09/12/2017

Tasklist:

- Prepare 0.1 M buffer solutions of $\mathrm{pH} 10,11$, and 12
- Make a $10 \mathrm{mM} \mathrm{HAuCl}_{4}$ and a 100 mM Amino Acid Solutions
- Prepare buffer for Bradford Analysis
- Prepare buffer for Dialysis
- Prepare buffer for SDS-PAGE

My group did not finish the buffer for the dialysis or the SDS-PAGE. These two buffers were prepared the following classes.

$>0.1 \mathrm{M}$ Buffer Solutions of $\mathrm{pH} 10,11$, and 12

-Prepare a solution with an acid and its conjugate base by dissolving the acid form of buffer into about 60% of the volume of H 2 O required to obtain final volume
-Acid: Na2HPO4
-Conjugate Base: Na3PO4
-The objective of the calculations is to find the amount of Na2HPO4 and Na3PO4 in grams to measure out and add into the volumetric flask.
--> Google pKa value: 12.32
--> Equation to use: $\mathrm{pH}=\mathrm{pKa}+\log ([\mathrm{OH}] /[\mathrm{H}])$
$-->[H]=0.1 \mathrm{M}$ since this is a 0.1 M buffer solution
--> Calculations for pH 10
Step 1: Find the [OH]
$\mathrm{pH}=\mathrm{pKa}+\log ([\mathrm{OH}] /[\mathrm{H}])$
$10=12.32+\log ([\mathrm{OH}] / 0.1)$
$0.0047863=[\mathrm{OH}] / 0.1$
$[\mathrm{OH}]=4.7863 \times 10^{\wedge}-4 \mathrm{M}$
Step 2: Use $[\mathrm{OH}]$ to find the grams of Na 3 PO 4
$4.7863 \times 10^{\wedge}-4 \mathrm{M}=$ moles $/$ volume $=$ mole $/ 0.25 \mathrm{~L}$ moles $=1.1965 \times 10^{\wedge}-4$
moles $=$ grams $/$ MW of Na3PO4
$1.1965 \times 10^{\wedge}-4$ moles $=\mathrm{g} / 163.94$
$\mathbf{N a 3 P O} 4$ grams= $\mathbf{0 . 0 1 9 6 1 6}$
Step 3: Use [H] to find the grams of Na2HPO4 $0.1 \mathrm{M}=$ moles $/$ volume $=$ mole $/ 0.25 \mathrm{~L}$
moles $=0.025$
moles $=$ grams/ MW of Na2HPO4
0.025 moles $=\mathrm{g} / 141.96 \mathrm{MW}$

$\mathrm{Na} 2 \mathrm{HPO} 4 \mathrm{~g}=3.549$

--> Calculations for pH 11 and pH 12 were calculated using the same method as above.
$>10 \mathrm{mM} \mathrm{HAuCl} 4$ and a 100 mM Amino Acid Solutions
--> 10 mM HAuCl4 Solution (Molar Mass of HAuCl4 $=339.785 \mathrm{~g} / \mathrm{mol}$)
M= mole/ L
$10 \times 10^{\wedge}-3 \mathrm{M}=$ moles $/ 0.25 \mathrm{~L}$
Moles $=0.0025$
moles $=\mathrm{g} / \mathrm{MW}$
0.0025 moles $=\mathrm{g} / 339.785 \mathrm{MW}$

HAuCl4 grams= $\mathbf{0 . 8 4 9 5}$
--> Prepare Tubes with HAuCl4, Amino Acid, and Buffer
Note: 3 samples were made for each amino acid because the three different buffers ($\mathrm{pH} 10, \mathrm{pH}$ 11 , and pH 12) were used.

	Amino Acid	HAuCl_{4}	Buffer
Arg	1 mL	1 mL	8 mL
Phen	1 mL	1 mL	8 mL
Iso	1 mL	1 mL	8 mL

Below are the pictures of these samples.

Figure 1: AuNP and Amino Acids with pH Buffers

Figure 1 shows the different solutions that contained pH buffers. (a) shows the solutions that contained arginine. The sample with a pH of 12 has a purple hue. The other two samples were completely clear. (b) shows the solutions that contained phenylalanine. All three samples were completely clear. (c) shows the solutions that contained isoleucine. All three samples were completely clear.
$>$ Remake HAuCl_{4} and Arginine Samples with Varying Concentrations of Arginine

	Arginine	HAuCl_{4}	Buffer
Test Tube 1	0.01 mL	1 mL	8.9 mL
Test Tube 2	0.1 mL	1 mL	8.9 mL
Test Tube 3	1 mL	1 mL	8 mL

These test tube sets were completed three different times using buffers $\mathrm{pH} 10,11$, and 12 . Below are the pictures of these samples. Unfortunately, we forgot to take the UV/Vis

Figure 2: AuNP and Arg at Different Arg Concentrations and Different pH

Figure 2 shows AuNP and arginine at different arginine concentrations and at different pHs . (a) shows 0.01 mM of arginine at pHs of 10,11 , and 12 . The solution at a pH of 11 had a dark purple hue. The solution at a pH of 12 had a light pink hue. (b) shows 0.1 mM of arginine at pHs of 10,11 , and 12 . The solution at a pH of 12 had a slight pink hue, and the solution at a pH of 10 had a dark purple hue. (b) shows 2.5 mM of arginine at $\mathrm{pHs} 10,11$, and 12. All these solutions were completely clear.
$>$ Prepare buffer for Bradford Analysis
-1 L 50 mM Tris
$-50 \mathrm{mM} \mathrm{NaCl}$
$-\mathrm{pH}=7.5$
-Calculation:
$(0.05 \mathrm{M})(121.14 \mathrm{MW}$ Tris $)=\mathbf{6 . 0 5 7} \mathbf{g}$ of Tris
$(0.05 \mathrm{M}(58.44 \mathrm{MW} \mathrm{NaCl})=\mathbf{2 . 9 2 2} \mathbf{g}$ of $\mathbf{~ N a C l}$

