
Chapter 8

Systems of Equations and Matrices

8.1 Systems of Linear Equations: Gaussian Elimination

Up until now, when we concerned ourselves with solving different types of equations there was only
one equation to solve at a time. Given an equation f(x) = g(x), we could check our solutions
geometrically by finding where the graphs of y = f(x) and y = g(x) intersect. The x-coordinates
of these intersection points correspond to the solutions to the equation f(x) = g(x), and the y-
coordinates were largely ignored. If we modify the problem and ask for the intersection points of
the graphs of y = f(x) and y = g(x), where both the solution to x and y are of interest, we have
what is known as a system of equations, usually written as{

y = f(x)
y = g(x)

The ‘curly bracket’ notation means we are to find all pairs of points (x, y) which satisfy both
equations. We begin our study of systems of equations by reviewing some basic notions from
Intermediate Algebra.

Definition 8.1. A linear equation in two variables is an equation of the form a1x+a2y = c
where a1, a2 and c are real numbers and at least one of a1 and a2 is nonzero.

For reasons which will become clear later in the section, we are using subscripts in Definition 8.1
to indicate different, but fixed, real numbers and those subscripts have no mathematical meaning
beyond that. For example, 3x− y

2 = 0.1 is a linear equation in two variables with a1 = 3, a2 = −1
2

and c = 0.1. We can also consider x = 5 to be a linear equation in two variables1 by identifying
a1 = 1, a2 = 0, and c = 5. If a1 and a2 are both 0, then depending on c, we get either an
equation which is always true, called an identity, or an equation which is never true, called a
contradiction. (If c = 0, then we get 0 = 0, which is always true. If c �= 0, then we’d have
0 �= 0, which is never true.) Even though identities and contradictions have a large role to play

1Critics may argue that x = 5 is clearly an equation in one variable. It can also be considered an equation in 117
variables with the coefficients of 116 variables set to 0. As with many conventions in Mathematics, the context will
clarify the situation.
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in the upcoming sections, we do not consider them linear equations. The key to identifying linear
equations is to note that the variables involved are to the first power and that the coefficients of the
variables are numbers. Some examples of equations which are non-linear are x2+y = 1, xy = 5 and
e2x + ln(y) = 1. We leave it to the reader to explain why these do not satisfy Definition 8.1. From
what we know from Sections 1.2 and 2.1, the graphs of linear equations are lines. If we couple two
or more linear equations together, in effect to find the points of intersection of two or more lines,
we obtain a system of linear equations in two variables. Our first example reviews some of
the basic techniques first learned in Intermediate Algebra.

Example 8.1.1. Solve the following systems of equations. Check your answer algebraically and
graphically.

1.

{
2x− y = 1

y = 3

2.

{
3x+ 4y = −2
−3x− y = 5

3.

{
x
3 − 4y

5 = 7
5

2x
9 + y

3 = 1
2

4.

{
2x− 4y = 6
3x− 6y = 9

5.

{
6x+ 3y = 9
4x+ 2y = 12

6.

⎧⎨
⎩

x− y = 0
x+ y = 2

−2x+ y = −2

Solution.

1. Our first system is nearly solved for us. The second equation tells us that y = 3. To find the
corresponding value of x, we substitute this value for y into the the first equation to obtain
2x − 3 = 1, so that x = 2. Our solution to the system is (2, 3). To check this algebraically,
we substitute x = 2 and y = 3 into each equation and see that they are satisfied. We see
2(2) − 3 = 1, and 3 = 3, as required. To check our answer graphically, we graph the lines
2x− y = 1 and y = 3 and verify that they intersect at (2, 3).

2. To solve the second system, we use the addition method to eliminate the variable x. We
take the two equations as given and ‘add equals to equals’ to obtain

3x+ 4y = −2

+ (−3x− y = 5)

3y = 3

This gives us y = 1. We now substitute y = 1 into either of the two equations, say −3x−y = 5,
to get −3x− 1 = 5 so that x = −2. Our solution is (−2, 1). Substituting x = −2 and y = 1
into the first equation gives 3(−2) + 4(1) = −2, which is true, and, likewise, when we check
(−2, 1) in the second equation, we get −3(−2)− 1 = 5, which is also true. Geometrically, the
lines 3x+ 4y = −2 and −3x− y = 5 intersect at (−2, 1).
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(2, 3)

x

y

−1 1 2 3 4

1

2

4

2x− y = 1
y = 3

(−2, 1)

x

y

−4 −3 −2 −1

−2

−1

1

2

3x+ 4y = −2
−3x − y = 5

3. The equations in the third system are more approachable if we clear denominators. We
multiply both sides of the first equation by 15 and both sides of the second equation by 18
to obtain the kinder, gentler system

{
5x− 12y = 21
4x+ 6y = 9

Adding these two equations directly fails to eliminate either of the variables, but we note
that if we multiply the first equation by 4 and the second by −5, we will be in a position to
eliminate the x term

20x− 48y = 84

+ (−20x− 30y = −45)

−78y = 39

From this we get y = −1
2 . We can temporarily avoid too much unpleasantness by choosing to

substitute y = −1
2 into one of the equivalent equations we found by clearing denominators,

say into 5x − 12y = 21. We get 5x + 6 = 21 which gives x = 3. Our answer is
(
3,−1

2

)
.

At this point, we have no choice − in order to check an answer algebraically, we must see
if the answer satisfies both of the original equations, so we substitute x = 3 and y = −1

2

into both x
3 − 4y

5 = 7
5 and 2x

9 + y
3 = 1

2 . We leave it to the reader to verify that the solution
is correct. Graphing both of the lines involved with considerable care yields an intersection
point of

(
3,−1

2

)
.

4. An eerie calm settles over us as we cautiously approach our fourth system. Do its friendly
integer coefficients belie something more sinister? We note that if we multiply both sides of
the first equation by 3 and the both sides of the second equation by −2, we are ready to
eliminate the x
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6x− 12y = 18

+ (−6x+ 12y = −18)

0 = 0

We eliminated not only the x, but the y as well and we are left with the identity 0 = 0. This
means that these two different linear equations are, in fact, equivalent. In other words, if an
ordered pair (x, y) satisfies the equation 2x − 4y = 6, it automatically satisfies the equation
3x− 6y = 9. One way to describe the solution set to this system is to use the roster method2

and write {(x, y) | 2x − 4y = 6}. While this is correct (and corresponds exactly to what’s
happening graphically, as we shall see shortly), we take this opportunity to introduce the
notion of a parametric solution to a system. Our first step is to solve 2x − 4y = 6
for one of the variables, say y = 1

2x − 3
2 . For each value of x, the formula y = 1

2x − 3
2

determines the corresponding y-value of a solution. Since we have no restriction on x, it is
called a free variable. We let x = t, a so-called ‘parameter’, and get y = 1

2 t − 3
2 . Our

set of solutions can then be described as
{(

t, 12 t− 3
2

) | −∞ < t < ∞}
.3 For specific values

of t, we can generate solutions. For example, t = 0 gives us the solution
(
0,−3

2

)
; t = 117

gives us (117, 57), and while we can readily check each of these particular solutions satisfy
both equations, the question is how do we check our general answer algebraically? Same as
always. We claim that for any real number t, the pair

(
t, 12 t− 3

2

)
satisfies both equations.

Substituting x = t and y = 1
2 t − 3

2 into 2x − 4y = 6 gives 2t − 4
(
1
2 t− 3

2

)
= 6. Simplifying,

we get 2t− 2t+ 6 = 6, which is always true. Similarly, when we make these substitutions in
the equation 3x− 6y = 9, we get 3t− 6

(
1
2 t− 3

2

)
= 9 which reduces to 3t− 3t+ 9 = 9, so it

checks out, too. Geometrically, 2x− 4y = 6 and 3x− 6y = 9 are the same line, which means
that they intersect at every point on their graphs. The reader is encouraged to think about
how our parametric solution says exactly that.

(
3,− 1

2

)
x

y

−1 1 2 4 5 6 7

−4

−3

−2

−1

1

x
3
− 4y

5
= 7

5
2x
9

+ y
3

= 1
2

x

y

1 2 3 4

−1

1

2

2x− 4y = 6
3x − 6y = 9
(Same line.)

2See Section 1.2 for a review of this.
3Note that we could have just as easily chosen to solve 2x− 4y = 6 for x to obtain x = 2y + 3. Letting y be the

parameter t, we have that for any value of t, x = 2t + 3, which gives {(2t + 3, t) | − ∞ < t < ∞}. There is no one
correct way to parameterize the solution set, which is why it is always best to check your answer.
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5. Multiplying both sides of the first equation by 2 and the both sides of the second equation
by −3, we set the stage to eliminate x

12x+ 6y = 18

+ (−12x− 6y = −36)

0 = −18

As in the previous example, both x and y dropped out of the equation, but we are left with
an irrevocable contradiction, 0 = −18. This tells us that it is impossible to find a pair (x, y)
which satisfies both equations; in other words, the system has no solution. Graphically, the
lines 6x+ 3y = 9 and 4x+ 2y = 12 are distinct and parallel, so they do not intersect.

6. We can begin to solve our last system by adding the first two equations

x− y = 0

+ (x+ y = 2)

2x = 2

which gives x = 1. Substituting this into the first equation gives 1 − y = 0 so that y = 1.
We seem to have determined a solution to our system, (1, 1). While this checks in the
first two equations, when we substitute x = 1 and y = 1 into the third equation, we get
−2(1)+(1) = −2 which simplifies to the contradiction −1 = −2. Graphing the lines x−y = 0,
x + y = 2, and −2x + y = −2, we see that the first two lines do, in fact, intersect at (1, 1),
however, all three lines never intersect at the same point simultaneously, which is what is
required if a solution to the system is to be found.

x

y

1 2

−3
−2
−1

1
2
3
4
5
6

6x+ 3y = 9
4x + 2y = 12

x

y

−1

1

y − x = 0
y + x = 2

−2x+ y = −2

A few remarks about Example 8.1.1 are in order. It is clear that some systems of equations have
solutions, and some do not. Those which have solutions are called consistent, those with no
solution are called inconsistent. We also distinguish the two different types of behavior among
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consistent systems. Those which admit free variables are called dependent; those with no free
variables are called independent.4 Using this new vocabulary, we classify numbers 1, 2 and 3 in
Example 8.1.1 as consistent independent systems, number 4 is consistent dependent, and numbers
5 and 6 are inconsistent.5 The system in 6 above is called overdetermined, since we have more
equations than variables.6 Not surprisingly, a system with more variables than equations is called
underdetermined. While the system in number 6 above is overdetermined and inconsistent,
there exist overdetermined consistent systems (both dependent and independent) and we leave it
to the reader to think about what is happening algebraically and geometrically in these cases.
Likewise, there are both consistent and inconsistent underdetermined systems,7 but a consistent
underdetermined system of linear equations is necessarily dependent.8

In order to move this section beyond a review of Intermediate Algebra, we now define what is meant
by a linear equation in n variables.

Definition 8.2. A linear equation in n variables, x1, x2, . . . , xn is an equation of the form
a1x1 + a2x2 + . . .+ anxn = c where a1, a2, . . . an and c are real numbers and at least one of a1,
a2, . . . , an is nonzero.

Instead of using more familiar variables like x, y, and even z and/or w in Definition 8.2, we use
subscripts to distinguish the different variables. We have no idea how many variables may be
involved, so we use numbers to distinguish them instead of letters. (There is an endless supply of
distinct numbers.) As an example, the linear equation 3x1−x2 = 4 represents the same relationship
between the variables x1 and x2 as the equation 3x − y = 4 does between the variables x and y.
In addition, just as we cannot combine the terms in the expression 3x− y, we cannot combine the
terms in the expression 3x1 − x2. Coupling more than one linear equation in n variables results
in a system of linear equations in n variables. When solving these systems, it becomes
increasingly important to keep track of what operations are performed to which equations and to
develop a strategy based on the kind of manipulations we’ve already employed. To this end, we
first remind ourselves of the maneuvers which can be applied to a system of linear equations that
result in an equivalent system.9

4In the case of systems of linear equations, regardless of the number of equations or variables, consistent inde-
pendent systems have exactly one solution. The reader is encouraged to think about why this is the case for linear
equations in two variables. Hint: think geometrically.

5The adjectives ‘dependent’ and ‘independent’ apply only to consistent systems – they describe the type of solu-
tions. Is there a free variable (dependent) or not (independent)?

6If we think if each variable being an unknown quantity, then ostensibly, to recover two unknown quantities,
we need two pieces of information - i.e., two equations. Having more than two equations suggests we have more
information than necessary to determine the values of the unknowns. While this is not necessarily the case, it does
explain the choice of terminology ‘overdetermined’.

7We need more than two variables to give an example of the latter.
8Again, experience with systems with more variables helps to see this here, as does a solid course in Linear Algebra.
9That is, a system with the same solution set.
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Theorem 8.1. Given a system of equations, the following moves will result in an equivalent
system of equations.

• Interchange the position of any two equations.

• Replace an equation with a nonzero multiple of itself.a

• Replace an equation with itself plus a nonzero multiple of another equation.

aThat is, an equation which results from multiplying both sides of the equation by the same nonzero number.

We have seen plenty of instances of the second and third moves in Theorem 8.1 when we solved
the systems Example 8.1.1. The first move, while it obviously admits an equivalent system, seems
silly. Our perception will change as we consider more equations and more variables in this, and
later sections.

Consider the system of equations

⎧⎪⎨
⎪⎩

x− 1
3y +

1
2z = 1

y − 1
2z = 4

z = −1

Clearly z = −1, and we substitute this into the second equation y − 1
2(−1) = 4 to obtain y = 7

2 .
Finally, we substitute y = 7

2 and z = −1 into the first equation to get x − 1
3

(
7
2

)
+ 1

2(−1) = 1,
so that x = 8

3 . The reader can verify that these values of x, y and z satisfy all three original
equations. It is tempting for us to write the solution to this system by extending the usual (x, y)
notation to (x, y, z) and list our solution as

(
8
3 ,

7
2 ,−1

)
. The question quickly becomes what does

an ‘ordered triple’ like
(
8
3 ,

7
2 ,−1

)
represent? Just as ordered pairs are used to locate points on the

two-dimensional plane, ordered triples can be used to locate points in space.10 Moreover, just as
equations involving the variables x and y describe graphs of one-dimensional lines and curves in the
two-dimensional plane, equations involving variables x, y, and z describe objects called surfaces
in three-dimensional space. Each of the equations in the above system can be visualized as a plane
situated in three-space. Geometrically, the system is trying to find the intersection, or common
point, of all three planes. If you imagine three sheets of notebook paper each representing a portion
of these planes, you will start to see the complexities involved in how three such planes can intersect.
Below is a sketch of the three planes. It turns out that any two of these planes intersect in a line,11

so our intersection point is where all three of these lines meet.

10You were asked to think about this in Exercise 40 in Section 1.1.
11In fact, these lines are described by the parametric solutions to the systems formed by taking any two of these

equations by themselves.
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Since the geometry for equations involving more than two variables is complicated, we will focus
our efforts on the algebra. Returning to the system

⎧⎪⎨
⎪⎩

x− 1
3y +

1
2z = 1

y − 1
2z = 4

z = −1

we note the reason it was so easy to solve is that the third equation is solved for z, the second
equation involves only y and z, and since the coefficient of y is 1, it makes it easy to solve for y
using our known value for z. Lastly, the coefficient of x in the first equation is 1 making it easy to
substitute the known values of y and z and then solve for x. We formalize this pattern below for
the most general systems of linear equations. Again, we use subscripted variables to describe the
general case. The variable with the smallest subscript in a given equation is typically called the
leading variable of that equation.

Definition 8.3. A system of linear equations with variables x1, x2, . . .xn is said to be in
triangular form provided all of the following conditions hold:

1. The subscripts of the variables in each equation are always increasing from left to right.

2. The leading variable in each equation has coefficient 1.

3. The subscript on the leading variable in a given equation is greater than the subscript on
the leading variable in the equation above it.

4. Any equation without variablesa cannot be placed above an equation with variables.

anecessarily an identity or contradiction
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In our previous system, if we make the obvious choices x = x1, y = x2, and z = x3, we see that the
system is in triangular form.12 An example of a more complicated system in triangular form is⎧⎪⎪⎨

⎪⎪⎩
x1 − 4x3 + x4 − x6 = 6

x2 + 2x3 = 1
x4 + 3x5 − x6 = 8

x5 + 9x6 = 10

Our goal henceforth will be to transform a given system of linear equations into triangular form
using the moves in Theorem 8.1.

Example 8.1.2. Use Theorem 8.1 to put the following systems into triangular form and then solve
the system if possible. Classify each system as consistent independent, consistent dependent, or
inconsistent.

1.

⎧⎨
⎩

3x− y + z = 3
2x− 4y + 3z = 16

x− y + z = 5
2.

⎧⎨
⎩

2x+ 3y − z = 1
10x− z = 2

4x− 9y + 2z = 5
3.

⎧⎨
⎩

3x1 + x2 + x4 = 6
2x1 + x2 − x3 = 4

x2 − 3x3 − 2x4 = 0

Solution.

1. For definitiveness, we label the topmost equation in the system E1, the equation beneath that
E2, and so forth. We now attempt to put the system in triangular form using an algorithm
known as Gaussian Elimination. What this means is that, starting with x, we transform
the system so that conditions 2 and 3 in Definition 8.3 are satisfied. Then we move on to
the next variable, in this case y, and repeat. Since the variables in all of the equations have
a consistent ordering from left to right, our first move is to get an x in E1’s spot with a
coefficient of 1. While there are many ways to do this, the easiest is to apply the first move
listed in Theorem 8.1 and interchange E1 and E3.

⎧⎨
⎩

(E1) 3x− y + z = 3
(E2) 2x− 4y + 3z = 16
(E3) x− y + z = 5

Switch E1 and E3−−−−−−−−−−−→
⎧⎨
⎩

(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3

To satisfy Definition 8.3, we need to eliminate the x’s from E2 and E3. We accomplish this
by replacing each of them with a sum of themselves and a multiple of E1. To eliminate the
x from E2, we need to multiply E1 by −2 then add; to eliminate the x from E3, we need to
multiply E1 by −3 then add. Applying the third move listed in Theorem 8.1 twice, we get

⎧⎨
⎩

(E1) x− y + z = 5
(E2) 2x− 4y + 3z = 16
(E3) 3x− y + z = 3

Replace E2 with −2E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −3E1 + E3

⎧⎨
⎩

(E1) x− y + z = 5
(E2) −2y + z = 6
(E3) 2y − 2z = −12

12If letters are used instead of subscripted variables, Definition 8.3 can be suitably modified using alphabetical
order of the variables instead of numerical order on the subscripts of the variables.
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Now we enforce the conditions stated in Definition 8.3 for the variable y. To that end we
need to get the coefficient of y in E2 equal to 1. We apply the second move listed in Theorem
8.1 and replace E2 with itself times −1

2 .

⎧⎨
⎩

(E1) x− y + z = 5
(E2) −2y + z = 6
(E3) 2y − 2z = −12

Replace E2 with − 1
2
E2−−−−−−−−−−−−−−→

⎧⎨
⎩

(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 2y − 2z = −12

To eliminate the y in E3, we add −2E2 to it.

⎧⎨
⎩

(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) 2y − 2z = −12

Replace E3 with −2E2 + E3−−−−−−−−−−−−−−−−−−→
⎧⎨
⎩

(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) −z = −6

Finally, we apply the second move from Theorem 8.1 one last time and multiply E3 by −1
to satisfy the conditions of Definition 8.3 for the variable z.

⎧⎨
⎩

(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) −z = −6

Replace E3 with −1E3−−−−−−−−−−−−−−→
⎧⎨
⎩

(E1) x− y + z = 5
(E2) y − 1

2z = −3
(E3) z = 6

Now we proceed to substitute. Plugging in z = 6 into E2 gives y − 3 = −3 so that y = 0.
With y = 0 and z = 6, E1 becomes x − 0 + 6 = 5, or x = −1. Our solution is (−1, 0, 6).
We leave it to the reader to check that substituting the respective values for x, y, and z into
the original system results in three identities. Since we have found a solution, the system is
consistent; since there are no free variables, it is independent.

2. Proceeding as we did in 1, our first step is to get an equation with x in the E1 position with
1 as its coefficient. Since there is no easy fix, we multiply E1 by 1

2 .

⎧⎨
⎩

(E1) 2x+ 3y − z = 1
(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E1 with 1
2
E1−−−−−−−−−−−−−→

⎧⎨
⎩

(E1) x+ 3
2y − 1

2z = 1
2

(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Now it’s time to take care of the x’s in E2 and E3.

⎧⎨
⎩

(E1) x+ 3
2y − 1

2z = 1
2

(E2) 10x− z = 2
(E3) 4x− 9y + 2z = 5

Replace E2 with −10E1 + E2−−−−−−−−−−−−−−−−−−→
Replace E3 with −4E1 + E3

⎧⎨
⎩

(E1) x+ 3
2y − 1

2z = 1
2

(E2) −15y + 4z = −3
(E3) −15y + 4z = 3
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Our next step is to get the coefficient of y in E2 equal to 1. To that end, we have

⎧⎪⎨
⎪⎩

(E1) x+ 3
2y − 1

2z = 1
2

(E2) −15y + 4z = −3

(E3) −15y + 4z = 3

Replace E2 with − 1
15

E2−−−−−−−−−−−−−−−→

⎧⎪⎨
⎪⎩

(E1) x+ 3
2y − 1

2z = 1
2

(E2) y − 4
15z = 1

5

(E3) −15y + 4z = 3

Finally, we rid E3 of y.

⎧⎪⎨
⎪⎩

(E1) x+ 3
2y − 1

2z = 1
2

(E2) y − 4
15z = 1

5

(E3) −15y + 4z = 3

Replace E3 with 15E2 + E3−−−−−−−−−−−−−−−−−→

⎧⎪⎨
⎪⎩

(E1) x− y + z = 5

(E2) y − 1
2z = −3

(E3) 0 = 6

The last equation, 0 = 6, is a contradiction so the system has no solution. According to
Theorem 8.1, since this system has no solutions, neither does the original, thus we have an
inconsistent system.

3. For our last system, we begin by multiplying E1 by 1
3 to get a coefficient of 1 on x1.

⎧⎨
⎩

(E1) 3x1 + x2 + x4 = 6
(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Replace E1 with 1
3
E1−−−−−−−−−−−−−→

⎧⎨
⎩

(E1) x1 +
1
3x2 +

1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4
(E3) x2 − 3x3 − 2x4 = 0

Next we eliminate x1 from E2

⎧⎪⎨
⎪⎩

(E1) x1 +
1
3x2 +

1
3x4 = 2

(E2) 2x1 + x2 − x3 = 4

(E3) x2 − 3x3 − 2x4 = 0

Replace E2−−−−−−−−−−→
with −2E1 + E2

⎧⎪⎨
⎪⎩

(E1) x1 +
1
3x2 +

1
3x4 = 2

(E2) 1
3x2 − x3 − 2

3x4 = 0

(E3) x2 − 3x3 − 2x4 = 0

We switch E2 and E3 to get a coefficient of 1 for x2.

⎧⎪⎨
⎪⎩

(E1) x1 +
1
3x2 +

1
3x4 = 2

(E2) 1
3x2 − x3 − 2

3x4 = 0

(E3) x2 − 3x3 − 2x4 = 0

Switch E2 and E3−−−−−−−−−−−→

⎧⎪⎨
⎪⎩

(E1) x1 +
1
3x2 +

1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 1
3x2 − x3 − 2

3x4 = 0

Finally, we eliminate x2 in E3.
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⎧⎪⎨
⎪⎩

(E1) x1 +
1
3x2 +

1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 1
3x2 − x3 − 2

3x4 = 0

Replace E3−−−−−−−−−−→
with − 1

3
E2 + E3

⎧⎪⎨
⎪⎩

(E1) x1 +
1
3x2 +

1
3x4 = 2

(E2) x2 − 3x3 − 2x4 = 0

(E3) 0 = 0

Equation E3 reduces to 0 = 0,which is always true. Since we have no equations with x3

or x4 as leading variables, they are both free, which means we have a consistent dependent
system. We parametrize the solution set by letting x3 = s and x4 = t and obtain from E2
that x2 = 3s + 2t. Substituting this and x4 = t into E1, we have x1 +

1
3 (3s+ 2t) + 1

3 t = 2
which gives x1 = 2−s− t. Our solution is the set {(2−s− t, 2s+3t, s, t) | −∞ < s, t < ∞}.13
We leave it to the reader to verify that the substitutions x1 = 2− s− t, x2 = 3s+ 2t, x3 = s
and x4 = t satisfy the equations in the original system.

Like all algorithms, Gaussian Elimination has the advantage of always producing what we need,
but it can also be inefficient at times. For example, when solving 2 above, it is clear after we
eliminated the x’s in the second step to get the system

⎧⎪⎨
⎪⎩

(E1) x+ 3
2y − 1

2z = 1
2

(E2) −15y + 4z = −3

(E3) −15y + 4z = 3

that equations E2 and E3 when taken together form a contradiction since we have identical left hand
sides and different right hand sides. The algorithm takes two more steps to reach this contradiction.
We also note that substitution in Gaussian Elimination is delayed until all the elimination is done,
thus it gets called back-substitution. This may also be inefficient in many cases. Rest assured,
the technique of substitution as you may have learned it in Intermediate Algebra will once again
take center stage in Section 8.7. Lastly, we note that the system in 3 above is underdetermined,
and as it is consistent, we have free variables in our answer. We close this section with a standard
‘mixture’ type application of systems of linear equations.

Example 8.1.3. Lucas needs to create a 500 milliliters (mL) of a 40% acid solution. He has stock
solutions of 30% and 90% acid as well as all of the distilled water he wants. Set-up and solve a
system of linear equations which determines all of the possible combinations of the stock solutions
and water which would produce the required solution.

Solution. We are after three unknowns, the amount (in mL) of the 30% stock solution (which
we’ll call x), the amount (in mL) of the 90% stock solution (which we’ll call y) and the amount
(in mL) of water (which we’ll call w). We now need to determine some relationships between these
variables. Our goal is to produce 500 milliliters of a 40% acid solution. This product has two
defining characteristics. First, it must be 500 mL; second, it must be 40% acid. We take each

13Here, any choice of s and t will determine a solution which is a point in 4-dimensional space. Yeah, we have
trouble visualizing that, too.
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of these qualities in turn. First, the total volume of 500 mL must be the sum of the contributed
volumes of the two stock solutions and the water. That is

amount of 30% stock solution + amount of 90% stock solution + amount of water = 500mL

Using our defined variables, this reduces to x+ y +w = 500. Next, we need to make sure the final
solution is 40% acid. Since water contains no acid, the acid will come from the stock solutions only.
We find 40% of 500 mL to be 200 mL which means the final solution must contain 200 mL of acid.
We have

amount of acid in 30% stock solution + amount of acid 90% stock solution = 200mL

The amount of acid in x mL of 30% stock is 0.30x and the amount of acid in y mL of 90% solution
is 0.90y. We have 0.30x+0.90y = 200. Converting to fractions,14 our system of equations becomes{

x+ y + w = 500
3
10x+ 9

10y = 200

We first eliminate the x from the second equation

{
(E1) x+ y + w = 500
(E2) 3

10x+ 9
10y = 200

Replace E2 with − 3
10

E1 + E2−−−−−−−−−−−−−−−−−−→
{

(E1) x+ y + w = 500
(E2) 3

5y − 3
10w = 50

Next, we get a coefficient of 1 on the leading variable in E2{
(E1) x+ y + w = 500
(E2) 3

5y − 3
10w = 50

Replace E2 with 5
3
E2−−−−−−−−−−−−−→

{
(E1) x+ y + w = 500
(E2) y − 1

2w = 250
3

Notice that we have no equation to determine w, and as such, w is free. We set w = t and from E2
get y = 1

2 t+
250
3 . Substituting into E1 gives x+

(
1
2 t+

250
3

)
+ t = 500 so that x = −3

2 t+
1250
3 . This

system is consistent, dependent and its solution set is {(−3
2 t+

1250
3 , 12 t+

250
3 , t

) | − ∞ < t < ∞}.
While this answer checks algebraically, we have neglected to take into account that x, y and w,
being amounts of acid and water, need to be nonnegative. That is, x ≥ 0, y ≥ 0 and w ≥ 0. The
constraint x ≥ 0 gives us −3

2 t+
1250
3 ≥ 0, or t ≤ 2500

9 . From y ≥ 0, we get 1
2 t+

250
3 ≥ 0 or t ≥ −500

3 .
The condition z ≥ 0 yields t ≥ 0, and we see that when we take the set theoretic intersection of
these intervals, we get 0 ≤ t ≤ 2500

9 . Our final answer is {(−3
2 t+

1250
3 , 12 t+

250
3 , t

) | 0 ≤ t ≤ 2500
9 }.

Of what practical use is our answer? Suppose there is only 100 mL of the 90% solution remaining
and it is due to expire. Can we use all of it to make our required solution? We would have y = 100
so that 1

2 t +
250
3 = 100, and we get t = 100

3 . This means the amount of 30% solution required is
x = −3

2 t +
1250
3 = −3

2

(
100
3

)
+ 1250

3 = 1100
3 mL, and for the water, w = t = 100

3 mL. The reader is
invited to check that mixing these three amounts of our constituent solutions produces the required
40% acid mix.

14We do this only because we believe students can use all of the practice with fractions they can get!
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8.1.1 Exercises

(Review Exercises) In Exercises 1 - 8, take a trip down memory lane and solve the given system
using substitution and/or elimination. Classify each system as consistent independent, consistent
dependent, or inconsistent. Check your answers both algebraically and graphically.

1.

{
x+ 2y = 5

x = 6
2.

{
2y − 3x = 1

y = −3

3.

{
x+2y
4 = −5

3x−y
2 = 1

4.

{
2
3x− 1

5y = 3

1
2x+ 3

4y = 1

5.

{
1
2x− 1

3y = −1

2y − 3x = 6
6.

{
x+ 4y = 6

1
12x+ 1

3y = 1
2

7.

{
3y − 3

2x = −15
2

1
2x− y = 3

2

8.

{
5
6x+ 5

3y = −7
3

−10
3 x− 20

3 y = 10

In Exercises 9 - 26, put each system of linear equations into triangular form and solve the system
if possible. Classify each system as consistent independent, consistent dependent, or inconsistent.

9.

{ −5x+ y = 17
x+ y = 5 10.

⎧⎨
⎩

x+ y + z = 3
2x− y + z = 0

−3x+ 5y + 7z = 7

11.

⎧⎨
⎩

4x− y + z = 5
2y + 6z = 30
x+ z = 5

12.

⎧⎨
⎩

4x− y + z = 5
2y + 6z = 30
x+ z = 6

13.

{
x+ y + z = −17

y − 3z = 0 14.

⎧⎨
⎩

x− 2y + 3z = 7
−3x+ y + 2z = −5
2x+ 2y + z = 3

15.

⎧⎨
⎩

3x− 2y + z = −5
x+ 3y − z = 12
x+ y + 2z = 0

16.

⎧⎨
⎩

2x− y + z = −1
4x+ 3y + 5z = 1

5y + 3z = 4

17.

⎧⎨
⎩

x− y + z = −4
−3x+ 2y + 4z = −5

x− 5y + 2z = −18
18.

⎧⎨
⎩

2x− 4y + z = −7
x− 2y + 2z = −2

−x+ 4y − 2z = 3

19.

⎧⎨
⎩

2x− y + z = 1
2x+ 2y − z = 1

3x+ 6y + 4z = 9
20.

⎧⎨
⎩

x− 3y − 4z = 3
3x+ 4y − z = 13

2x− 19y − 19z = 2
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21.

⎧⎨
⎩

x+ y + z = 4
2x− 4y − z = −1

x− y = 2
22.

⎧⎨
⎩

x− y + z = 8
3x+ 3y − 9z = −6
7x− 2y + 5z = 39

23.

⎧⎨
⎩

2x− 3y + z = −1
4x− 4y + 4z = −13
6x− 5y + 7z = −25

24.

⎧⎪⎪⎨
⎪⎪⎩

2x1 + x2 − 12x3 − x4 = 16
−x1 + x2 + 12x3 − 4x4 = −5
3x1 + 2x2 − 16x3 − 3x4 = 25

x1 + 2x2 − 5x4 = 11

25.

⎧⎪⎪⎨
⎪⎪⎩

x1 − x3 = −2
2x2 − x4 = 0

x1 − 2x2 + x3 = 0
−x3 + x4 = 1

26.

⎧⎪⎪⎨
⎪⎪⎩

x1 − x2 − 5x3 + 3x4 = −1
x1 + x2 + 5x3 − 3x4 = 0

x2 + 5x3 − 3x4 = 1
x1 − 2x2 − 10x3 + 6x4 = −1

27. Find two other forms of the parametric solution to Exercise 11 above by reorganizing the
equations so that x or y can be the free variable.

28. A local buffet charges $7.50 per person for the basic buffet and $9.25 for the deluxe buffet
(which includes crab legs.) If 27 diners went out to eat and the total bill was $227.00 before
taxes, how many chose the basic buffet and how many chose the deluxe buffet?

29. At The Old Home Fill’er Up and Keep on a-Truckin’ Cafe, Mavis mixes two different types
of coffee beans to produce a house blend. The first type costs $3 per pound and the second
costs $8 per pound. How much of each type does Mavis use to make 50 pounds of a blend
which costs $6 per pound?

30. Skippy has a total of $10,000 to split between two investments. One account offers 3% simple
interest, and the other account offers 8% simple interest. For tax reasons, he can only earn
$500 in interest the entire year. How much money should Skippy invest in each account to
earn $500 in interest for the year?

31. A 10% salt solution is to be mixed with pure water to produce 75 gallons of a 3% salt solution.
How much of each are needed?

32. At The Crispy Critter’s Head Shop and Patchouli Emporium along with their dried up weeds,
sunflower seeds and astrological postcards they sell an herbal tea blend. By weight, Type I
herbal tea is 30% peppermint, 40% rose hips and 30% chamomile, Type II has percents 40%,
20% and 40%, respectively, and Type III has percents 35%, 30% and 35%, respectively. How
much of each Type of tea is needed to make 2 pounds of a new blend of tea that is equal
parts peppermint, rose hips and chamomile?

33. Discuss with your classmates how you would approach Exercise 32 above if they needed to
use up a pound of Type I tea to make room on the shelf for a new canister.

34. If you were to try to make 100 mL of a 60% acid solution using stock solutions at 20% and
40%, respectively, what would the triangular form of the resulting system look like? Explain.
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8.1.2 Answers

1. Consistent independent
Solution

(
6,−1

2

) 2. Consistent independent
Solution

(−7
3 ,−3

)
3. Consistent independent

Solution
(−16

7 ,−62
7

) 4. Consistent independent
Solution

(
49
12 ,−25

18

)
5. Consistent dependent

Solution
(
t, 32 t+ 3

)
for all real numbers t

6. Consistent dependent
Solution (6− 4t, t)
for all real numbers t

7. Inconsistent
No solution

8. Inconsistent
No solution

Because triangular form is not unique, we give only one possible answer to that part of the question.
Yours may be different and still be correct.

9.

{
x+ y = 5

y = 7
Consistent independent
Solution (−2, 7)

10.

⎧⎪⎨
⎪⎩

x− 5
3y − 7

3z = −7
3

y + 5
4z = 2
z = 0

Consistent independent
Solution (1, 2, 0)

11.

⎧⎪⎨
⎪⎩

x− 1
4y +

1
4z = 5

4

y + 3z = 15
0 = 0

Consistent dependent
Solution (−t+ 5,−3t+ 15, t)
for all real numbers t

12.

⎧⎪⎨
⎪⎩

x− 1
4y +

1
4z = 5

4

y + 3z = 15
0 = 1

Inconsistent
No solution

13.

{
x+ y + z = −17

y − 3z = 0
Consistent dependent
Solution (−4t− 17, 3t, t)
for all real numbers t

14.

⎧⎨
⎩

x− 2y + 3z = 7
y − 11

5 z = −16
5

z = 1

Consistent independent
Solution (2,−1, 1)
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15.

⎧⎨
⎩

x+ y + 2z = 0
y − 3

2z = 6
z = −2

Consistent independent
Solution (1, 3,−2)

16.

⎧⎪⎨
⎪⎩

x− 1
2y +

1
2z = −1

2

y + 3
5z = 3

5
0 = 1

Inconsistent
no solution

17.

⎧⎨
⎩

x− y + z = −4
y − 7z = 17

z = −2

Consistent independent
Solution (1, 3,−2)

18.

⎧⎨
⎩

x− 2y + 2z = −2
y = 1

2
z = 1

Consistent independent
Solution

(−3, 12 , 1
)

19.

⎧⎪⎨
⎪⎩

x− 1
2y +

1
2z = 1

2

y − 2
3z = 0
z = 1

Consistent independent
Solution

(
1
3 ,

2
3 , 1

)

20.

⎧⎨
⎩

x− 3y − 4z = 3
y + 11

13z = 4
13

0 = 0

Consistent dependent
Solution

(
19
13 t+

51
13 ,−11

13 t+
4
13 , t

)
for all real numbers t

21.

⎧⎨
⎩

x+ y + z = 4
y + 1

2z = 3
2

0 = 1

Inconsistent
no solution

22.

⎧⎨
⎩

x− y + z = 8
y − 2z = −5

z = 1

Consistent independent
Solution (4,−3, 1)

23.

⎧⎪⎨
⎪⎩

x− 3
2y +

1
2z = −1

2

y + z = −11
2

0 = 0

Consistent dependent
Solution

(−2t− 35
4 ,−t− 11

2 , t
)

for all real numbers t

24.

⎧⎪⎪⎨
⎪⎪⎩

x1 +
2
3x2 − 16

3 x3 − x4 = 25
3

x2 + 4x3 − 3x4 = 2
0 = 0
0 = 0

Consistent dependent
Solution (8s− t+ 7,−4s+ 3t+ 2, s, t)
for all real numbers s and t

25.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 − x3 = −2

x2 − 1
2x4 = 0

x3 − 1
2x4 = 1

x4 = 4

Consistent independent
Solution (1, 2, 3, 4)
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26.

⎧⎪⎪⎨
⎪⎪⎩

x1 − x2 − 5x3 + 3x4 = −1
x2 + 5x3 − 3x4 = 1

2
0 = 1
0 = 0

Inconsistent
No solution

27. If x is the free variable then the solution is (t, 3t,−t+5) and if y is the free variable then the
solution is

(
1
3 t, t,−1

3 t+ 5
)
.

28. 13 chose the basic buffet and 14 chose the deluxe buffet.

29. Mavis needs 20 pounds of $3 per pound coffee and 30 pounds of $8 per pound coffee.

30. Skippy needs to invest $6000 in the 3% account and $4000 in the 8% account.

31. 22.5 gallons of the 10% solution and 52.5 gallons of pure water.

32. 4
3 − 1

2 t pounds of Type I,
2
3 − 1

2 t pounds of Type II and t pounds of Type III where 0 ≤ t ≤ 4
3 .


