Welcome to 20.109

Laboratory Fundamentals of Biological Engineering

Orientation Lecture
Spring 2011

Introducing 20.109

- Why you're here
 - course mission
 - on learning and investigation

- What you'll do
 - three experimental modules
 - assessments/communication
 - course logistics

Course Mission for 20.109

- To teach cutting edge research skill and technology through authentic investigation
- To inspire rigorous data analysis and its thoughtful communication
- To prepare students to be the future of Biological Engineering

A cliché: my life has CHANGED

What drives his learning?

Observations on how babies learn

- Driven by wanting to do specific things
 - not external rewards
- Intuitively does experiments
 - gravity testing!
- Wants to communicate
 - gazing, kicking, babbling
- Needs to fail repeatedly
 - and be scaffolded along the way
- Likes bright, shiny objects

Mimicking a baby's learning in 20.109

- Driven by wanting to do
 - grade desire only gets you so far
- Intuitively does experiments
 - include your ideas/designs/input
- Wants to communicate
 - big reports taxing but rewarding
- Needs to fail repeatedly
 - not judged on experiment's success, but on interpretation
 - many opportunities to revise writing
- Likes bright, shiny objects
 - fun equipment to play with

Scientific investigation: a look at recommendations for solid food

- WHO recommends 6 months of breast milk only
 - one reason is gut immaturity → allergy concerns
- Some researchers challenge the guideline (or basis)
- Solid foods and allergies: literature says
 - too early is bad
 - too late is bad
 - depends on the food
 - depends on the baby

A closer look at one study: design

- Read abstract of Nwaru, et al. paper
- What sounds good and what bad about the design?

A closer look: data and complications

Sensitization to egg allergen (OR w/95% CI)

More 20.109 lessons echoed as parent

- Reading critically is a useful life skill...
- ... and the devil is in the details
 - experimental design
 - raw vs. processed data
 - statistical analysis
 - sample size
 - research scope and limitations
 - is the question of most interest being asked?
- Note: not all authors will so scrupulously emphasize their specific findings and limits

And some things science cannot even hope to determine...

Is he laughing?

Uncomfortable?

Both?

Neither?

Course Mission for 20.109

- To teach cutting edge research skill and technology through authentic investigation
- To inspire rigorous data analysis and its thoughtful communication
- To prepare students to be the future of Biological Engineering

Engineering Principles + Modern Biology

Manipulate and Make

Tabor, J.J. et al. *Cell* **137**:1272 (2009).

Measure ← → **Model**

Myriad length scales, systems, and applications

openwetware.org/wiki/20.109(S11)

20.109(S11): Laboratory Fundamentals of Biological Engineering

Home People Schedule Spring 2011 Assignments Lab Basics OWW Basics RNA Engineering System Engineering Cell-Biomaterial Engineering

Module 1 RNA Engineering (J. Niles)

Module 2 System Engineering (R. Weiss)

Module 3 Cell/Biomaterial Engineering (A. Stachowiak)

RNA Engineering: aptamer enrichment

Image prepared using RNA folding at http://mfold.bioinfo.rpi.edu/

Experimental Goals

Design: Column conditions

- Prepare RNA aptamers
- Run heme affinity column
- Assess enrichment of binder

Lab+Analytical Skills

- Manipulate DNA and RNA
- Use computational tools
- Perform spectroscopic analysis
- Discuss/present scientific literature

System Engineering: improve edge detector

Experimental Goals

Design: DNA modification

- Sub-clone new DNA
- Express in bacteria
- Characterize new system

Lab+Analytical Skills

- Culture bacteria
- Make and analyze DNA
- Measure enzyme levels
- Model/make predictions
- Explore modular composition

Cell-Biomaterial Engineering: making cartilage

Experimental Goals

Design: Culture conditions

 Study how environment affects cell health, and expression + production of tissue-specific proteins

Lab+Analytical Skills

- Culture mammalian cells
- Fluorescence microscopy
- Measure specific mRNAs
- Identify protein from mixture
- Present a novel research idea

Scientific writing must tell a story

- Archimedes, Newton, Kekulé
 - Stories help us remember
- You discover the narrative that the data tell
- Then convince an audience of your findings
 - Step-by-step explanations
 - Repetition of central ideas
 - Clear visuals

Your data should be true even if your story is wrong

~ Darcy Kelley, Columbia (from The Canon, N. Angier)

Communication and Grading

50% Written Work

Module 1: laboratory report; computational analysis

Module 2: research article

Module 3: data summary

30% Oral Presentations Module 1: published article

Module 3: original proposal

20% Daily(ish) work

7% Homework 5% Quizzes

5% Lab Notebooks 3% Participation

Writing & Oral Communication Faculty

- Neal Lerner and Linda Sutliff
 - Lectures/discussions/exercises in class
 - One-on-one consultations
- Atissa Banuazizi
 - Lectures/discussions in class
 - One-on-one review of videotaped talk

After 20.109, you should be able to...

- Organize a lab notebook
- Implement laboratory protocols
- Design novel experiments with appropriate controls
- Interpret qualitative data
- Analyze quantitative data
- Recognize utility of models
- Examine the scientific literature
- Communicate in multiple modes
- Present salient points of your own and others' ideas

Course Logistics

Lecture Tuesdays and Thursdays 11-12, 4-237

Lab Tuesdays and Thursdays 1-5, 56-322

Wednesdays and Fridays 1-5, 56-322

There are no "make-up" labs

Collaboration with integrity is encouraged: assignments can be worked on together but must be submitted individually. You will perform experiments in pairs.