
578 Systems of Equations and Matrices

8.3 Matrix Arithmetic

In Section 8.2, we used a special class of matrices, the augmented matrices, to assist us in solving
systems of linear equations. In this section, we study matrices as mathematical objects of their
own accord, temporarily divorced from systems of linear equations. To do so conveniently requires
some more notation. When we write A = [aij ]m×n, we mean A is an m by n matrix1 and aij is the
entry found in the ith row and jth column. Schematically, we have

j counts columns

from left to right

−−−−−−−−−−−−−−−→

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦
⏐⏐⏐⏐⏐⏐⏐⏐	

i counts rows

from top to bottom

With this new notation we can define what it means for two matrices to be equal.

Definition 8.6. Matrix Equality: Two matrices are said to be equal if they are the same size
and their corresponding entries are equal. More specifically, if A = [aij ]m×n and B = [bij ]p×r,
we write A = B provided

1. m = p and n = r

2. aij = bij for all 1 ≤ i ≤ m and all 1 ≤ j ≤ n.

Essentially, two matrices are equal if they are the same size and they have the same numbers in
the same spots.2 For example, the two 2× 3 matrices below are, despite appearances, equal.

[
0 −2 9

25 117 −3
]
=

[
ln(1) 3

√−8 e2 ln(3)

1252/3 32 · 13 log(0.001)

]
Now that we have an agreed upon understanding of what it means for two matrices to equal each
other, we may begin defining arithmetic operations on matrices. Our first operation is addition.

Definition 8.7. Matrix Addition: Given two matrices of the same size, the matrix obtained
by adding the corresponding entries of the two matrices is called the sum of the two matrices.
More specifically, if A = [aij ]m×n and B = [bij ]m×n, we define

A+B = [aij ]m×n + [bij ]m×n = [aij + bij ]m×n

As an example, consider the sum below.

1Recall that means A has m rows and n columns.
2Critics may well ask: Why not leave it at that? Why the need for all the notation in Definition 8.6? It is the

authors’ attempt to expose you to the wonderful world of mathematical precision.
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⎡
⎣ 2 3

4 −1
0 −7

⎤
⎦+

⎡
⎣ −1 4
−5 −3
8 1

⎤
⎦ =

⎡
⎣ 2 + (−1) 3 + 4

4 + (−5) (−1) + (−3)
0 + 8 (−7) + 1

⎤
⎦ =

⎡
⎣ 1 7
−1 −4
8 −6

⎤
⎦

It is worth the reader’s time to think what would have happened had we reversed the order of the
summands above. As we would expect, we arrive at the same answer. In general, A+B = B + A
for matrices A and B, provided they are the same size so that the sum is defined in the first place.
This is the commutative property of matrix addition. To see why this is true in general, we
appeal to the definition of matrix addition. Given A = [aij ]m×n and B = [bij ]m×n,

A+B = [aij ]m×n + [bij ]m×n = [aij + bij ]m×n = [bij + aij ]m×n = [bij ]m×n + [aij ]m×n = B +A

where the second equality is the definition of A+ B, the third equality holds by the commutative
law of real number addition, and the fourth equality is the definition of B + A. In other words,
matrix addition is commutative because real number addition is. A similar argument shows the
associative property of matrix addition also holds, inherited in turn from the associative law
of real number addition. Specifically, for matrices A, B, and C of the same size, (A + B) + C =
A+(B+C). In other words, when adding more than two matrices, it doesn’t matter how they are
grouped. This means that we can write A+B +C without parentheses and there is no ambiguity
as to what this means.3 These properties and more are summarized in the following theorem.

Theorem 8.3. Properties of Matrix Addition

• Commutative Property: For all m× n matrices, A+B = B +A

• Associative Property: For all m× n matrices, (A+B) + C = A+ (B + C)

• Identity Property: If 0m×n is the m × n matrix whose entries are all 0, then 0m×n is
called the m × n additive identity and for all m× n matrices A

A+ 0m×n = 0m×n +A = A

• Inverse Property: For every given m × n matrix A, there is a unique matrix denoted
−A called the additive inverse of A such that

A+ (−A) = (−A) +A = 0m×n

The identity property is easily verified by resorting to the definition of matrix addition; just as the
number 0 is the additive identity for real numbers, the matrix comprised of all 0’s does the same
job for matrices. To establish the inverse property, given a matrix A = [aij ]m×n, we are looking
for a matrix B = [bij ]m×n so that A + B = 0m×n. By the definition of matrix addition, we must

3A technical detail which is sadly lost on most readers.
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have that aij + bij = 0 for all i and j. Solving, we get bij = −aij . Hence, given a matrix A,
its additive inverse, which we call −A, does exist and is unique and, moreover, is given by the
formula: −A = [−aij ]m×n. The long and short of this is: to get the additive inverse of a matrix,
take additive inverses of each of its entries. With the concept of additive inverse well in hand, we
may now discuss what is meant by subtracting matrices. You may remember from arithmetic that
a− b = a+ (−b); that is, subtraction is defined as ‘adding the opposite (inverse).’ We extend this
concept to matrices. For two matrices A and B of the same size, we define A−B = A+ (−B). At
the level of entries, this amounts to

A−B = A+ (−B) = [aij ]m×n + [−bij ]m×n = [aij + (−bij)]m×n = [aij − bij ]m×n
Thus to subtract two matrices of equal size, we subtract their corresponding entries. Surprised?

Our next task is to define what it means to multiply a matrix by a real number. Thinking back to
arithmetic, you may recall that multiplication, at least by a natural number, can be thought of as
‘rapid addition.’ For example, 2 + 2 + 2 = 3 · 2. We know from algebra4 that 3x = x+ x+ x, so it
seems natural that given a matrix A, we define 3A = A+A+A. If A = [aij ]m×n, we have

3A = A+A+A = [aij ]m×n + [aij ]m×n + [aij ]m×n = [aij + aij + aij ]m×n = [3aij ]m×n

In other words, multiplying the matrix in this fashion by 3 is the same as multiplying each entry
by 3. This leads us to the following definition.

Definition 8.8. Scalara Multiplication: We define the product of a real number and a
matrix to be the matrix obtained by multiplying each of its entries by said real number. More
specifically, if k is a real number and A = [aij ]m×n, we define

kA = k [aij ]m×n = [kaij ]m×n
aThe word ‘scalar’ here refers to real numbers. ‘Scalar multiplication’ in this context means we are multiplying

a matrix by a real number (a scalar).

One may well wonder why the word ‘scalar’ is used for ‘real number.’ It has everything to do with
‘scaling’ factors.5 A point P (x, y) in the plane can be represented by its position matrix, P :

(x, y)↔ P =

[
x
y

]
Suppose we take the point (−2, 1) and multiply its position matrix by 3. We have

3P = 3

[ −2
1

]
=

[
3(−2)
3(1)

]
=

[ −6
3

]
which corresponds to the point (−6, 3). We can imagine taking (−2, 1) to (−6, 3) in this fashion as
a dilation by a factor of 3 in both the horizontal and vertical directions. Doing this to all points
(x, y) in the plane, therefore, has the effect of magnifying (scaling) the plane by a factor of 3.

4The Distributive Property, in particular.
5See Section 1.7.
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As did matrix addition, scalar multiplication inherits many properties from real number arithmetic.
Below we summarize these properties.

Theorem 8.4. Properties of Scalar Multiplication

• Associative Property: For every m× n matrix A and scalars k and r, (kr)A = k(rA).

• Identity Property: For all m× n matrices A, 1A = A.

• Additive Inverse Property: For all m× n matrices A, −A = (−1)A.
• Distributive Property of Scalar Multiplication over Scalar Addition: For every
m× n matrix A and scalars k and r,

(k + r)A = kA+ rA

• Distributive Property of Scalar Multiplication over Matrix Addition: For all
m× n matrices A and B scalars k,

k(A+B) = kA+ kB

• Zero Product Property: If A is an m× n matrix and k is a scalar, then

kA = 0m×n if and only if k = 0 or A = 0m×n

As with the other results in this section, Theorem 8.4 can be proved using the definitions of scalar
multiplication and matrix addition. For example, to prove that k(A+B) = kA+ kB for a scalar k
and m× n matrices A and B, we start by adding A and B, then multiplying by k and seeing how
that compares with the sum of kA and kB.

k(A+B) = k
(
[aij ]m×n + [bij ]m×n

)
= k [aij + bij ]m×n = [k (aij + bij)]m×n = [kaij + kbij ]m×n

As for kA+ kB, we have

kA+ kB = k [aij ]m×n + k [bij ]m×n = [kaij ]m×n + [kbij ]m×n = [kaij + kbij ]m×n �

which establishes the property. The remaining properties are left to the reader. The properties in
Theorems 8.3 and 8.4 establish an algebraic system that lets us treat matrices and scalars more or
less as we would real numbers and variables, as the next example illustrates.

Example 8.3.1. Solve for the matrix A: 3A−
([

2 −1
3 5

]
+ 5A

)
=

[ −4 2
6 −2

]
+

1

3

[
9 12

−3 39

]
using the definitions and properties of matrix arithmetic.
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Solution.

3A−
([

2 −1
3 5

]
+ 5A

)
=

[ −4 2
6 −2

]
+

1

3

[
9 12

−3 39

]

3A+

{
−

([
2 −1
3 5

]
+ 5A

)}
=

[ −4 2
6 −2

]
+

[ (
1
3

)
(9)

(
1
3

)
(12)(

1
3

)
(−3) (

1
3

)
(39)

]

3A+ (−1)
([

2 −1
3 5

]
+ 5A

)
=

[ −4 2
6 −2

]
+

[
3 4

−1 13

]

3A+

{
(−1)

[
2 −1
3 5

]
+ (−1)(5A)

}
=

[ −1 6
5 11

]

3A+ (−1)
[
2 −1
3 5

]
+ (−1)(5A) =

[ −1 6
5 11

]

3A+

[
(−1)(2) (−1)(−1)
(−1)(3) (−1)(5)

]
+ ((−1)(5))A =

[ −1 6
5 11

]

3A+

[ −2 1
−3 −5

]
+ (−5)A =

[ −1 6
5 11

]

3A+ (−5)A+

[ −2 1
−3 −5

]
=

[ −1 6
5 11

]

(3 + (−5))A+

[ −2 1
−3 −5

]
+

(
−

[ −2 1
−3 −5

])
=

[ −1 6
5 11

]
+

(
−

[ −2 1
−3 −5

])

(−2)A+ 02×2 =

[ −1 6
5 11

]
−

[ −2 1
−3 −5

]

(−2)A =

[ −1− (−2) 6− 1
5− (−3) 11− (−5)

]

(−2)A =

[
1 5
8 16

]
(−1

2

)
((−2)A) = −1

2

[
1 5
8 16

]
((−1

2

)
(−2))A =

[ (−1
2

)
(1)

(−1
2

)
(5)(−1

2

)
(8)

(−1
2

)
(16)

]

1A =

[
−1

2 −5
2

−4 −16
2

]

A =

[
−1

2 −5
2

−4 −8

]

The reader is encouraged to check our answer in the original equation.
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While the solution to the previous example is written in excruciating detail, in practice many of
the steps above are omitted. We have spelled out each step in this example to encourage the reader
to justify each step using the definitions and properties we have established thus far for matrix
arithmetic. The reader is encouraged to solve the equation in Example 8.3.1 as they would any
other linear equation, for example: 3a− (2 + 5a) = −4 + 1

3(9).

We now turn our attention to matrix multiplication - that is, multiplying a matrix by another
matrix. Based on the ‘no surprises’ trend so far in the section, you may expect that in order to
multiply two matrices, they must be of the same size and you find the product by multiplying the
corresponding entries. While this kind of product is used in other areas of mathematics,6 we define
matrix multiplication to serve us in solving systems of linear equations. To that end, we begin by
defining the product of a row and a column. We motivate the general definition with an example.
Consider the two matrices A and B below.

A =

[
2 0 −1

−10 3 5

]
B =

⎡
⎣ 3 1 2 −8

4 8 −5 9
5 0 −2 −12

⎤
⎦

Let R1 denote the first row of A and C1 denote the first column of B. To find the ‘product’ of R1
with C1, denoted R1 ·C1, we first find the product of the first entry in R1 and the first entry in C1.
Next, we add to that the product of the second entry in R1 and the second entry in C1. Finally,
we take that sum and we add to that the product of the last entry in R1 and the last entry in C1.
Using entry notation, R1·C1 = a11b11+a12b21+a13b31 = (2)(3)+(0)(4)+(−1)(5) = 6+0+(−5) = 1.
We can visualize this schematically as follows

[
2 0 −1

−10 3 5

]⎡
⎣ 3 1 2 −8

4 8 −5 9
5 0 −2 −12

⎤
⎦

−−−−−−−−−→
2 0 −1

3
4
5

⏐⏐⏐⏐⏐	︸ ︷︷ ︸
−−−−−−−−−→
2 0 −1

3

4
5

⏐⏐⏐⏐⏐	︸ ︷︷ ︸
−−−−−−−−−→
2 0 −1

3
4

5

⏐⏐⏐⏐⏐	︸ ︷︷ ︸
a11b11 + a12b21 + a13b31
(2)(3) + (0)(4) + (−1)(5)

To find R2 · C3 where R2 denotes the second row of A and C3 denotes the third column of B, we
proceed similarly. We start with finding the product of the first entry of R2 with the first entry in
C3 then add to it the product of the second entry in R2 with the second entry in C3, and so forth.
Using entry notation, we have R2·C3 = a21b13+a22b23+a23b33 = (−10)(2)+(3)(−5)+(5)(−2) = −45.
Schematically,

[
2 0 −1

−10 3 5

]⎡
⎣ 3 1 2 −8

4 8 −5 9
5 0 −2 −12

⎤
⎦

6See this article on the Hadamard Product.
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−−−−−−−−−→
−10 3 5

2
−5
−2

⏐⏐⏐⏐⏐	︸ ︷︷ ︸
−−−−−−−−−→
−10 3 5

2

−5
−2

⏐⏐⏐⏐⏐	︸ ︷︷ ︸
−−−−−−−−−→
−10 3 5

2
−5
−2

⏐⏐⏐⏐⏐	︸ ︷︷ ︸
a21b13 = (−10)(2) = −20 + a22b23 = (3)(−5) = −15 + a23b33 = (5)(−2) = −10

Generalizing this process, we have the following definition.

Definition 8.9. Product of a Row and a Column: Suppose A = [aij ]m×n and B = [bij ]n×r.
Let Ri denote the ith row of A and let Cj denote the jth column of B. The product of Ri

and Cj, denoted Ri · Cj is the real number defined by

Ri · Cj = ai1b1j + ai2b2j + . . . ainbnj

Note that in order to multiply a row by a column, the number of entries in the row must match
the number of entries in the column. We are now in the position to define matrix multiplication.

Definition 8.10. Matrix Multiplication: Suppose A = [aij ]m×n and B = [bij ]n×r. Let Ri
denote the ith row of A and let Cj denote the jth column of B. The product of A and B,
denoted AB, is the matrix defined by

AB = [Ri · Cj]m×r

that is

AB =

⎡
⎢⎢⎢⎣

R1 · C1 R1 · C2 . . . R1 · Cr
R2 · C1 R2 · C2 . . . R2 · Cr

...
...

...
Rm · C1 Rm · C2 . . . Rm · Cr

⎤
⎥⎥⎥⎦

There are a number of subtleties in Definition 8.10 which warrant closer inspection. First and
foremost, Definition 8.10 tells us that the ij-entry of a matrix product AB is the ith row of A
times the jth column of B. In order for this to be defined, the number of entries in the rows of A
must match the number of entries in the columns of B. This means that the number of columns
of A must match7 the number of rows of B. In other words, to multiply A times B, the second
dimension of A must match the first dimension of B, which is why in Definition 8.10, Am×n is being
multiplied by a matrix Bn×r. Furthermore, the product matrix AB has as many rows as A and as
many columns of B. As a result, when multiplying a matrix Am×n by a matrix Bn×r, the result is
the matrix ABm×r. Returning to our example matrices below, we see that A is a 2× 3 matrix and
B is a 3× 4 matrix. This means that the product matrix AB is defined and will be a 2× 4 matrix.

A =

[
2 0 −1

−10 3 5

]
B =

⎡
⎣ 3 1 2 −8

4 8 −5 9
5 0 −2 −12

⎤
⎦

7The reader is encouraged to think this through carefully.



8.3 Matrix Arithmetic 585

Using Ri to denote the ith row of A and Cj to denote the jth column of B, we form AB according
to Definition 8.10.

AB =

[
R1 · C1 R1 · C2 R1 · C3 R1 · C4
R2 · C1 R2 · C2 R2 · C3 R2 · C4

]
=

[
1 2 6 −4
7 14 −45 47

]
Note that the product BA is not defined, since B is a 3× 4 matrix while A is a 2× 3 matrix; B has
more columns than A has rows, and so it is not possible to multiply a row of B by a column of A.
Even when the dimensions of A and B are compatible such that AB and BA are both defined, the
product AB and BA aren’t necessarily equal.8 In other words, AB may not equal BA. Although
there is no commutative property of matrix multiplication in general, several other real number
properties are inherited by matrix multiplication, as illustrated in our next theorem.

Theorem 8.5. Properties of Matrix Multiplication Let A, B and C be matrices such that
all of the matrix products below are defined and let k be a real number.

• Associative Property of Matrix Multiplication: (AB)C = A(BC)

• Associative Property with Scalar Multiplication: k(AB) = (kA)B = A(kB)

• Identity Property: For a natural number k, the k× k identity matrix, denoted Ik, is
defined by Ik = [dij ]k×k where

dij =

{
1, if i = j
0, otherwise

For all m× n matrices, ImA = AIn = A.

• Distributive Property of Matrix Multiplication over Matrix Addition:

A(B ± C) = AB ±AC and (A±B)C = AC ±BC

The one property in Theorem 8.5 which begs further investigation is, without doubt, the multi-
plicative identity. The entries in a matrix where i = j comprise what is called the main diagonal
of the matrix. The identity matrix has 1’s along its main diagonal and 0’s everywhere else. A few
examples of the matrix Ik mentioned in Theorem 8.5 are given below. The reader is encouraged to
see how they match the definition of the identity matrix presented there.

[1]

[
1 0
0 1

] ⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

I1 I2 I3 I4

8And may not even have the same dimensions. For example, if A is a 2× 3 matrix and B is a 3× 2 matrix, then
AB is defined and is a 2× 2 matrix while BA is also defined... but is a 3× 3 matrix!
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The identity matrix is an example of what is called a square matrix as it has the same number
of rows as columns. Note that to in order to verify that the identity matrix acts as a multiplicative
identity, some care must be taken depending on the order of the multiplication. For example, take
the matrix 2× 3 matrix A from earlier

A =

[
2 0 −1

−10 3 5

]

In order for the product IkA to be defined, k = 2; similarly, for AIk to be defined, k = 3. We leave
it to the reader to show I2A = A and AI3 = A. In other words,

[
1 0
0 1

] [
2 0 −1

−10 3 5

]
=

[
2 0 −1

−10 3 5

]

and [
2 0 −1

−10 3 5

]⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ =

[
2 0 −1

−10 3 5

]

While the proofs of the properties in Theorem 8.5 are computational in nature, the notation becomes
quite involved very quickly, so they are left to a course in Linear Algebra. The following example
provides some practice with matrix multiplication and its properties. As usual, some valuable
lessons are to be learned.

Example 8.3.2.

1. Find AB for A =

[ −23 −1 17
46 2 −34

]
and B =

⎡
⎣ −3 2

1 5
−4 3

⎤
⎦

2. Find C2 − 5C + 10I2 for C =

[
1 −2
3 4

]

3. Suppose M is a 4× 4 matrix. Use Theorem 8.5 to expand (M − 2I4) (M + 3I4).

Solution.

1. We have AB =

[ −23 −1 17
46 2 −34

]⎡
⎣ −3 2

1 5
−4 3

⎤
⎦ =

[
0 0
0 0

]

2. Just as x2 means x times itself, C2 denotes the matrix C times itself. We get
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C2 − 5C + 10I2 =

[
1 −2
3 4

]2
− 5

[
1 −2
3 4

]
+ 10

[
1 0
0 1

]

=

[
1 −2
3 4

] [
1 −2
3 4

]
+

[ −5 10
−15 −20

]
+

[
10 0
0 10

]

=

[ −5 −10
15 10

]
+

[
5 10

−15 −10
]

=

[
0 0
0 0

]

3. We expand (M − 2I4) (M + 3I4) with the same pedantic zeal we showed in Example 8.3.1.
The reader is encouraged to determine which property of matrix arithmetic is used as we
proceed from one step to the next.

(M − 2I4) (M + 3I4) = (M − 2I4)M + (M − 2I4) (3I4)
= MM − (2I4)M +M (3I4)− (2I4) (3I4)
= M2 − 2 (I4M) + 3 (MI4)− 2 (I4 (3I4))
= M2 − 2M + 3M − 2 (3 (I4I4))
= M2 +M − 6I4

Example 8.3.2 illustrates some interesting features of matrix multiplication. First note that in
part 1, neither A nor B is the zero matrix, yet the product AB is the zero matrix. Hence, the
the zero product property enjoyed by real numbers and scalar multiplication does not hold for
matrix multiplication. Parts 2 and 3 introduce us to polynomials involving matrices. The reader is
encouraged to step back and compare our expansion of the matrix product (M − 2I4) (M + 3I4) in
part 3 with the product (x − 2)(x + 3) from real number algebra. The exercises explore this kind
of parallel further.

As we mentioned earlier, a point P (x, y) in the xy-plane can be represented as a 2 × 1 position
matrix. We now show that matrix multiplication can be used to rotate these points, and hence
graphs of equations.

Example 8.3.3. Let R =

[ √
2
2 −

√
2
2√

2
2

√
2
2

]
.

1. Plot P (2,−2), Q(4, 0), S(0, 3), and T (−3,−3) in the plane as well as the points RP , RQ,
RS, and RT . Plot the lines y = x and y = −x as guides. What does R appear to be doing
to these points?

2. If a point P is on the hyperbola x2 − y2 = 4, show that the point RP is on the curve y = 2
x .
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Solution. For P (2,−2), the position matrix is P =

[
2

−2
]
, and

RP =

[ √
2
2 −

√
2
2√

2
2

√
2
2

][
2

−2

]

=

[
2
√
2
0

]

We have that R takes (2,−2) to (2
√
2, 0). Similarly, we find (4, 0) is moved to (2

√
2, 2
√
2), (0, 3)

is moved to
(
−3
√
2

2 , 3
√
2

2

)
, and (−3,−3) is moved to (0,−3√2). Plotting these in the coordinate

plane along with the lines y = x and y = −x, we see that the matrix R is rotating these points
counterclockwise by 45◦.

P

RP

Q

RQ
S

RS

T

RT

x

y

−4 −3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

4

For a generic point P (x, y) on the hyperbola x2 − y2 = 4, we have

RP =

[ √
2
2 −

√
2
2√

2
2

√
2
2

][
x

y

]

=

[ √
2
2 x−

√
2
2 y

√
2
2 x+

√
2
2 y

]

which means R takes (x, y) to
(√

2
2 x−

√
2
2 y,

√
2
2 x+

√
2
2 y

)
. To show that this point is on the curve

y = 2
x , we replace x with

√
2
2 x−

√
2
2 y and y with

√
2
2 x+

√
2
2 y and simplify.
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y = 2
x√

2
2 x+

√
2
2 y

?
= 2√

2
2
x−

√
2

2
y(√

2
2 x−

√
2
2 y

)(√
2
2 x+

√
2
2 y

)
?
=

(
2√

2
2 x−

√
2
2 y

)(√
2
2 x−

√
2
2 y

)
(√

2
2 x

)2 −
(√

2
2 y

)2 ?
= 2

x2

2 − y2

2
?
= 2

x2 − y2
�
= 4

Since (x, y) is on the hyperbola x2 − y2 = 4, we know that this last equation is true. Since all of
our steps are reversible, this last equation is equivalent to our original equation, which establishes
the point is, indeed, on the graph of y = 2

x . This means the graph of y = 2
x is a hyperbola, and it

is none other than the hyperbola x2− y2 = 4 rotated counterclockwise by 45◦.9 Below we have the
graph of x2 − y2 = 4 (solid line) and y = 2

x (dashed line) for comparison.

x

y

−3 −1 1 3 4

−3

−2

−1

1

2

3

4

When we started this section, we mentioned that we would temporarily consider matrices as their
own entities, but that the algebra developed here would ultimately allow us to solve systems of
linear equations. To that end, consider the system⎧⎨

⎩
3x− y + z = 8
x+ 2y − z = 4

2x+ 3y − 4z = 10

In Section 8.2, we encoded this system into the augmented matrix⎡
⎣ 3 −1 1 8

1 2 −1 4
2 3 −4 10

⎤
⎦

9See Section 7.5 for more details.
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Recall that the entries to the left of the vertical line come from the coefficients of the variables in
the system, while those on the right comprise the associated constants. For that reason, we may
form the coefficient matrix A, the unknowns matrix X and the constant matrix B as below

A =

⎡
⎣ 3 −1 1

1 2 −1
2 3 −4

⎤
⎦ X =

⎡
⎣ x

y
z

⎤
⎦ B =

⎡
⎣ 8

4
10

⎤
⎦

We now consider the matrix equation AX = B.

AX = B

⎡
⎣ 3 −1 1

1 2 −1
2 3 −4

⎤
⎦

⎡
⎣ x

y
z

⎤
⎦ =

⎡
⎣ 8

4
10

⎤
⎦

⎡
⎣ 3x− y + z

x+ 2y − z
2x+ 3y − 4z

⎤
⎦ =

⎡
⎣ 8

4
10

⎤
⎦

We see that finding a solution (x, y, z) to the original system corresponds to finding a solution X
for the matrix equation AX = B. If we think about solving the real number equation ax = b, we
would simply ‘divide’ both sides by a. Is it possible to ‘divide’ both sides of the matrix equation
AX = B by the matrix A? This is the central topic of Section 8.4.
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8.3.1 Exercises

For each pair of matrices A and B in Exercises 1 - 7, find the following, if defined

• 3A • −B • A2

• A− 2B • AB • BA

1. A =

[
2 −3
1 4

]
, B =

[
5 −2
4 8

]
2. A =

[ −1 5
−3 6

]
, B =

[
2 10

−7 1

]

3. A =

[ −1 3
5 2

]
, B =

[
7 0 8

−3 1 4

]
4. A =

[
2 4
6 8

]
, B =

[ −1 3 −5
7 −9 11

]

5. A =

⎡
⎣ 7

8
9

⎤
⎦, B =

[
1 2 3

]
6. A =

⎡
⎣ 1 −2
−3 4
5 −6

⎤
⎦, B =

[ −5 1 8
]

7. A =

⎡
⎣ 2 −3 5

3 1 −2
−7 1 −1

⎤
⎦, B =

⎡
⎣ 1 2 1

17 33 19
10 19 11

⎤
⎦

In Exercises 8 - 21, use the matrices

A =

[
1 2
3 4

]
B =

[
0 −3

−5 2

]
C =

[
10 −11

2 0
3
5 5 9

]

D =

⎡
⎣ 7 −13
−4

3 0
6 8

⎤
⎦ E =

⎡
⎣ 1 2 3

0 4 −9
0 0 −5

⎤
⎦

to compute the following or state that the indicated operation is undefined.

8. 7B − 4A 9. AB 10. BA

11. E +D 12. ED 13. CD + 2I2A

14. A− 4I2 15. A2 −B2 16. (A+B)(A−B)

17. A2 − 5A− 2I2 18. E2 + 5E − 36I3 19. EDC

20. CDE 21. ABCEDI2

22. Let A =

[
a b c
d e f

]
E1 =

[
0 1
1 0

]
E2 =

[
5 0
0 1

]
E3 =

[
1 −2
0 1

]
Compute E1A, E2A and E3A. What effect did each of the Ei matrices have on the rows of
A? Create E4 so that its effect on A is to multiply the bottom row by −6. How would you
extend this idea to matrices with more than two rows?
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In Exercises 23 - 29, consider the following scenario. In the small village of Pedimaxus in the
country of Sasquatchia, all 150 residents get one of the two local newspapers. Market research
has shown that in any given week, 90% of those who subscribe to the Pedimaxus Tribune want to
keep getting it, but 10% want to switch to the Sasquatchia Picayune. Of those who receive the
Picayune, 80% want to continue with it and 20% want switch to the Tribune. We can express this
situation using matrices. Specifically, let X be the ‘state matrix’ given by

X =

[
T
P

]
where T is the number of people who get the Tribune and P is the number of people who get the
Picayune in a given week. Let Q be the ‘transition matrix’ given by

Q =

[
0.90 0.20
0.10 0.80

]
such that QX will be the state matrix for the next week.

23. Let’s assume that when Pedimaxus was founded, all 150 residents got the Tribune. (Let’s
call this Week 0.) This would mean

X =

[
150

0

]
Since 10% of that 150 want to switch to the Picayune, we should have that for Week 1, 135
people get the Tribune and 15 people get the Picayune. Show that QX in this situation is
indeed

QX =

[
135
15

]
24. Assuming that the percentages stay the same, we can get to the subscription numbers for

Week 2 by computing Q2X. How many people get each paper in Week 2?

25. Explain why the transition matrix does what we want it to do.

26. If the conditions do not change from week to week, then Q remains the same and we have
what’s known as a Stochastic Process10 because Week n’s numbers are found by computing
QnX. Choose a few values of n and, with the help of your classmates and calculator, find out
how many people get each paper for that week. You should start to see a pattern as n→∞.

27. If you didn’t see the pattern, we’ll help you out. Let

Xs =

[
100
50

]
.

Show that QXs = Xs This is called the steady state because the number of people who get
each paper didn’t change for the next week. Show that QnX → Xs as n→∞.

10More specifically, we have a Markov Chain, which is a special type of stochastic process.
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28. Now let

S =

[
2
3

2
3

1
3

1
3

]

Show that Qn → S as n→∞.

29. Show that SY = Xs for any matrix Y of the form

Y =

[
y

150− y

]

This means that no matter how the distribution starts in Pedimaxus, if Q is applied often
enough, we always end up with 100 people getting the Tribune and 50 people getting the
Picayune.

30. Let z = a + bi and w = c + di be arbitrary complex numbers. Associate z and w with the
matrices

Z =

[
a b
−b a

]
and W =

[
c d

−d c

]
Show that complex number addition, subtraction and multiplication are mirrored by the
associated matrix arithmetic. That is, show that Z +W , Z −W and ZW produce matrices
which can be associated with the complex numbers z + w, z − w and zw, respectively.

31. Let

A =

[
1 2
3 4

]
and B =

[
0 −3

−5 2

]
Compare (A+ B)2 to A2 + 2AB + B2. Discuss with your classmates what constraints must
be placed on two arbitrary matrices A and B so that both (A+B)2 and A2+2AB+B2 exist.
When will (A+B)2 = A2+2AB+B2? In general, what is the correct formula for (A+B)2?

In Exercises 32 - 36, consider the following definitions. A square matrix is said to be an upper
triangular matrix if all of its entries below the main diagonal are zero and it is said to be a lower
triangular matrix if all of its entries above the main diagonal are zero. For example,

E =

⎡
⎣ 1 2 3

0 4 −9
0 0 −5

⎤
⎦

from Exercises 8 - 21 above is an upper triangular matrix whereas

F =

[
1 0
3 0

]

is a lower triangular matrix. (Zeros are allowed on the main diagonal.) Discuss the following
questions with your classmates.
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32. Give an example of a matrix which is neither upper triangular nor lower triangular.

33. Is the product of two n× n upper triangular matrices always upper triangular?

34. Is the product of two n× n lower triangular matrices always lower triangular?

35. Given the matrix

A =

[
1 2
3 4

]
write A as LU where L is a lower triangular matrix and U is an upper triangular matrix?

36. Are there any matrices which are simultaneously upper and lower triangular?
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8.3.2 Answers

1. For A =

[
2 −3
1 4

]
and B =

[
5 −2
4 8

]

• 3A =

[
6 −9
3 12

]
• −B =

[ −5 2
−4 −8

]
• A2 =

[
1 −18
6 13

]

• A− 2B =

[ −8 1
−7 −12

]
• AB =

[ −2 −28
21 30

]
• BA =

[
8 −23

16 20

]

2. For A =

[ −1 5
−3 6

]
and B =

[
2 10

−7 1

]

• 3A =

[ −3 15
−9 18

]
• −B =

[ −2 −10
7 −1

]
• A2 =

[ −14 25
−15 21

]

• A− 2B =

[ −5 −15
11 4

]
• AB =

[ −37 −5
−48 −24

]
• BA =

[ −32 70
4 −29

]

3. For A =

[ −1 3
5 2

]
and B =

[
7 0 8

−3 1 4

]

• 3A =

[ −3 9
15 6

]
• −B =

[ −7 0 −8
3 −1 −4

]
• A2 =

[
16 3
5 19

]

• A− 2B is not defined • AB =

[ −16 3 4
29 2 48

]
• BA is not defined

4. For A =

[
2 4
6 8

]
and B =

[ −1 3 −5
7 −9 11

]

• 3A =

[
6 12
18 24

]
• −B =

[
1 −3 5

−7 9 −11
]

• A2 =

[
28 40
60 88

]

• A− 2B is not defined • AB =

[
26 −30 34
50 −54 58

]
• BA is not defined
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5. For A =

⎡
⎣ 7

8
9

⎤
⎦ and B =

[
1 2 3

]

• 3A =

⎡
⎣ 21

24
27

⎤
⎦ • −B =

[ −1 −2 −3 ]

• A2 is not defined • A− 2B is not defined

• AB =

⎡
⎣ 7 14 21

8 16 24
9 18 27

⎤
⎦ • BA = [50]

6. For A =

⎡
⎣ 1 −2
−3 4
5 −6

⎤
⎦ and B =

[ −5 1 8
]

• 3A =

⎡
⎣ 3 −6
−9 12
15 −18

⎤
⎦ • −B =

[
5 −1 −8 ]

• A2 is not defined • A− 2B is not defined

• AB is not defined • BA =
[
32 −34 ]

7. For A =

⎡
⎣ 2 −3 5

3 1 −2
−7 1 −1

⎤
⎦ and B =

⎡
⎣ 1 2 1

17 33 19
10 19 11

⎤
⎦

• 3A =

⎡
⎣ 6 −9 15

9 3 −6
−21 3 −3

⎤
⎦ • −B =

⎡
⎣ −1 −2 −1
−17 −33 −19
−10 −19 −11

⎤
⎦

• A2 =

⎡
⎣ −40 −4 11

23 −10 15
−4 21 −36

⎤
⎦ • A− 2B =

⎡
⎣ 0 −7 3
−31 −65 −40
−27 −37 −23

⎤
⎦

• AB =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ • BA =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

8. 7B − 4A =

[ −4 −29
−47 −2

]
9. AB =

[ −10 1
−20 −1

]
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10. BA =

[ −9 −12
1 −2

]
11. E +D is undefined

12. ED =

⎡
⎢⎣

67
3 11

−178
3 −72

−30 −40

⎤
⎥⎦ 13. CD + 2I2A =

[
238
3 −126

863
15

361
5

]

14. A− 4I2 =

[ −3 2
3 0

]
15. A2 −B2 =

[ −8 16
25 3

]

16. (A+B)(A−B) =

[ −7 3
46 2

]
17. A2 − 5A− 2I2 =

[
0 0
0 0

]

18. E2 + 5E − 36I3 =

⎡
⎣ −30 20 −15

0 0 −36
0 0 −36

⎤
⎦ 19. EDC =

⎡
⎢⎣

3449
15 −407

6 99

−9548
15 −101

3 −648
−324 −35 −360

⎤
⎥⎦

20. CDE is undefined 21. ABCEDI2 =

[
−90749

15 −28867
5

−156601
15 −47033

5

]

22. E1A =

[
d e f
a b c

]
E1 interchanged R1 and R2 of A.

E2A =

[
5a 5b 5c
d e f

]
E2 multiplied R1 of A by 5.

E3A =

[
a− 2d b− 2e c− 2f

d e f

]
E3 replaced R1 in A with R1− 2R2.

E4 =

[
1 0
0 −6

]


