Team 99 Bottles Tech Spec

Lee Bernick, Colin Poler, Josh Woodard, Jackie Shen

Project Goal

Develop an engineered system in E. coli to degrade existing plastics in oceans.

Impact

- Clean areas
 polluted with
 plastic, especially
 beaches and
 plastic islands
- Preserve marine ecosystems

Device-Level Diagram

Parts: Plastic Sensor

Problem: Most plastics are too big to enter an E. coli cell

Solution: Secrete low levels of degradation enzymes. When the end-products of degradation are detected, secrete a lot more enzymes

Parts: Polyethylene Decomposer

Promoter type?

alcohol
dehydrogenase

alkane
hydroxylase

BVMO

- Activated when it receives a signal from the plastic sensor
- All enzymes needed to decompose a specific plastic will be encoded on one polycistronic DNA sequence.

Parts: OR gate

All plastic sensors will encode the activator LasR, which stimulates the PLas promoter.

Parts: Proliferation and Adhesion

- Enhance natural adhesion properties of E. coli
 - surface-activated platelets
 - Haven't yet been tested in E. coli
 - upregulate expression of hydrophobic proteins on membrane
- Still searching for enzyme to promote proliferation

Parts: Slow death

- OmpW allows E. Coli to survive in salty seawater
 - Only produce OmpW when plastics are detected
- Without plastics, the cells quickly sink to Davy Jones' Locker

OmpW- a salt pump

Assembly and Timing Di

Hydroquinone Styrene 2,3peroxidase dioxygenase

Parts: Kill Switch

Silencing ribosomal RNA (rRNA)

- Used in making proteins and therefore essential to E. coli survival
- rRNA is species-specific, so other organisms will not be harmed

Method: RNA interference (RNAi)/antisense RNA

 Added antisense RNA will bind to rRNA and prevent it from working

Testing and Debugging

- Test effectiveness and safety of decomposition enzymes
- Select for cells that have received our plasmid with an antibiotic
- Use fluorescent reporter genes such as GFP, YFP, mCherry, etc. to ensure that our promoters work when exposed to their respective signal

Concerns

- E. coli may not detect plastic quickly enough to survive
- System may be too complex
- Decomposition enzymes may have unforeseen effects on E. coli
- Biofilms may be hard to get rid of
- RNAi for the kill switch may be expensive or difficult to produce and apply

Summary

Decision

GO!!!