

La Fertilidad del Suelo en Cultivo de Vegetales

Joan R. Davenport WSU-Prosser

WATER

GIS AND MAPPING

NUTRIENTS

TESTING

CHEMISTRY

SOILS

PLANTS

Los Nutrientes esenciales de la planta derivado del suelo

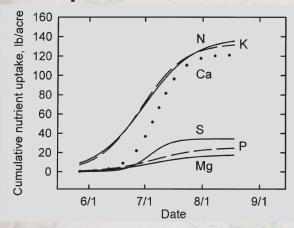
- Macronutrientes
 - Nitrógeno (N)
 - Fosforo (P)
 - Potasio (K)
 - Azufre (S)
 - Calcio (Ca)
 - Magnesio (Mg)

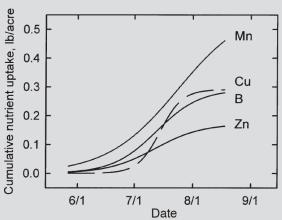
- Micronutrientes
 - Boro (B)
 - Cloro (CI)
 - Cobre (Cu)
 - Hierro (Fe)
 - Manganeso (Mn)
 - Molibdeno (Mo)
 - Zinc (Zn)

Los Nutrientes Esenciales de la Planta Derivado del Suelo

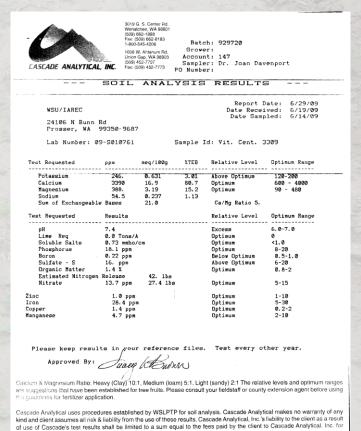
- Macronutrientes
 - Nitrógeno (N)
 - Fosforo (P)
 - Potasio (K)
 - Azufre (S)
 - Calcio (Ca)
 - Magnesio (Mg)

- Micronutrientes
 - Boro (B)
 - Cloro (CI)
 - Cobre (Cu)
 - Hierro (Fe)
 - Manganeso (Mn)
 - Molibdeno (Mo)
 - Zinc (Zn)


La forma de determinar la necesidad del nutriente


 El requisito del cultivo La oferta del suelo

La forma de determinar la necesidad del nutriente


El requisito del cultivo

Onions/Cebollas, PNW 546

La oferta del suelo

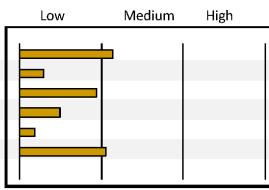
La interpretación del análisis del suelo

Test Requested	ppm	meq/100g	%ТЕВ	Relative Level	Optimum Range
Potassium	246.	0.631	3.01	Above Optimum	120-200
Calcium	3390	16.9	80.7	Optimum	600 - 4000
	388.			•	90 - 480
	54.5		1.13	oper mam	30 400
Sum of Exchangeable			1.15	Ca/Mg Ratio 5.	
Test Requested	Results			Relative Level	Optimum Range
рН	7.4			Excess	6.0-7.0
Lime Req	0.0 Tons/A			Optimum	0
Soluble Salts	0.73 mmho/d	c m		Optimum	<1.0
Phosphorus	18.1 ppm			Optimum	8-20
Boron				Below Optimum	0.5-1.0
Sulfate - S	• •			Above Optimum	
Organic Matter	1.4 %			Optimum	0.8-2
Estimated Nitrogen	Release	42. lbs		•	
Nitrate	13.7 ppm			Optimum	5-15
Zinc	1.0 ppm	# * * * * * * * * * * * * * * * * * * *		Optimum	1-10
Iron	28.4 ppm			Optimum	5-30
Copper	1.4 ppm			Optimum	0.2-2
Manganese	4.7 ppm			Optimum	2-10

La interpretación del análisis del suelo

			_
Olsen	mg/kg	3	
Olsen	mg/kg	133	
DTPA	mg/kg	0.13	
DTPA	mg/kg	0.8	
DTPA	mg/kg	0.8	
DTPA	mg/kg	0.7	
DTPA	mg/kg	7	
NH4OAc	meq/100g	20.5	
NH4OAc	meq/100g	1.7	
NH4OAc	meq/100g	0.11	
NH4OAc	meq/100g	22.6	
	Olsen DTPA DTPA DTPA DTPA DTPA NH4OAc NH4OAc	Olsen mg/kg DTPA mg/kg DTPA mg/kg DTPA mg/kg DTPA mg/kg DTPA mg/kg DTPA mg/kg NH4OAc meq/100g	Olsen mg/kg 133 DTPA mg/kg 0.13 DTPA mg/kg 0.8 DTPA mg/kg 0.8 DTPA mg/kg 0.7 DTPA mg/kg 0.7 NH4OAc meq/100g 20.5 NH4OAc meq/100g 1.7 NH4OAc meq/100g 0.11

Other Tests:


il	Test Resu	lts					
	pH 1:1				8.3		
	E.C. 1:1		m.mhos	/cm	0.14		
	Est Sat Pas	ste E.C. ı	m.mhos/	′cm	0.36		
	Effervesce	nce			High	<u>Lb:</u>	s/Acre
	Ammoniui	m - N	mg	/kg	1.2		5
	Organic M	atter W.	.B. 9	%	1.2	ENR:	42
	Depth	Nitra	ite-N	Sulfa	ate-S	Moisture	
	inches	mg/kg	lbs/acre	mg	;/kg	Inches	
	0 -12	6.1	24	ļ	5		
	Totals	6.1	24	ļ	5		
	Sum of Te	sted N:	71 lbs	/acre	N		

Interpretation (Guide
------------------	-------

Fertilizer recommendations for

of HOPS after HOPS

Nitrogen	71	lbs/acre
Phosphorus	3	mg/kg
Potassium	133	mg/kg
Sulfur	5	mg/kg
Boron	0.13	mg/kg
Zinc	8.0	mg/kg
Manganese	8.0	mg/kg

140 lbs/acre of Nitrogen	
190 lbs/acre of P2O5	
75 lbs/acre of K2O	
25 lbs/acre of Sulfur	
2 lbs/acre of Boron	
0 lbs/acre of Zinc	
Ollhs/acre of Mn	

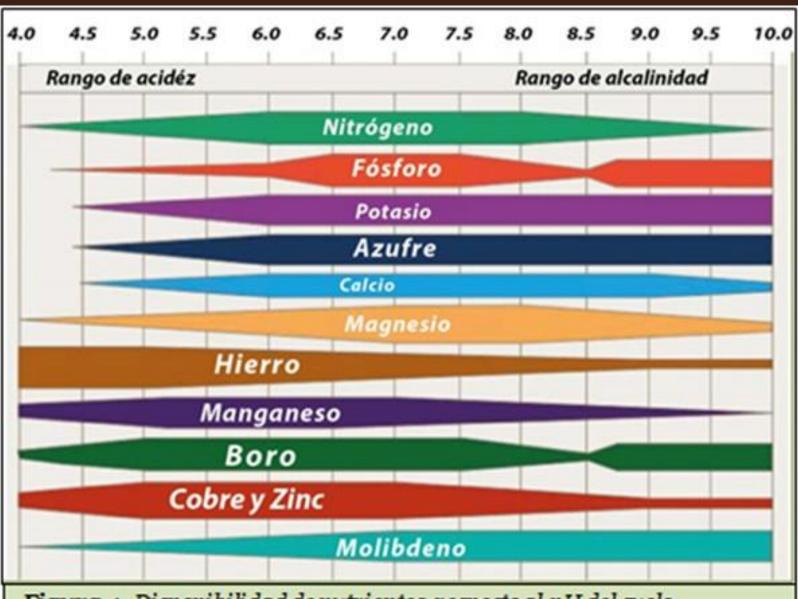


Figura 1. Disponibilidad de nutrientes respecto al pH del suelo.

Ejemplo del Manejo de Nitrógeno – Maíz Dulce (Elote)

- Análisis del Suelo NO₃-N
 - 13.7 ppm (mg/kg)
 - 27 libras/Acre
- Sistema de Pivotes
 - Antes de siembra (1/2)
 - Durante la temporada (1/2)

Table 2.—N fertilization rates according to total soil test values.

NO ₃ -N	N Application (lb/a) ¹				
Soil test (lb/a)	After nonlegume crop ²	After beans and peas ³	After productive alfalfa, clover		
0	200	160	140		
40	160	120	100		
80	120	80	60		
120	80	40	20		
160^{4}	40	0	0		
200^{4}	0	0	0		

¹These application rates are suggested for silt loam, loam, and clay loam soils. For sandy soils, increase the application rates by 40 lb N/a.

Maíz Dulce, de FG 62

²When straw is incorporated after September 1, increase the N fertilizer rate by 30–50 lb/a.

³After beans and peas and low-producing alfalfa and clover. ⁴For early plantings into cool soil, apply 20–30 lb N/a in a 2-inch x 2-inch band.

La Falta de Nitrógeno en Maíz Dulce (Elote)

Sana

Bajo N

Manejo de Fosforo-Ejemplo Cebolla

- Análisis del Suelo
 P Olsen
 - 3 ppm
- Efervescencia
 - Alta

Una palabra sobre
 Olsen P y pH

Bicarbonate (Olsen)		Soil lime conc	Soil lime concentration (%) ^a		
soil test P 0 to 12 inches	0	5	10	15	
(ppm) —	P fer	tilizer application and Not furnigated		cre) ^b	
0	160	200	240	280	
5	100	140	180	220	
10	40	80	120	160	
15	0	20	60	100	
20	0	0	0	40	
above 25	0	0	0	0	
		Fumigated be	fore planting		
0	200	240	280	320	
5	140	180	220	260	
10	80	120	160	200	
15	20	60	100	140	
20	0	40	20	80	
25	0	0	0	20	
above 30	0	0	0	0	

^aSoil lime concentration as determined by calcium carbonate equivalent test.

 b To convert from the oxide ($P_{2}O_{5}$) to the elemental form (P) multiply by 0.43.

Cebollas, de PNW 546


WASHINGTON STATE UNIVERSITY IRRIGATED SOIL MANAGEMENT

ienta

Bajo P en Maíz Dulce- Después de que el suelo se calienta

Planta entera

Hoja

Potasio- Análisis del Suelo (Olsen) de133 mg/kg

- Maíz Dulce
- Agregaremos K

0	UN	U	IIU

Ceholla

No se necesita K

Table 4.—K fertilization rates for sweet corn.				
If the soil test for K is	Apply this amount of potash (K ₂ O)			
(ppm)	(lb/a)	(kg/ha)		
0-100	120-180	135-200		
100-200	60-120	65–135		
over 200	0	0		

Potassium (K) soil test ^a 0 to 12 inches	K fertilizer a	application rate
(ppm)	(lb K per acre)	(lb K ₂ O per acre)
0	200	240
50	100	120
above 100	0	0

^aSoil test K as determined by sodium bicarbonate (Olsen) extraction.

Bajo K en Maiz Dulce

Sana

Bajo K

Micronutrientes

Boro

- Típicamente bajo en WA
- Móvil en suelo (lixiviación)
- Fácil aplicar demasiado
- Muestra 0.22 mg/kg
- Aplicación típica de
- 2 3 libras/Acre cada año

Zinc

- Típicamente bajo en WA
- Regulado por pH
- Amarrado al largo plazo

Muestra - 0.7 mg/kg

Zinc

Onions are sensitive to zinc deficiency. Deficiencies usually occur on white, high lime subsoils that have been exposed by land leveling or erosion. Soils are considered marginal at 0.8 to 1.0 ppm DTPA extractable Zn. Deficient Zn concentrations in leaf tissue probably are 10 to 20 ppm (dry wt. basis), based on data from other crops. Zinc deficiency can be corrected by soil or foliar Zn applications. There is insufficient data to support specific recommendations.

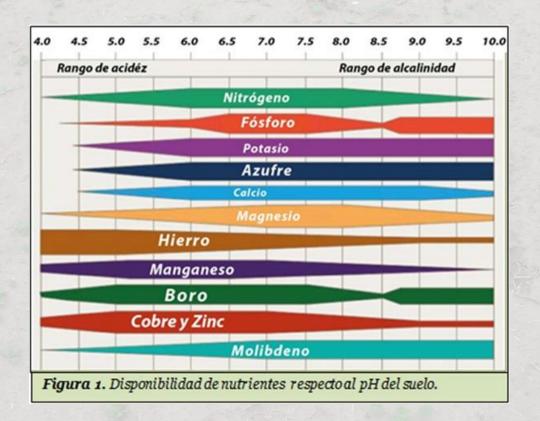
Maíz

Sweet corn has a relatively high requirement for Zn. An application of Zn is suggested when the Zn soil test value is below 0.8 ppm.

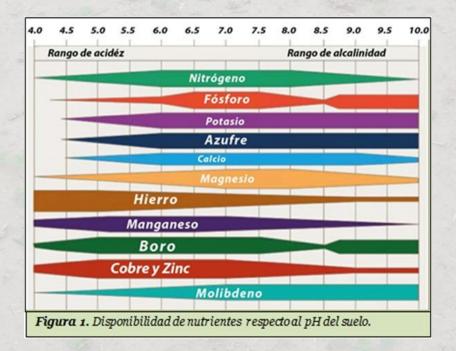
Where Zn is required, either 10 lb/a (10 kg/ha) of Zn should be broadcast and worked into the soil prior to planting, or 3 to 4 lb/a (3 to 4 kg/ha) of Zn should be banded with the fertilizer at planting time. An application of 10 lb Zn/a should supply Zn needs for 2 or 3 years.

To correct Zn deficiency during the growing season, thoroughly wet plants with a solution containing 1 lb (0.5 kg) Zn in 50 to 100 gal (190–380 liters) of water.

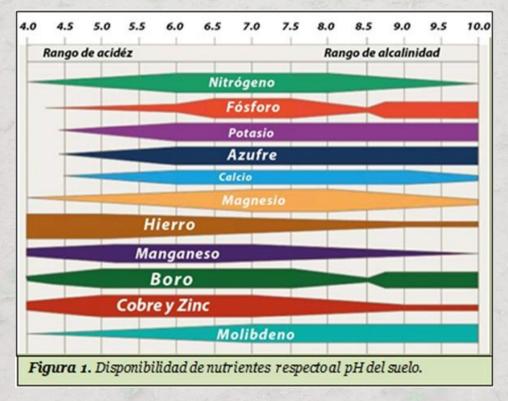
Toxicidad de Boro


http://ecoursesonline.iasri.res.in/pluginfile.
 php/1761/mod_page/content/3/Chapter_1
 5_7.JPG

Pensamientos finales de pH del suelo y 'cal libre'

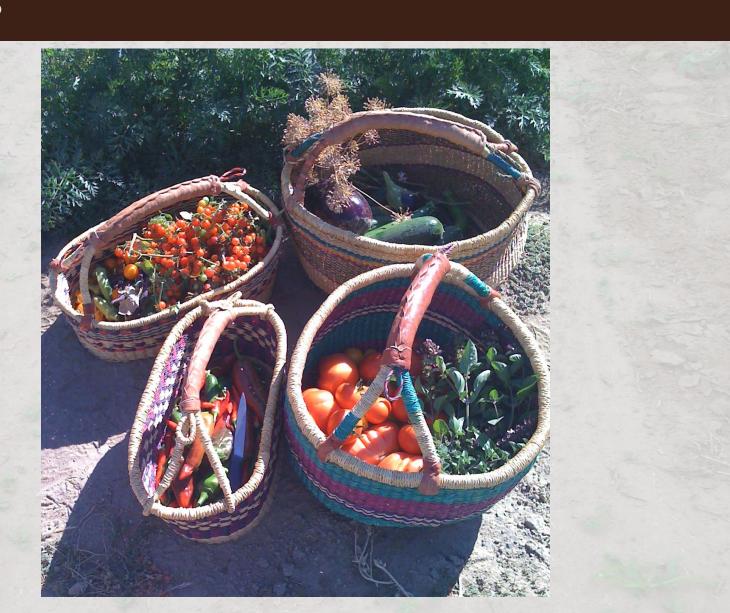

Cal libre
 medido como efervescencia o porcentaje

Pensamientos finales de pH del suelo y 'cal libre'


- pH alto
- Cal libre alto
- Micronutrientes bajos, hierro (Fe) es un problema
- La aplicación foliar, usualmente quelatos

Pensamientos finales de pH del suelo y 'cal libre'

- Uso de fertilizante N baja el pH a largo plazo
- Es un gran problema en cebolla
- Antes de siembra aplica cal 500 1,000 libras/A



Referencias

- Gardener, E. H., N. S. Mansour, H. J. Mack, T. L. Jackson, and J. Burr. 2000. Sweet Corn Eastern Oregon - East of the Cascades. Oregon State University FG 62.
- Sullivan, D. M., B. D. Brown, C. C. Shock, D. A. Horneck, R. G. Stevens, G. Q. Pelter, and E. B. G. Feibert. 2001. Nutrient Management for Onions in the Pacific Northwest. PNW 546.

Preguntas?

