The Trigonal Bipyramid Geometry (SN = 5) (VSEPR Part 4)

By Shawn P. Shields, Ph.D.

Recall: The Basic Molecular
 Geometries (Shapes)

- Linear (SN = 2)
- Trigonal planar (SN = 3)
- Tetrahedral (SN = 4)
- Trigonal bipyramid (SN = 5)
- Octahedral (SN = 6)

VSEPR Geometries

Steric No.	$\frac{\text { Basic Geometry }}{0 \text { lone pair }}$	1 lone pair	2 lone pairs	3 lone pairs	4 lone pairs
2	 Linear				
3	 Trigonal Planar	$<120^{\circ}$ Bent or Angular			
4		$<109^{\circ}$ Trigonal Pyramid	 Bent or Angular		
5	 Trigonal Bipyramid	 Sawhorse or Seesaw	 T-shape	 Linear	
6					 Linear

Basic Geometry for SN = 5

SN = 5: Five electron "domains" (Notice the apparent expansion of octet)

Pointing into the page
(Basic) Molecular Shape: Trigonal Bipyramid

The Trigonal Bipyramidal Molecular Geometry

- Trigonal bipyramidal structures have two types of atom positions
- Equatorial positions (Eq) (in the horizontal plane intersecting the central atom)
- Axial positions (Ax) vertical to the central atom

Bond Angles in the Trigonal Bipyramidal Molecular Geometry

- Trigonal bipyramidal structures ALSO have two different bond angles
- Bond angles for equatorial positions (Eq) are 120° apart
- Bond angles for axial positions (Ax) are 90° apart

Application of Bent's Rule in SN = 5

Structures

- More electronegative atoms prefer $\underline{\text { axial }}$ positions.
- Less electronegative atoms prefer equatorial positions.
- Equatorial positions are "roomier"
- Lone pairs MUST be placed in equatorial positions.

Bent's Rule and the Trigonal Bipyramidal Geometry

> Lone pairs take up a lot of room, so they must be placed in equatorial positions
(labeled L for "large")

SN = 5 with One Lone Pair

Four bonded atoms, with the one lone pair placed in one of the equatorial positions.

The bond angles distorted to less than 90° and 120° due to repulsions from lone pairs.

Molecular Shape: Sawhorse or Seesaw

SN = 5 with Two Lone Pairs

Three bonded atoms, with the two lone pairs placed in equatorial positions.

The bond angles between the equatorial atom and the axial atoms are distorted to $\ll 90^{\circ}$ due to repulsions from lone pairs.

SN = 5 with Three Lone Pairs

Three bonded atoms, with the two lone pairs placed in equatorial positions.

The repulsions from lone pairs cancel out to leave the X-E -X bond angle undistorted (180 $)$.

Molecular Shape: Linear

Summary: Trigonal Bipyramidal Geometry

- Less electronegative atoms and lone pairs go into equatorial positions.
- More electronegative atoms are placed in axial positions.
- Both types of bond angles are distorted due to the presence of lone pairs (in specific situations).

Example: Determining the SN and Naming the Geometry

- Draw the Lewis structure for $\mathrm{ClF}_{4}{ }^{+}$. Determine the steric number and name the molecular geometry. Identify the bond angle(s), including distortions, if present.

Example Solution:

The Lewis structure for $\mathrm{ClF}_{4}{ }^{+}$is

There are 4 F atoms bonded to Cl plus a lone pair, so SN = 5 and the basic geometry is trigonal bipyramid.
The bond angles are distorted to less than 120° and 90°.

The geometry is Seesaw (or Sawhorse).

What You Should Be Able to Do

- Draw a Lewis structure and use it to determine the steric number for the central atom.
- Determine the basic geometry around the central atom.
- Substitute lone pairs as appropriate and identify distortions in the bond angles.
- Apply Bent's Rule for SN=5 molecules.
- Draw the molecule showing geometry and name it based on the positions of the atoms.

