-Prepared 0.1M buffer solutions of pH 10, 11, & 12

NaOH added	pH	NaOH added	pH	NaOH added	pH
Water started = 150		Water started = 150		Water started = 150	
0	8.33	0	8.228	0	8.221
0.5	8.631	9	9.873	15	10.315
1	8.835	18	10.537	25	11.741
2	9.092	21	10.859	27	12.237
3	9.269	22	11.001	water = 73 ml	12.137
4	9.422	water = 78ml	11.03		
5.5	9.585				
7.5	9.762				
9.5	9.915				
10.5	9.991				
water added = 90.5	10.03				

-Made 10mM HAuCl₄ solution and 100mM AA solutions

-**10mM Au**= 10*10⁻³M Au:

[(10*10⁻³M HAuCl₄)(0.025L)]/(0.015L)= need to make 0.016M HAuCl₄ stock (339.79 g/mol)(0.016 mol/L)= (5.436 g/L)(0.100L)= 0.5436 g in 0.100 L and add 0.015625L in 0.025 L H₂O

-100mM Arginine= 1*10⁻⁵M Arginine:

 $[(1*10^{-5}M \text{ Arginine})(0.010L)]/(2.5*10^{-4}) = 0.0004mL = 400\mu L \text{ Arginine stock in } 0.010L \text{ H}_2\text{O}]$

-Prepared AuNP solutions using 10:1, 1:1, & 1:10 Au:AA (see table)

ph	10	11	12		
Solutions Made for Each pH	Au:2.5 *10 ⁻⁴ Arg (1:1:8)				
	Au:2.5 *10 ⁻⁴ Phe (1:1:8)				
cacii pri	Au:2.5 *10 ⁻⁴ lle (1	:1:8)			
	10mM Au: 100mM Arg (1:0.01:9				
	10mM Au: 100mM Arg (1:0.1:8.9)				
	10mM Au: 100mM Arg (1:1:8)				

-Prepared Buffer for Bradford Analysis: 1L 50mM Tris 50mM NaCl pH

-NaCl:

$$(50*10^{-3} \text{mol/L}) * (58.44 \text{g/mol}) * (0.100 \text{L}) = 2.922 \text{g NaCl}$$

-Tris:

$$(50*10^{-3} \text{mol/L}) * (121.14 \text{g/mol}) * (0.100 \text{L}) = 6.057 \text{g Tris}$$

-Added 0.025mL HCl to bring pH to 7.575

-Prepared Buffer for Dialysis: 100mL Glycine Buffer with pH= 3.5

HCl added		pH	
	0	5.594	
	0.1	4.333	
	0.15	4.215	
	0.2	4.122	
	0.25	4.055	
	0.35	3.936	
	0.45	3.85	
	0.55	3.776	
	0.65	3.652	
	0.75	3.6	
	0.85	3.555	
	0.95	3.509	
			Г

<u>-Prepare Buffer for SDS-PAGE</u> used instructions on task list