paradigm, a functional theory of information, what it is by
what it does:

In f ormation := ∆Potential

Or, information is defined to be a change in potential. We
then take this definition one step further:

Measurement := ∆In f ormation

Measurement is defined as a change in information. Div-
ing further into a functional description of information, we
describe “meaning” as a “change in state.” By doing so,
measurement is a change in one state which then changes
another state. Described this way, we can understand that
measurement has the same essential characteristics as cau-
sation. For instance, if someone is opening a door, then the
person is making a specific kind of measurement in this ac-
tion. We can even think of gravity as a measurement of two
objects’ masses, and in that measurement, the action of at-
traction between those two things.

3. Augmented Network/Canonical Form

Like graph models, our network, at its base, is made of
nodes and links. Together, these can form a connection:

Three connections can come together as a unit in what we
call a canonical:

The primitive symbols are outlined as follows:

? query, potential, “some”: this is the base primitive
(not shown here)

{} none, nil, “not” (not shown here)

}{ all, any, “is”

<> bind, “has”

>< open, “goes”

The definitions in quotes above are one way to understand
how the symbols operate in our system. Essentially, they
represent one level of semantics that are induced when ele-
ments are placed somewhere in this model. These primitives
provide some basic semantics in which words, as nodes, can
be placed in the positions in the model above. Even though
we do not need all three nodes and all three links to be any-
thing other than the “default” or unfilled values, it is funda-
mentally important where we place information when it is
in structural form (a node/link or canonical). We call this an
“augmented” network because a node can be a link, a link
can be a node, and a canonical can be a link or a node. In
terms of the new theory of information outlined above, we
can label a canonical as follows:

The “has” side is information that sets up a position (in
a matrix). When we describe information as a change in
potential, we can actually think of a potential as a posi-
tion. The “goes” side, a measurement, takes the operation
of that potential (in what way it is understood), and changes
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it to a new state, thus putting the state into a new poten-
tial. The meaning of this measurement, the “is” side, is ex-
actly the change in state that was performed, resulting in the
lower right node/canonical which now holds the effect of
that meaning.

4. Natural Language to Canonical Form

Currently we employ a natural language parser to convert
the natural language input (as of this point, only English,
but our model is language agnostic, and other languages
will follow) into a tree structure with parts-of-speech tags
and a list of universal dependencies. Our main logic uses
these outputs to preliminarily put the input into canonical
form. An example of the parser output (from the sentence
in single quotes):

‘A bird is an animal that has wings.’

(ROOT
(S

(NP (DT A) (NN bird))
(VP (VBZ is)

(NP
(NP (DT an) (NN animal))
(SBAR

(WHNP (WDT that))
(S

(VP (VBZ has)
(NP (NNS wings)))))))

(. .)))

(det bird-2 A-1)
(nsubj animal-5 bird-2)
(cop animal-5 is-3)
(det animal-5 an-4)
(root ROOT-0 animal-5)
(nsubj has-7 animal-5)
(ref animal-5 that-6)
(acl:relcl animal-5 has-7)
(dobj has-7 wings-8)

The canonical form created with the data above is outlined
below. The key in this process is that all communication to
and from Mind takes place in the form of natural language.
Even entering the ontologies comes down to inputting nat-
ural language sentences in order to define how the logic
should form. Some canonical formation depends on some
semantics of the input from the parser, but many can form
naturally from the type of dependencies in which they are
organized. For example, (nsubj animal bird) is combined
with (cop animal is) to form the right side of this canonical
(the left side to be added later):

5. Upper Ontology

An upper or uppermost ontology is a set of predicates by
which the fundamental ideas of the world and its function-
ings are distilled into the system [7]. A global ontology is
presumed to have unchanging, or rarely changing, pieces of
information as a basis for the substance of its reasoning [8].
For example, physical objects have mass, and their masses
invoke an increase in gravity by virtue of how near they are
to each other [9]. We develop or obtain this upper ontol-
ogy in order to assimilate new information in terms that the
system already understands. There is a balance between the
most fundamental of elements in which everything else can
be put in terms with, and the need to be expressive enough
in implementation that it is not a great inconvenience to nav-
igate through the canonical structures formed from many
very elementary canonical forms.

Theoretically, the primitives above can define all things.
However, trying to break down unwieldy structures into
primitives can be complex. Therefore, in order to avoid
such difficulty, we can start with basic units such as: per-
son, place, time, thing, attribute, and function. Though we
know a place could also be called a thing, we draw this line
in the sand so that we do not add unnecessary abstraction in
the interpretation of whatever comes our way.

We can leverage existing upper ontologies to see what
might be the most efficient means by which to encode all the
basic ideas of what exists, and how processes work. Provid-
ing a rationale for why or how, when adding a new ontology
to the ontological register, is another step to further build ba-
sic ontologies. Generally, there should be an explanation for
all of its various pieces. In canonical terms, the rationale of
any item of information is represented in the bottom side of
the canonical.

6. Compartmentalization

There are four levels where information can be stored:
global, local, user, and session.

• Global: holds the upper ontology, which are pred-
icates that are globally relevant, unchanging knowl-
edge which is at the root of the understanding of ev-
erything else
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• Local (or domain information): can exist in a sub-
hierarchy which holds the knowledge applied to a spe-
cific domain of interest

• User: holds the profile and history of the user’s
specifics, and is used to help contextualize informa-
tion as it pertains to that user

• Session: is transient information that is in effect be-
tween the time the user logs in to when that user logs
out

7. Contextualization & Ontology
Versioning

The context of any data we work with is intrinsic in the fun-
damental definition of information we have outlined. Con-
textualization is key to being able to optimally traverse the
network of canonicals, as well as the revision of informa-
tion when new evidence out-dates the current knowledge
within the system. In general, we do not delete such old
data, but rather we contextualize them as deprecated. This
is the essence of ontological versioning. In fact, if we so
desire, we can run processes against its old way of thinking,
for the purpose of comparing the results between the old and
the new. This is one prime advantage we hold in contrast to
older symbolic systems which are based on a static pool of
rules to draw from. Mind continually learns.

Technically and implicitly, every part of a canonical is
context for other parts. The explicit context node is specifi-
cally designed to aid in sorting like information, for ease of
retrieval as well as use in logical processes.

In operation, we use a method of constraint propagation
to reason with specific elements of a problem, the predicates
in which logic is known by the system in a generalized form.
When we apply constraints in the form of applying canoni-
cals to other canonicals, we are contextualizing by applying
general logic to specific cases. This operation is detailed be-
low when we apply predicates to specific configurations in
The 3 Logical Reasoning Embodiments.

8. Semantic Fluidity/Ontological
Topology

In mathematical topology, a coffee mug and a donut are
considered equivalent, as certain properties are preserved
between the two, such as the fact that they each have one
hole. In ontological topology (o-topology), two expressions
are equivalent semantically [10]. Even when the canonical
forms do not line up between their structures, it does not
mean that they must have different meanings.

There are several ways that synonymies are modeled in
our system. The most direct method understands that even
among synonyms, there are nuances between words that
keep the usage of both words current, even as they might
be relatively interchangeable. In this way, one can set up

a definitional canonical where the effect side says that one
word means another, and then the subtlety which divides
their meanings is discerned by the qualifying feature.

Another method of o-topology comes from the fact that if
two canonicals share the same inductive side, then they are
functionally equivalent. In this way, two terms that function
identically are then said to be synonymous to each other.

Where there might not be the simpler means of o-
topology available to us, we again reiterate the importance
of the upper ontology: if we can understand connectivity in
practical terms, any new information in terms of the infor-
mation we already understand, and if two expressions are
understood in the same way, as far as what connections it
has to the knowledge it already comprehends, then we can
say that the new information and information already un-
derstood are synonymous as well. The novel part of our
approach is that the ability to reconcile new information can
also be learned. When this ability can handle any arbitrary
text, we may say that it has “learned how to learn.” This is
one component of Critical Mass.

O-topology solves a big problem with brittleness that has
been associated with symbolic AIs. For example, when talk-
ing to a chatbot backed by an AI, a query will fail if you do
not express the query using the exact words it understands
or in the exact structures that it can parse [11]. With o-
topology, you do not need the “magic word” to get what
you want.

Since we have detailed how the network of connected
canonicals is augmented and topological in nature, we can
call the structure as a whole, an “augmented topological net-
work.”

9. The 3 Logical Reasoning
Embodiments

The three distinct ways that a human being reasons are de-
duction, induction, and abduction [12]. These are all em-
bodied in our data structure, and so we call it a “unit of rea-
soning.” We say it embodies the three forms of logical rea-
soning by labeling the sides of the canonical as the means
by which that type of reasoning occurs. Another problem of
symbolic AI is that previous generations of “reasoning en-
gines” focused almost entirely on only the deductive aspect
of reasoning [13]. A feature of our model, over other tradi-
tional symbolic AI, is that if more constraints (logical struc-
tures) are applied, the basis for our contextualization lets us
triangulate solutions to problems faster and more accurately.

Because of our three part embodiment, we claim that
anything which can be understood, anything that makes
some sort of logical sense, can be modeled in this one
structure. One way of understanding this structure is by
looking at neural networks. Neural networks are made to
resemble the operation of neurons and the neural circuitry
in the human brain [14], which is to say, from the bottom
up. Our structure seeks to model the reasoning of the brain
[15], as we know it, from the top down. If you follow the
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process of reasoning as exemplified by this system, it is
clear how the reasoning occurs [16].

A simple example is shown below that uses every node and
link but the inductive link shows us how one can define the
statement, “A bird is an animal that has wings.”:

A bird can then be identified abductively by the question,
“What kind of animal has wings?”

This method of abduction is similar to diagnosing a dis-
ease, in which a doctor asks the patient to state the symp-
toms in order to identify which illness best fits the condi-
tions. Just as the symptoms are used to identify the disease,
the features of a particular animal aid in its identification.
The canonical of the query (the system rephrases the query
so as to better match the structure we search against, as on-
tological topology allows us to do: What is the animal that
has wings?):

Another way to look at the canonical:

A bird is effectively an animal, and it has the feature: wings.

Another example, which highlights the “function” connec-
tion, can be conceived by a simple case of cause and ef-
fect. This more elaborate example shows an operation of
the inductive link via what we call an “S-Canonical” (the
“S” shape is highlighted):

We see an augmentation in the middle of this figure, “C,”
which is the canonical shown here:

We defined measurement, and therefore causation, as be-
ing capable of changing. In the example shown, the “C”
node/canonical changes the initial state (location) of a per-
son “at” place1 so that the person is now “at” place2. The
rationale for this development can be defined in C: Condi-
tion (The C-canonical can also be C: Cause, and the resultant
would be the effect). These types of nested canonicals are
one way the canonical forms scale.

For example, let us say that Tom is the person, home is
place1, and office is place2:

Mind AI Inc. 5 Version 1.5



We instantiate the s-canonical with these singular (one
sided) canonicals and thus (piecewise), we see that the sat-
isfaction of a pattern is itself a pattern, thereby constraining
the values of the structure. These constraints (such as “Tom
is a person”) are propagated through the reasoning structure
we invoke:

Tom starts “at” home, and then if “C,” Tom “goes” to the
office, then Tom is now “at” the office. The deductive side
is not set to any specific value, and thus just operates as a
pass-through. However, the two values on either side of the
“}{” must still reconcile. We need to be able to connect
one value to the other and keep the integrity of the canonical
loci. Note that the functionality of a canonical form, in its
most basic process, is merely to satisfy the values in order,
and when these values are satisfied, to follow in the path
as if going from state to state in a finite state machine or
automaton. The main difference between such structures is
the need to satisfy the node’s value to be “in” or “on” that
state.

10. Known Unknowns & Disambiguation

When we have formed the basic ontology in terms of canon-
ical forms, one interesting property emerges: when we have
a partial match of a certain canonical, we can then project

what information is necessary to fulfill the rest of that pat-
tern. Intelligence, artificial or not, in one sense can be un-
derstood as the ability to complete an incomplete pattern.

One facility the system has, is the ability to match spe-
cific partial patterns. Matching partial patterns contribute
to understanding problem solving methods. The process by
which an incomplete pattern is completed is itself a pattern,
and fulfills the idea as first introduced above: the satisfaction
of a pattern is itself a pattern. All actions which transpire in
the scope of the system are understood in some way. This
would be the result of what was meant when our system has
“learned how to learn.” There must be a way for anything
that makes sense, to make sense to us (More on that idea
is below, in Critical Mass). If these things make sense to
us, then they can make sense to those who observe or peek
in, for we are logically connected everywhere to everything,
wherever we can reach and connect.

When there is more than one valid value that turns up in
a search for a piece of information (an ambiguity), we can
treat that superpotential as an incompleteness. In order to
disambiguate in cases where we have knowledge of what
data is needed for an unknown to be known, we apply exist-
ing context(s) or post the problem to the community to re-
solve its difficulty. This process can be applied irregardless
of whether the solution is completely unknown or if there
are multiple possible solutions [17]. The kind of informa-
tion that will solve the unknown is borne out by the slots
where the specific data would satisfy the completion of the
pattern in which there is a missing piece.

For example, the question, “Where is Tom?” can be refit
topologically as “Tom at ?”:

From the canonicals defined above in The 3 Logical Rea-
soning Embodiments, we saw that the ? on the lower left
can be satisfied by both the places “home” and “office.” We
also saw that the way the two possibilities are connected is
through the C-canonical, whether Tom went to the office or
not, and when we obtain the resolution (let’s say, from the
natural question given to us by Mind, “Did Tom go to the
office?” and we answer, “no”), by the directionality of the
canonicals in question (if we say “no,” then the C-canonical
cannot have happened yet), the system can conclude the an-
swer, “Tom is at home.”
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11. Natural Language Generation

As more and more inputs are arranged into canonical form,
we will keep track of the transformations that occur from
the unstructured to the structured forms. In so doing, we
can reverse the process, so as to create grammatically cor-
rect sentential representations with which to answer the user
or to request more information. This is yet another example
of its ability to learn by observation of the dialog that tran-
spires between the system and its users. Whatever goes in
can then come out. Idiomatic structures, once understood,
can be formed as a response back to the user, where it might
be relevant to do so.

12. Transparency of Operation

Since the logical process through a canonical follows the
three operations of that canonical (as we have shown), we
only need to keep track of what nodes, links, and canonicals
are traversed upon the input of some problem or query. It is
easy to see that a metatool, which can look up the processes
followed, is both desirable and readily feasible. Anyone
with permission would have the ability to first see what logic
is present, how that logic is used, and be able to make mod-
ifications if there were any fault in the logic. With Mind’s
ability to summarize, the tool could let an authorized agent
zoom in or out when dealing with a complex process, to root
out possible errors.

13. Critical Mass

In atomic theory, when the correct radioactive matter
reaches a certain mass, an autocatalytic process is initiated
[18]. Similarly, we describe ontological critical mass (and
its trappings, namely, the reasoning facilities) as the contain-
ment/comprehension of enough information and functional-
ity for Mind to learn on its own. If something is beyond the
capability of the current state of the system to understand,
it must, on its own, figure out just what that thing is in re-
lation to what is known. For this to happen, as it relies on
ontology, the knowledge basis must be in at least one sense
“complete.” There must be a way to be able to open up all
possibilities. This is not an intractable problem.

What things can exist and what can those things do?
These two questions cover most of the bases of what can be
understood. The only qualifier to understanding is what we
can break down the understanding of something into. Noth-
ing is magic. Either we have all the principles by which
new information can be fathomed, or we need new princi-
ples (The latter case is described in more detail below, in
Metatheoretics).

On the practical side, if we can create an interface to the
outside world (in cyberspace) for it to search the web and
scrape the contents of the websites it finds, then in theory it
should be able to do its own research on topics it knows very
little about to solve some problem or query.

In preparation for the “critical mass” phenomenon, we
need to include within Mind’s functionality a means by
which it can discern good information from bad. This can
be seen as another aspect of it having “learned how to learn.”
The Mind needs to be able to understand and automatically
weed out false information, and in situations in which a
piece of information is beyond Minds ability to reasonably
check its verity, it needs to turn to the community for assis-
tance. Through assistance, Mind learns how to perform cer-
tain verity checks on its own, or which techniques it can ap-
ply at a future time when faced with similar challenges. The
core concepts within its upper ontology (if not also other,
perhaps mid-level ontologies) need the ability to critique in-
formation being input, and there would surely be sandbox-
ing when the information source is perhaps questionable in
its reliability.

14. Metatheoretics

The ultimate goal of this approach is to be able to create
an artificial scientist that is able to create its own hypothe-
ses and theories, and to perform experiments that reach new
conclusions about the world. These functionalities can be
founded upon simple statements, comprehensions of basic
principles, and/or scientific theories. At the base of its func-
tionality, we will set up rules for generalizing, which allow
specific events to trigger the formation of broader predi-
cates. We will focus on observing why events happen as
they do. For example, when a pencil falls to the floor, the
phenomenon can be explained by gravity, as all objects with
mass are affected by gravity and all physical objects have
mass. Therefore, at the most basic level of theorization,
we can hypothesize that anything we drop that falls to the
ground is a physical object with mass.

As Mind learns more about the world, it is able to un-
derstand the relationships between new information and its
prior knowledge, and understand what can be measured,
how things are connected, and how things make sense. As a
result, Mind can then formulate its own hypotheses.

The art of crafting theories depends primarily upon find-
ing a relationship between disparate phenomena. If Mind
does not understand why something happens, it will try
to obtain the information elsewhere to see if it can make
sense of it. In addition to this capacity, it knows what to
do if something is not resolved or if a resolution cannot
be achieved with the scholarship that already exists. In the
first iterations of the development of Metatheoretics, we will
feed it situations so it can attempt to discover existing the-
ories. We input past insights that humans used to create
those theories into Mind, but we limit its reach of knowl-
edge. Therefore, though it can see the observations that led
to those theories, the conclusions of said evidence are not
given. This “training” would be equivalent to an AI’s uni-
versity education. After it graduates, and understands how
the great theories of the past came to be, it will be able to do
some real world work. By allowing Mind to draw its own
connections with limited knowledge, it will also have theo-
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ries about how such theories are made. This is the essence
of Metatheoretics.

When Mind can come up with its own scholarship and
reaches that height of artificial scientific method, we can
truly say that we have created an intelligence. It will be able
to do research on a level unprecedented by human reason-
ing. Experts in domains such as drug discovery or materials
engineering have the entirety of all the existing scholarship
in their fields including all the papers from the beginnings
of their field’s establishment. Yet, Mind will have all of
that same information “in its head,” properly annotated, and
checked for logical missteps based on the understanding it
has from the entirety of its knowledge. Mind will then be
in a position to discover something truly new by formulat-
ing novel hypotheses and devising experiments to bear them
out. Ultimately, because we all can see how insights are
reached by Mind, we are in a position to advance our own
intelligence. This is the essence of Mind.

15. Conclusion

We have defined the fundamental unit of reasoning, de-
scribed why it is so named, and described how it may be
operated with and upon to be able to reason via the three
types of logical reasoning. We have shown how it is, as
a whole, an “augmented topological network,” its capacity
for augmentation and the topological nature of the system.
By this structure we have shown how crisp, qualitative, lin-
ear, and logical reasoning may be performed, and how the
problem of symbolic brittleness is solved with ontological
topology. Ultimately, Metatheoretics promises that which
has never before been within reach— the development of an
adaptive and autonomous entity that will explore the vast-
ness of the world and then, on its own, determine how it
works.

It’s been stated that when AI solutions are created to
solve problems, we are no longer dealing with an AI, but
merely algorithms [19]. And these algorithms generate only
an automated sense of reasoning, which leaves us with the
fears that stem from unpredictability in our deep learning
systems today. But, what if we now pose the solution to
close that gap? What lies before us goes beyond algorithms,
and hinges upon understandability, reasoning, and account-
ability. With the ability to reason, for itself, we then will
be able to isolate and receive explanations for its thoughts,
answers, solutions, and actions.
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16. Appendix

Fig. 2. System architecture
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