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Conventional functional magnetic resonance imaging (FMRI) group analysis makes two key assumptions that
are not always justified. First, the data from each subject is condensed into a single number per voxel, under
the assumption that within-subject variance for the effect of interest is the same across all subjects or is neg-
ligible relative to the cross-subject variance. Second, it is assumed that all data values are drawn from the
same Gaussian distribution with no outliers. We propose an approach that does not make such strong as-
sumptions, and present a computationally efficient frequentist approach to FMRI group analysis, which we
term mixed-effects multilevel analysis (MEMA), that incorporates both the variability across subjects and
the precision estimate of each effect of interest from individual subject analyses. On average, the more accu-
rate tests result in higher statistical power, especially when conventional variance assumptions do not hold,
or in the presence of outliers. In addition, various heterogeneity measures are available with MEMA that may
assist the investigator in further improving the modeling. Our method allows group effect t-tests and com-
parisons among conditions and among groups. In addition, it has the capability to incorporate subject-
specific covariates such as age, IQ, or behavioral data. Simulations were performed to illustrate power com-
parisons and the capability of controlling type I errors among various significance testing methods, and the
results indicated that the testing statistic we adopted struck a good balance between power gain and type I
error control. Our approach is instantiated in an open-source, freely distributed program that may be used on
any dataset stored in the universal neuroimaging file transfer (NIfTI) format. To date, the main impediment
for more accurate testing that incorporates both within- and cross-subject variability has been the high com-
putational cost. Our efficient implementation makes this approach practical. We recommend its use in lieu of
the less accurate approach in the conventional group analysis.

Published by Elsevier Inc.
Introduction

Group analysis of fMRI datasets is typically carried out in two levels.
In the first level, each individual subject's dataset is analyzed in a time
series regression model to provide a measure of the effect of interest
(linear combination of regression coefficients) at each voxel. In the sec-
ond level, the effect estimates of interest at each voxel in standard space
are combined across subjects using Student t-test, ANOVA, ANCOVA,
multiple regression, or linear mixed-effects (LME) models. Then,
group inferences are made with a general claim about a hypothesized
population from which the sampled subjects were recruited. This
two-level approach, by far the most common in published neuroimag-
ing studies (Mumford and Nichols, 2009), rests on two assumptions.
First, within- or intra-subject variance of the effect estimates is uniform
in the group (Penny and Holmes, 2007), or alternatively, the between-
subjects variance is much larger than within-subject variance. Second,
nc.
effect estimates are assumed to follow a Gaussian distribution—i.e., no
outliers.

The conventional group analysis strategy works reasonably well if
the required assumptions hold to some extent. Given the small effect
sizes and high noise levels in FMRI data, it is questionable to assume
negligible or equal standard error of the individual subject effect esti-
mates, or to ignore outliers in group analysis. Irregularities from the
scanner or outlying BOLD responses can lead to the violation of the as-
sumptions of small or homoscedastic sampling errors in the standard
“summary statistics” approach (Penny and Holmes, 2007). Differences
in attention to tasks and in habituation effects across subjects may
also introduce different precision of effect estimates. Moreover, as so-
phisticated experiment designs evolve, it is very typical to have unequal
numbers of subjects across groups, different numbers of data points
(time series lengths), or different numbers of samples of a stimulus/
condition/task type across subjects. For example, due to experiment
constraints or subjectsmissing trials, the datamight have unequal num-
ber of correct versus incorrect responses, and such a scenario inevitably
results in heterogeneous effect estimate precision (within-subject vari-
ability), potentially violating the assumptions of conventional group
analysis methodologies.

http://dx.doi.org/10.1016/j.neuroimage.2011.12.060
mailto:gangchen@mail.nih.gov
http://dx.doi.org/10.1016/j.neuroimage.2011.12.060
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Another potential concern in FMRI group analysis is that the group
sample size is often fairly small; thus, one or two outliers can dramat-
ically alter the effect estimate. Even though cross-subject variability is
typically considered in practice to account for such inhomogeneity,
outliers can inflate its estimate, leading to underpowered statistical
testing. Another example is the emergence of aggregated or federated
datasets that come from different scanners or laboratories, or with
slightly different task/condition variants. The resulting reliability dif-
ferences in effect estimation from multiple sources necessitate an ap-
proach that crucially incorporates the reliability heterogeneity into
the model and controls for confounding effects (e.g., personality or
phenotypic features) when amalgamating the datasets (Bjork et al.,
in press).

Intuitively, a summarizing approach at the group level should con-
sider differentiating each subject's effect estimate based on its preci-
sion; that is, we assign a higher weight to a subject if the effect
estimate has a narrower confidence interval (e.g., more reliable),
and vice versa. Such weighting strategy can even be found in nature;
for example, a high-level behavioral task is performed as an integra-
tion of multiple simple operations simultaneously executed by
many neurons that weigh each sensory cue proportional to its reli-
ability (Ohshiro et al., 2011). Recent FMRI group analysis approaches
have explicitly considered both effect size and its variance at group
level. Worsley et al. (2002) combined effect estimates with their stan-
dard deviations, and solved the resultant model with an expectation–
maximization (EM) algorithm, assisted with spatial regularization.
Beckmann et al. (2003) also discussed the incorporation of reliability
information from the first level to second level analysis. Woolrich et
al. (2004, 2008) adopted a Bayesian approach through Markov
chain Monte Carlo (MCMC) sampling and multivariate non-central
t-distribution fitting in group inference.

Our contributions here are three-fold. First, we present a computa-
tionally efficient frequentist approach that incorporates both within-
and cross-subject variabilities at the group level, and model outliers
with a Laplace distribution for the cross-subject random effects. We
adopt a significance testing statistic that achieves power increase with
type I errors still close to the nominal level. Our algorithms involve iter-
ative schemes at the voxel level, and we achieve execution time on the
order ofminutes for thewhole brainwith a standard desktop computer.
The performance of our approach will be compared with a Bayesian
counterpart in activation inference with real data and in power gain
and type I error control with simulated data. While the final whole
brain statistical inferences may not change significantly from the stan-
dard approach in cases with sizeable or homogeneous groups, we
make the case for the new approach because it is more accurate, is com-
putationally efficient, and provides a more detailed description of the
sources of variance, thereby enabling better insight into the data. Sec-
ond, a few overall heterogeneitymeasures across subjects are provided.
A statistic is available for significance testing of overall heterogeneity of
the group. In addition, outlier testing is suggested at the individual level
that may assist the investigator in identifying outlier subjects or in in-
corporating potential covariates that could account for across-subject
variability. Third, we performed simulations in various scenarios to
compare different significance testing methods in cross-subject vari-
ance estimate, type I error controllability, and power. These simulation
results are compared with previous work byWoolrich et al. (2004) and
Mumford and Nichols (2009).

Modeling strategy

Mixed-effects multilevel (or meta) analysis (MEMA)

To illustrate the utility of MEMA implemented in the AFNI (Cox,
1996) program suite as 3dMEMA, we consider a test dataset in
which 10 subjects viewed audiovisual recordings of natural speech
(details in Applications and results). These stimuli evoked robust
activity in auditory and visual cortex in each subject, providing a
good test bed for group analysis methods.

Using five voxels as examples

Fig. 1 shows effect size and variability estimates in five voxels se-
lected from the 10-subject dataset, and illustrates the inaccuracy of
the two assumptions made by traditional group analysis methods
(same within-subject variance and no outliers). These five voxels
were not randomly selected as representatives – if such voxels exist
– of the entire brain; instead they were used to showcase various sce-
narios of inhomogeneity in effect estimate precision. Voxels 1 and 2
were extracted from right and left visual cortex (middle occipital
gyrus) respectively, Voxels 3 and 4 were from a left auditory region,
superior temporal gyrus (STS), and Voxel 5 was in left caudate. At
least one of two assumptions in the conventional group analysis ap-
proach is violated at each of these five voxels. At all five voxels, the
within-subject variability is significantly larger than the cross-
subject variability, and differs markedly between subjects. At Voxels
1 and 2, only half of the ten subjects had reliable estimates that
were significant at 0.05 level (two-sided, uncorrected), while Voxels
3, 4, and 5 had only three or less such subjects. Subject 10 is an outlier
at Voxels 2 and 3, but in different ways: Voxel 2 is significantly acti-
vated with the same direction of the effect size (outlier with a reliable
estimate with the same sign as the mean effect), while the effect at
Voxel 3 is not statistically significant and has a different sign (outlier
with an unreliable estimate with the opposite sign). The normal prob-
ability plots in Fig. 1 further indicate the existence of outliers at all
five voxels. More subtly, in Voxel 1, Subjects 5, 6, 7, and 9 have rough-
ly the same effect estimate but with markedly different variabilities.

Presenting the MEMA model

The standard second-level analysis assumes that the within-
subject variability for the effect of interest is relatively small or rough-
ly the same across subjects (Penny and Holmes, 2007). The corre-
sponding model with n subjects can be formulated into a regression
equation with p+1 fixed effects,

βi ¼
Xp
j¼0

αjxij þ δi ¼ xTi aþ δi; i ¼ 1;…;n; ð1Þ

where xiT=(xi0,…,xip)areknown independent variables, a=(α0,
…,αp)Tareparameters to be estimated, βi is the effect of interest
from the ith subject, and in particular,α0 is associatedwith the intercept
xi0=1. (A one-sample Student t-test can be performed using a model
that corresponds to p=0). If p≥1, xij can be an indicator (dummy) var-
iable showing, for example, the group to which the ith subject belongs,
or a continuous variable such as a subject-specific covariate like age, IQ
or behavioral data (j=1,…, p), or an interaction between fixed effects.
δi is the subject-specific error, the amount the ith subject's data deviates
from the fixed effects at the population level, and is initially assumed to
follow a normal distribution N(0, τ2).

Of course, we don't really know the “true” effect βi from the ith
subject. Instead, what we have is its estimate β̂ i in the form of a linear
combination of regression coefficients from individual analysis of the
ith subject's time series data. Naturally, such an estimate carries some
precision information, where precision is defined as the reciprocal of
the estimate variance. Thus, more accurately, we have

β̂ i ¼ βi þ εi ð2Þ

where εi represents the sampling error of βi in the ith subject, and is
assumed to follow N(0, σi

2), where σi
2 is the intra-/within-subject var-

iance, which is also unknown but can be estimated with σ̂ 2
i from the

individual subject analysis.

http://dx.doi.org/10.1016/j.biopsycho.2011.12.003
http://dx.doi.org/10.1016/j.biopsycho.2011.12.003
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Fig. 1. (Upper panel) Individual subject effect estimates and their accuracy at five voxels are shown with amplitudes of FMRI response to an audiovisual speech stimulus in left and
right visual cortex (Voxels 1 and 2), left and right auditory cortex (Voxels 3 and 4), and left caudate (Voxel 5). Effect estimates from individual subject analyses are indicated with
filled circles (●). The variability of each estimate is shown with an error bar of two standard deviations, and the estimate precision is defined as the reciprocal of variance. The rel-
ative size of the filled circle reflects the weight of the estimate from each individual subject, reciprocal of the sum of within- and between-subject variances. The dotted horizontal
line indicates the null hypothesis of group effect being 0. The gray horizontal line is the group effect estimated from the conventional approach, equal weighting across subjects with
Student t-test. The black horizontal line is the group effect with the MEMA approach described in the manuscript. The gray and black lines overlap for Voxels 3 and 5. (Lower panel)
Quantile–Quantile plots of the ten subjects' effect estimates with circles (°) at the five voxels are shown against standard normal distribution (horizontal axis). The significant de-
viation of the end points from the solid line y=x at all five voxels indicates the existence of outliers among the subjects.
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Combining Eqs. (1) and (2), we have a mixed-effects multilevel (hi-
erarchical, or meta) analysis (MEMA) model for data from n subjects

β̂ i ¼
Pp
j¼0

αjxij þ δi þ εi ¼ XT
i aþ δi þ εi; or β̂ i∼N xT

i a; σ̂
2
i þ τ2

� �
; i ¼ 1;…;n

or in a concise matrix format,

b̂ ¼ XTaþ dþ e; or b̂ ∼ N XTa; τ2In þΦ
� �

ð3Þ

where b̂n�1¼ β̂1;…; β̂n

� �T
;Xn� pþ1ð Þ ¼ x1;…; xnð ÞT; dn�1¼ δ1;…; δnð ÞT ;

en�1 ¼ ε1;…; εnð ÞT ;Φn�n ¼ diag σ̂ 2
1;…; σ̂ 2

n

� �
, and In is an n×n identity

matrix.
The assumptions underlying model (3) are: (a) εi~N(0, σ̂ 2

i ); (b)
the δi's are independent and identically distributed with N(0, τ2),
where τ2 is the cross-/inter-/between-subjects variability, sometimes
called heterogeneity; (c) Cov(εi, εj)=0, for i≠ j, meaning the data
from any two subjects are independent; and (d) Cov(εi, δj)=0 for
all i and j, indicating that cross- and within-subject variabilities are
independent of each other. The variance of the effect of interest

V b̂
� �

¼ τ2In þΦ reflects the fact that the total variability in the

data comes from two sources (or a two-stage sampling process),
within-subject variability Φ and cross-subject variability τ2. We can
also interpret the total variability in a Bayesian sense as two compo-
nents of the investigator's uncertainty (Raudenbush, 2009).
Solving MEMA

If wemake the (unjustified) assumption that both the cross-subject
and within-subject variances, τ2 and σi

2, are known, the model (3) can
be easily solved through weighted least squares (WLS) by minimizing
the weighted sum of squared residuals (Kutner et al., 2004), and the

solution is â ¼ XTWX
� �−1

XTWb̂, where the weights in W ¼
diag 1

τ2þσ2
1
;…; 1

τ2þσ2
n

� �
are the reciprocals of the sum of within-subject

and cross-subject variances. The variance for â is a concave function,

V âð Þ ¼ XTWX
� �−1

; ð4Þ

and âeN a; XTWX
� �−1

� �
. The derivation in (4) relies on the fact that

W½X is of full rank because W½ and X are of full column rank and rank
(W½X)=rank(X). In practice both τ2 and σi

2 are estimated, and so are
the WLS solution for â and its variance V âð Þ,

â ¼ XTŴX
� �−1

XTŴ b̂; V̂ âð Þ ¼ XTŴX
� �−1 ð5Þ

where Ŵ ¼ diag 1
τ̂2þσ̂ 2

1
;…; 1

τ̂2þσ̂ 2
n

� �
:
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Estimating the cross-subject variability τ2

Despite the suggestion that no frequentist solution exists for the
model (3) (Woolrich, 2008; Woolrich et al., 2004), there have been im-
portant developments in the context of meta-analysis or meta-
regression (e.g., combining the results of independent clinical trials)
during the past 20 years (Cooper et al., 2009; Hartung et al., 2008). Spe-
cifically, several methods of estimating τ2 have been proposed
(Viechtbauer, 2005), such as the method of moments (MOM)
(DerSimonian and Laird, 1986), maximum likelihood (ML), restricted
maximum likelihood (REML), empirical Bayesian (EB), among others
(Hedges, 1983, 1989; Hunter and Schmidt, 1990; Sidik and Jonkman,
2005a; Sidik and Jonkman, 2005b). Here we will focus on three
methods, MOM, REML, and ML using a Laplace distribution assumption
of the within-subject variability (to allow for outliers). All the three
methods are part of our implementation in 3dMEMA, and the choice
of method is made partly depending on the data at voxel level.

Method of moments (MOM)

We start with a fixed-effects model by assuming no cross-subject
variability (τ2=0) in Eq. (3),

b̂ ¼ Xa0 þ e: ð6Þ

An ordinary least squares (OLS) or WLS solution for Eq. (6) pro-
vides a primary or provisional estimate of a0 in the mixed-effects
model (3). While the OLS estimate tends to perform well when τ2 is
relatively large, the WLS estimate is better when τ2 is moderate or
small. Here we adopt the WLS estimate,

â0 ¼ XTW0X
� �−1

XTW0b̂; ð7Þ

and define the weighted residual sum of squares (WRSS) of the WLS
estimate (7) as

Q ¼ b̂−Xâ0

� �T
W0 b̂−Xâ0

� �
¼ b̂

T
P0b̂ ð8Þ

where W0 ¼ diag 1
σ2

1
;…; 1

σ2
n

� �
, and P0=W0−W0X(XTW0X)−1XTW0. Q

is often called the homogeneity statistic since we pretend that the

cross-subject variance τ2=0 in calculating Q, but this pretense allows

us to use Q to measure how much cross-subject variability the data

contain. In other words, if τ2=0, we expect Q to be small; on the

other hand, if τ2>0, Q will most likely be big. The role of Q as an in-

dicator of cross-subject variability is also reflected in its expected

value, E Qð Þ ¼ E b̂
T
P0b̂

� �
¼ τ2tr P0ð Þ þ n−p−1. Equating Q to its

expected value (Hartung et al., 2008), we obtain the MOM estimate

of τ2, τ̂2 ¼ Q− n−p−1ð Þ
tr P0ð Þ . To avoid a negative estimate in computation a

truncated version is usually employed,

τ̂2 ¼ max 0;
Q− n−p−1ð Þ

tr P0ð Þ
� �

: ð9Þ

TheMOM estimate, involving no iterative algorithms and thus com-
putationally economical, is consistent but not necessarily efficient
(Raudenbush, 2009; Viechtbauer, 2005), which leads us to a more effi-
cient method, REML, for estimating τ2. When the conventional group
analysis assumption holds (all subjects have the same within-subject
variance, σ1

2=…=σn
2=σ2), it is instructive to note that the MOM

estimate reduces to τ̂2 ¼ 1
n−p−1 b̂−Xâ0

� �T
b̂−Xâ0

� �
−σ2 as in this

case tr(P0)=(n−p−1)/σ2. Furthermore, due to the truncation in-

volved in (9), simulations (Viechtbauer, 2005) showed that MOM is
slightly positively biased when the within-subject variance is very
large or the number of degrees of freedom at individual level is too
small, but the bias is negligible when the number of degrees of freedom
at the individual level is above 40 and there are 10 or more subjects at
group level, conditions typically satisfied in FMRI studies.

REML method

The profile residual log-likelihood for REML is the logarithm of the
density of the observed effect treated as a function of the cross-
subject variability τ2, given the data b̂ (Raudenbush, 2009;

Viechtbauer, 2005), l a; τ2; b̂
� �

¼ −1
2
n ln 2πð Þþ

1
2
ln det Wð Þ½ �− 1

2
ln

det XTWX
� �h i

−1
2

b̂−XTa
� �T

W b̂−XTa
� �

¼ −1
2
n ln 2πð Þ þ 1

2
ln det Wð Þ½ �−

1
2
ln det XTWX

� �h i
−1

2
b̂
T
Pb̂, which leads to a Fisher scoring (FS) algo-

rithm that is robust even for poor starting values and usually con-
verges quickly (Appendix A),

τ2kþ1 ¼ τ2k þ
b̂
T
PPb̂−tr Pð Þ
tr PPð Þ ; ð10Þ

where τk2 is the kth iterative approximation of τ2, and P=W−WX
(XTWX)−1XTW. It is worth noting that, when all subjects have the
same within-subject variance, the REML estimate has a closed and in-

tuitive form (Appendix A), τ̂2 ¼ 1
n−p−1 b̂−XT â

� �T
b̂−XT â
� �

−σ2, ex-

actly the same as the respective MOM estimate.

ML method with a Laplace distribution of subject-specific error

It is not rare to see extremely big or small effect estimates b̂ rela-
tive to the group effect at a voxel/region level (cf. Fig. 1). Such outliers
might come from irregularities from the scanner, outlying BOLD re-
sponses, or pure chance. If these outlying effect estimates are unreli-
able (e.g., have large variances), the impact on the group result is
minimal, regardless of the heterogeneity estimate for τ2, MOM or
REML, thanks to the weighting involved in WLS (5). However, if the
outlying effect estimates are reliable (e.g., have small variances),
weighting might not be effective enough and we need a more robust
strategy to deal with such outliers. For instance, a subject might have
been ignoring the stimulus during its presentation, leading to little or
no response to the sensory input; this response would be reliable
(with small variance), but should obviously not be combined with ef-
fect estimates from other subjects who were alert.

The REML estimate of τ2 via (10) assumes a Gaussian distribution
of individual subject's sample error, εi~N(0, σi

2), i=1, …, n, at each
voxel. The “default” Gaussian assumption is omnipresent, because of
its convenient statistical properties and the central limit theorem. Ap-
pealing to this assumption works well if the sample size is reasonably
big, which is not always the case in FMRI studies. When the assump-
tion is violated (e.g., outlier voxels/regions/subjects), the cross-
subject variability τ2 tends to be over-estimated, and one or two out-
liers could dramatically distort the analysis, leading to inaccurate
group effect estimates and/or deflated statistical power. The conven-
tional approach of throwing away outliers is not only impracticable at
the voxel level, but also subjective, arbitrary, and controversial in
terms of outlier identification. Here we propose a tractable alternative
model of cross-subject variability, the Laplace (or double exponen-
tial) distribution.

Wager et al. (2005) proposed an iteratively reweighted least squares
method to handle outliers by iteratively standardizing the residuals by
the median absolute deviation, but their model did not differentiate
the residuals between within-subject and cross-subject variability.
Woolrich (2008) assumed the mixtures of two Gaussian distributions
in the framework of Bayesian approach, one for the normal and the
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other for the outlier subjects. Baker and Jackson (2008) considered
three candidates of long-tailed distributions, Student t, arcsinh, and
Subbotin (ofwhich the Laplace distribution is a special case). By extend-
ing amethod adopted for a casewith p=0byDemidenko (2004) to our
model (3) in the frequentist context, we assume, instead ofN(0, τ2), the
following Laplace distribution for the subject-specific error term in Eq.
(3), δi~L(0, ν), i=1, …, n, where L(m, ν) has density p x;m; vð Þ ¼
1
2v exp − x−mj j=v½ � with location parameter (mean/mode/median) m
and scale parameter ν (with a variance of 2ν2). The Laplace distribution
has heavier tails than the normal distribution, allowing us to better han-
dle outliers than REML, when one or two subjects have exceptionally
unreliable effect estimates at a voxel or region. This approach reduces
the disturbing effects from outliers without requiring arbitrary outlier
decisions or thresholds from the investigator.

We adopt the Empirical Fisher Scoring (EFS) algorithm (Demidenko,
2004) in the following format,

a
ν

� 	
kþ1

¼ a
ν

� 	
k
þ λkH

−1
k gk ð11Þ

where k is the iteration index; Hk and gk are derived in Appendix B.
In description we refer to the Gaussian and Laplace approaches as

the intention of adopting REML with Gaussian and ML with Laplace as-
sumption. However, as explained in the Discussion, at voxel level the
real implementation of REML with Gaussian and ML with Laplace
assumption proceeds with MOM. Only if the MOM result reaches near
significance or more would it be followed and materialized by REML
or ML.

Statistical inferences with MEMA

Hypothesis testing
For the null hypothesis of a group effect

H0 : αj ¼ 0; ð12Þ

a testing statistic can be constructed from (5),

Ts ¼
α̂ jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XTŴX
� �−1
� 	s

jj

ð13Þ

where Ajj denotes the jth diagonal component of matrix A. When the
number of subjects, n, is relatively large, TS can be taken, with a
Gaussian distribution approximation, as a Wald test (Hartung et al.,
2008). However, the Wald test tends to be overly liberal when
applied to cases with a moderate number of subjects (Hartung et al.,
2008; Raudenbush, 2009), such as FMRI group analysis; thereby, it
may be better approximated with a Studentized t-distribution.

The Gauss–Markov theorem guarantees that, if the cross- and
within-subject variance τ2 and σi

2 were known, the WLS estimate â
in (5) would be unbiased with the lowest variance (XTWX)−1

among all linear unbiased estimates, the best linear unbiased estima-
tor (BLUE). Furthermore, if the effect estimates b̂ from individual sub-
ject analyses follow a Gaussian distribution, the BLUE property can be
extended to both linear and nonlinear unbiased estimates, based on
the Cramér–Rao inequality. Such property gives the impression that
the Studentized t-statistic TS in (13) would lead to a statistical
power from MEMA higher than or at least equal to the conventional
approach of ignoring the within-subject variability. In practice, the
“true” values of τ2 and σi

2 are never known; thus, for each specific
test, TS may yield a higher or lower value than its counterpart with
the conventional approach with Student t-test.1 However, the BLUE
1 Also known as OLS estimate based t-statistic, e.g., in Mumford and Nichols (2009)
and Lindquist et al. (2012).
property indicates that, on average, TS may provide a more powerful
inference to an extent that depends on the combined impact of
within- and cross-subject variability (Beckmann et al., 2003) and on
the presumed distributions under which the model fits the data.

Another complication about TS is the determination of its degrees of
freedom, due to the uncertainty resulting from estimating the within-
subject variance σi

2. Various approaches have been proposed for ap-
proximating the degrees of freedom, including simply assigning n-p-1
(Viechtbauer, 2010), the Satterthwaite correction (Kiebel et al., 2003),
estimation through spatially smoothed ratio of cross-subject variance
and average within-subject variance (Worsley et al., 2002), or posterior
fitting with a multivariate noncentral t-distribution from MCMC simu-
lations (Woolrich et al., 2004). Mumford and Nichols (2009) showed
that the estimate for effective degrees of freedom based on Sat-
terthwaite approximation did not performwell with real and simulated
data. Also, as a shortcut for MCMC sampling, the fast posterior approx-
imation approach adopted in FLAME 1 of FSL (Woolrich et al., 2004), al-
though presented under the Bayesian framework, is essentially
equivalent to our REML solution (10) because of the non-informative
prior with a uniform distribution. In addition, the significance-testing
statistic implemented in FLAME 1 of FSL is basically TS with the same
fixed degrees of freedom across the brain, n-p-1.

An approximation method proposed by Kenward and Roger (1997)
suggests inflating the estimated variance and then adjusting the de-
grees of freedom through Satterthwaite (1946) correction. Here we
focus on providing a more accurate estimate of variance for the effect
estimate â than V̂ âð Þ in (5). There are three sources of uncertainty
that may contribute to biased estimate of V̂ âð Þ: (a) unknown but esti-
mated within-subject variance σi

2, (b) unknown but estimated cross-
subject variance τ2, and (c) truncation practice in estimating cross-
subject variance τ2, as shown in MOM (9), REML (10), and outlier
modelingwithML (11). The impact of the first two sources is unknown,
but the third onewould definitely lead to a positive bias. If an estimator
is unbiased, the possibility of resulting in a negative estimate when the
true τ2=0 is 50% (Viechtbauer, 2005). Thus the truncation practice is
expected to cause a positive bias in estimating τ2. The amount of bias
decreases as the number of subjects, n, increases, or when the cross-
subject variance becomes dominant. In other words, the bias is preva-
lent with small number of subjects or with a high ratio of within-
subject relative to total variance. Using a simple case of one-sample

test, we obtain V̂ âð Þ in Eq. (5) as
Pn
i¼1

1
τ̂2þσ̂ 2

i

 !−1

, a monotonically in-

creasing function of τ̂2, indicating that positive bias in estimating τ2

would result in TS being over-conservative in controlling type I errors
and under-powered in identifying activated regions in the brain.

Denote the mean sum of weighted least squares residuals as S2
Ŵ ¼

1
n−p−1 b̂

TPb̂, where b̂
T
Pb̂ is the weighted residual sum of squares

(WRSS) for the WLS solution (5), and P ¼ Ŵ 1=2P�W1=2 ¼
Ŵ−ŴX XTWX

� �−1
XTŴ . Relative to (5), Knapp and Hartung (2003)

suggested an improved estimator, V̂ âð Þ ¼ S2
Ŵ XTŴX
� �−1

¼
1

n−p−1 b̂
T
Pb̂ XTŴX
� �−1

, with the intention of using the scale factor
S2
Ŵ to counteract biased estimate of V̂ âð Þ in (5). Following
Viechtbauer (2010), we generalize a t-statistic, proposed by Knapp
and Hartung (2003) with the above improved variance estimator
V̂ âð Þ instead of the one in (5), to a new testing statistic for the null
hypothesis (12),

TKH ¼ α̂ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−p−1 b̂
T
Pb̂

� �
XTŴX
� �−1

� 	
jj

s : ð14Þ

Assuming a t-distributionwith n-p-1 degrees of freedom, this Studen-
tized statistic TKH in Eq. (14) has been shown to bemore accurate than the
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Wald test and TS with n-p-1 degrees of freedom (Knapp and Hartung,
2003; Sidik and Jonkman, 2005a). As b̂

T
Pb̂ follows a χ2(n-p-1)-distribu-

tion with both mean and variance being n-p-1 (Hartung et al., 2008), the
scaling factor S2Ŵ in the denominator of TKH can be smaller or greater than
1. As a result TKH could yield values either larger or smaller than TS in (13)
with n-p-1 degrees of freedom. Hartung et al. (2008) recommended TKH
for the following two reasons: (a) a specific choice of degrees of freedom
for TS is controversial, and may render conservative testing results (see
Voxel 5 in Applications and results); and (b) their simulations showed
that TKH was superior to TS in holding the nominal significance level. We
will also explore these two issues later with our own simulations.

Consider the two special cases of within-subject variability under-
lying the “summary statistics” approach to group analysis, in a one-
sample test in the model (3) with only one explanatory variable
(p=0 and X=(1,…,1)T): assuming negligible within-subject vari-
ability (σi

2≪τ2, or σi
2≈0, i=1, …, n), or assuming the same

within-subject variability across all subjects, i.e., σ1
2=…=σn

2=σ2

(Penny and Holmes, 2007). Since the solution (5) reduces to equal
weighting among the individual effects, both TS and TKH reduce to
the conventional one-sample Student t-test (Appendix C).

An extra statistical inference capability with the MEMA model (3)
is that we can test the null hypothesis of homogeneity across subjects,

H0 : τ2 ¼ 0 ð15Þ

under which the model (3) reduces to the fixed-effects model (6).
Null hypothesis (15) can be tested by the homogeneity statisticQ de-

fined in (8) with a quadratic χ2(n-p-1)-distribution, often described as
Cochran's χ2 test (Viechtbauer, 2010). If null hypothesis (15) holds
(the cross-subject variability is negligible), all the variance in the data
comes from the within-subject variances, and the WLS solution (5) cor-
responds to the fixed-effects model in Eq. (6). A region in the brain
where τ2 is significantly nonzero indicates that there exists some vari-
ability or heterogeneity across subjects, andwarrants further exploration
when τ2 is very large (i.e., much of the cross-subject heterogeneity is left
improperly identified). Ideally, one would aim to explain as much of the
cross-subject variability as possible with subject grouping and/or covari-
ates such as age, IQ, etc., until the cross-subject random-effect compo-
nent d can be dropped from the model (3) so that the fixed-effects
model (6) would be appropriate. However, identifying all the possible
explanatory variables for the model (6) is rarely achievable in real prac-
tice, especially with the massively univariate approach common in FMRI
data analysis. On the other hand, Q-statistic provides a valid approach to
defining a region of interest (ROI) that could be used to associate individ-
ual subject BOLD response with some behavioral measure (Lindquist et
al., 2012), avoiding the problematic practice of ROI definition based on
activation significance. One caveat about the Q-statistic is that it may be-
come non-central inχ2 distributionwhen the heterogeneity is notewor-
thy, i.e., some amount of cross-subject variability is unaccounted for in
the model (3). The non-centrality impact on significance testing might
be relatively small, but one potential improvement is to use a mixture
of χ2 distributions as shown in Lindquist et al. (2012).

In addition to the homogeneity Q-test (8), there are alternative sta-
tistics for null hypothesis (15) such as likelihood ratio (LR) tests
(Lindquist et al., 2012), Wald test and Rao's score tests. Lindquist et al.
(2012) explored LR tests under three numerical solutions of cross-
subject variance using a mixture of χ2 distributions, and elaborated
on the challenge of approximating the asymptotic property of the LR
tests. Viechtbauer (2007) showed with simulations that the Q-test (8)
has the best overall balance between type I error rate and power com-
pared to the alternatives. For example, all themethodshave comparable
power in detecting heterogeneity, but the Q-test keeps type I error rate
close to the nominal α-value (e.g., 0.05) when the number of within-
subject data points is greater than 200, while the LR tests tend to be
over-conservative in type I error control.
A side note here is that the fixed-effects model (15) can be applied to
group analysis when there are only a few subjects or when summarizing
the results frommultiple runs or sessions at individual level. In the latter
situation, the WLS solution (5) is considered better than the simple
unweighted average that is widely used (Lazar et al., 2002) because the
WLS method with each weight equal to the reciprocal of each run/ses-
sion's or each subject's variance gives the BLUE for the group effect
(Plackett, 1950). For single-subject analysismethods that cannot combine
multiple imaging runs, this is the proper way to merge intra-subject
results prior to the group level, which is better than simple averaging
across runs or sessions that is currently practiced in the FMRI community.

Quantifying cross-subject variability
As a measure of cross-subject heterogeneity, τ2 in the MEMAmodel

(3) shows the extent to which the subjects differ from each other, but
its value and interpretation are not directly comparable across studies
because the effect magnitude is tied up with the factors in each specific
experiment design such as task/condition, stimulus duration, brain re-
gions, etc. Similarly, the Cochran's χ2 test, the Q-statistic defined in
(8), is another measure of cross-subject heterogeneity, but it depends
on the number of subjects, as shown by its expected value E(Q)=τ2tr
(P0)+n−p−1. Due to these dependences, Higgins and Thompson
(2002) proposed two measures of heterogeneity that, in addition to
reflecting the amount of variability across subjects, are independent of
n and effect magnitude (scale-free). Extending the original definition
for simple meta-analysis in Higgins and Thompson (2002), we adopt
the first measure of heterogeneity for our MEMA model (3),

H0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Q
n−p−1

q
. Alternatively, we replace Q with its estimated expecta-

tion value, τ̂2tr P0ð Þ þ n−p−1, and obtain a slightly different definition,

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ̂2tr P0ð Þ
n−p−1

þ 1

s
: ð16Þ

The factor (n−p−1)/tr(P0) in (16) measures the weighted aver-
age within-subject variability, which is self-evident when no covari-
ates exist (p=0) in the MEMA model (3). Because H=1 under the
null hypothesis (15), H can be interpreted as the ratio of standard de-
viation at group level and the weighted average standard deviation at
individual level; that is, H is an approximate ratio of confidence inter-
val widths between the group and individual subject levels, or be-
tween the MEMA model (3) and its corresponding fixed-effects
model (6). In other words, the variation across the individual effect
estimates is H times what would be expected if cross-subject variabil-
ity did not exist (Higgins and Thompson, 2002).

The second measure of heterogeneity is defined as,

I2 ¼ H2−1
H2 ¼ τ̂2

τ̂2 þ n−p−1
tr P0ð Þ

: ð17Þ

Like the popular concept of intra-class correlation (ICC), I2 accounts
for the proportion of total variability in the effect estimates that origi-
nates from the cross-subject rather than within-subject variability.
According to Higgins and Thompson (2002), an H value above 1.5 (I2

greater than 0.56) can be considered to show significant heterogeneity
across subjects while Hb1.2 (I2b0.31) should be of little concern.

Identifying outliers at regional level
With heterogeneous sampling variances incorporated in the MEMA

model (3), we not only obtain a more accurate statistical testing, but
also are able to estimate the heterogeneitymeasure τ2 and test for the ho-
mogeneity of subjects with the Q-statistic (8). Furthermore, if we define

λi ¼
σ̂ 2

i

τ̂2 þ σ̂ 2
i

; ð18Þ
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Fig. 2. Significance maps of five group analysis methods. The upper panel (Z=59) shows the visual cortex activations in axial view with warm colors of z-score while the lower
panel (Z=74) indicates the auditory activations in STS with cold colors. One-tailed significance level was set at 0.05 without cluster thresholding. FLAME 1 result (not shown
here) is virtually identical to 3dMEMA with TS (13) and Gaussian assumption (column C).
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λi can be interpreted as the proportion of total variability that comes from
the ith subject, andmaybe used to identify voxels or regionswhere a sub-
ject has exceptionally low reliability. Conversely, similar to the heteroge-
neity measures H and I2, and like the concept of ICC, 1−λi ¼ τ̂2

τ̂2þσ̂ 2
iprovides a third heterogeneity measure that shows the proportion of

total variability that occurs across subjects. In addition, the following
Wald statistic

Oi ¼
W b̂−Xâ
� �h i

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var W b̂−Xâ

� �h in o
ii

r ¼
Pb̂
� �

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Pb̂

� �h i
ii

r ¼
Pb̂
� �

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PTW−1P
� �

ii

q ð19Þ

gives a significance test for the null hypothesis about the residuals of the
ith subject (Viechtbauer, 2010), H0: β̂ i−xi

T â ¼ 0, or, δ̂ i þ ε̂ i ¼ 0, serving
as another indicator for voxels or regions where a subject has exception-
ally high or low effect size. Combining the heterogeneity measure τ̂2, the
homogeneity Q-test (8),λi, and theWald test Oi (19), one can detect out-
lier regions or subjects, and further investigate the possibility of including
covariates or grouping subjects, potentiallyfine-tuning the originalmodel
and increasing the statistical power.

Applications and results

MEMA: Model performance with real data

Description of the audiovisual experiment and the analyses
Our group analysis modeling strategy was applied to the data from a

block-design experiment with 10 subjects, described at length as
Table 1
Runtime (in minutes) comparison a between MEMA and FLAME in FSL.

3dMEMAb Program 

Outlier modeling  1 processor 4 pro

Without 8 

With 65 

a Group analysis on a Mac OS X 10.6.2 with 2×2.66 GHz dual-core Intel Xeon: 10 subjects, 21
b Runtime difference between MEMA t-tests TS and TKH is negligible.
Experiment 1 in Nath and Beauchamp (2011). A brief account of the
data follows. Whole brain BOLD data were acquired on a 3.0 T scanner
with voxel size of 2.75×2.75×3 mm3 and repetition time (TR) of
2015 ms. Three 5-min scan runs were acquired for each subject, totaling
450 brain volumes.

Two types of audiovisual speech stimuli were presented to the
subjects. In the first type, the video image was degraded, but the
auditory content was not degraded, and vice versa for the second
type. Each scan series contained five blocks of auditory-reliable
and five blocks of visual-reliable congruent words. Each 20-
second block contained ten trials, with one different word per
trial lasting 1.1 to 1.8 s. Preprocessing steps included slice timing
correction, motion registration, voxel-wise mean scaling, and align-
ment to the Talairach standard space in 2×2×2 mm3 resolution.
Spatial smoothing was applied with a kernel size of 4 mm full
width at half maximum.

The pre-processed data from each subject were concatenated
across the three runs, and were analyzed with an ARMA(1, 1)
model for the residual time series using 3dREMLfit. There are three
approaches to handling multiple runs of data at individual subject
level: a) analyze each run separately; b) concatenate all runs but an-
alyze the data with separate regressors for an event type across runs;
or c) concatenate all runs but analyze the data with the same regres-
sor for an event type across runs. Unlike other FMRI data analysis
packages that adopts either strategy a) or b), the insertion of a time
discontinuity between runs/sessions in 3dREMLfit also allows the in-
vestigator to analyze all the data from one subject in a single regres-
sion with all runs/sessions included, while still modeling temporal
FLAME 1 FLAME 1+2

cessors 

3 6 385 

20.5 --- 847 

8,379 voxels in 2×2×2 mm3 resolution inside the brain in Talairach standard space.
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Fig. 3. Scatterplots (left) and histograms (right) that compare the z-scores of six group analysis methods. The shaded areas in scatterplots indicate that both z-scores are below
1.645 (corresponding to one-tailed significance level of 0.05). The data points on the y-axis in (D) and (E) are due to the fact that 3dMEMA allows missing data while FLAME in
FSL does not. The histograms show the corresponding z-score difference to the scatterplots among the voxels not shaded (voxels with missing data were also excluded).
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correlations (Appendix D). Option c) could be important when the
sample size of an event type is relatively small in a single run. Two re-
gressors of interest, auditory-reliable and visual-reliable stimuli, were
created through convolution between stimulus timing with a shape-
presumed HDR function (e.g., Cohen, 1997). Six head motion param-
eters were added in the model as regressors of no interest. In addi-
tion, third order Legendre polynomials were included to account for
slow drifts in the data. The effect of interest in the analysis was the
contrast between auditory-reliable and visual-reliable stimuli.
Group analysis was performed on this contrast with four different
methods: (a) Student t-test, (b) TS with the assumption of Gaussian
distribution for the cross-subject random effects, (c) TKH with the as-
sumption of Gaussian distribution for the cross-subject random ef-
fects, and (d) TKH in (14) with the assumption of Laplace
distribution of the cross-subject random effects.

Tracking five voxels
Data at five voxels (Fig. 1) were extracted for demonstration pur-

poses. The results of Student t-test and several MEMA analyses are
listed in Appendix E. In summary, the cross-subject variability is
very small relative to the within-subject variability at all five voxels.
The conventional approach might render a lower or higher group ef-
fect estimate (lower: Voxels 1, 3; higher: Voxels 2, 4) as well as its
statistic value (lower: Voxels 1, 2, 3; higher: Voxel 4) than the
MEMA methods, depending on the specific interplay of three factors,
varying precision, cross-subject variability and the presence of out-
liers, as shown in the impacts on the results at all five voxels. The ad-
justment via the scaling factor in TKH does not involve the estimate of
cross-subject variability τ2, which remains the same between the two
tests TS and TKH, but might increase (Voxels 1, 4) or decrease (Voxels
2, 3) the t-statistic relative to TS under the Gaussian assumption, and
the same holds under the Laplace assumption (increase: Voxel 4; de-
crease: Voxels 1, 2, 3). The Laplace assumption tends to estimate a
smaller cross-subject variability, especially when outliers are present
(Voxels 1, 2, 3) than the Gaussian assumption and the conventional
method, and might provide higher (Voxels 1, 2) or lower (Voxel 3)
statistical values. The Q-statistic, defined in (8) for testing cross-
subject variability (null hypothesis τ2=0), depends on within-
subject variances only; thus, its value remains the same between
the Gaussian and Laplace assumptions and between the two t-tests
TS and TKH. In addition to the improved accuracy in group effect esti-
mates and significance testing compared to the conventional ap-
proach, MEMA also provides statistical inference on the
heterogeneity τ2 across subjects, compares the two sources of data
variability, and assists the investigator in identifying those subjects
that have significantly outlying effect estimates.

To reiterate, with outlier modeling combined with adjusted t-
test TKH, MEMA resulted in a higher statistic power for voxels 1,
2, and 3, because effect estimates with large variance were
down-weighted and the use of Laplace distribution accommodates
better the presence of outliers. However, the conventional method
provided a higher group effect estimate and the statistical power
in voxel 4 because subjects showing the largest effect also had
the largest variance, thereby reducing their contribution to the
group effect estimate in MEMA compared to the Student t-test.
Voxel 5 yielded similar significance between Student t-test and
MEMA when TKH is applied. This case demonstrates the importance
of the adjustment adopted in TKH: despite the large within-subject
variance, the effect is deemed significant because it is consistent
across subjects — negligible inter-subject variance (τ2=0); how-
ever, if only the precision information is used in TS, then the statis-
tical power is lost.

Comparisons among various group analysis approaches
As an empirical comparison between our frequentist and a Bayes-

ian implementation, we performed a similar group analysis on the
same datasets with FLAME 1 and FLAME 1+2 (Woolrich, 2008) of
FSL (version 4.1.4). Significance maps are compared among six
group analysis approaches: Student t-test, three MEMA methods,
FLAME 1 and FLAME 1+2 (Fig. 2). Results from Student and all
MEMA t-tests were converted to z-scores for easy comparison with
FLAME in FSL. FLAME 1+2 with and without the outlier assumption
generated identical results. All six methods rendered similar one-
tailed significance map at the 0.05 level, especially for the two main
regions of interest, bilateral superior temporal sulci (STS) for auditory
function (upper panel in Fig. 2) and the visual cortex (lower panel).
The results from TS with Gaussian assumption and FLAME 1 (not
shown in Fig. 2) were virtually identical in significance map. Run-
time comparison is shown in Table 1, and was markedly different,
with MEMA being similar to FLAME 1, but 10 to 50 times faster
than FLAME 1+2 at comparable settings.

The subtle difference among the six testing statistics is more
revealing in scatterplots and histograms (Fig. 3). There are some
small to large differences in z-scores between TKH and Student
t-test (panel (A) in Fig. 3). Among the voxels where these two
methods differed by more than 0.5 in z-score, 63.2% had higher sta-
tistic value with the MEMA test. The adjustment in TKH made a big
difference relative to its Studentized counterpart TS, resulting higher
statistic values in 85.9% of voxels (panel (B)). The difference between
Gaussian and Laplacian assumption is relatively small (panel (C)),
indicating few outliers in the group. FLAME 1+2 gave some signifi-
cantly different results from TKH. Although the latter had higher sta-
tistic values at 60.8% of voxels among those voxels that differed by
more than 0.5, FLAME 1+2 had extremely high statistic values at
small proportion of voxels, also shown in the significance maps in
(E) of Fig. 2. The equivalence between TS and FLAME 1 is demons-
trated in (E) of Fig. 3. The moderate differences between the two
methods with those voxels not significant (gray in (E)) at one-
sided level of 0.05 were due to the fact that, to save runtime for
such voxels, 3dMEMA adopts MOM and avoids the unnecessary
REML iterations. Moreover, 3dMEMA has the flexibility to allow a
small proportion of subjects to have missing individual subject
t-statistics at voxel level, as shown in those voxels on the y-axis in
(D) and (E) of Fig. 3, which also gives slightly different results than
FLAME 1.

In addition to providing more accurate group effect estimates and
significance testing, the MEMA modeling approach can also assess to
what extent the subjects within a group differ with each other in
terms of effect size. 3dMEMA outputs three measures of such hetero-
geneity: (a) the Q-statistic (8) measures the overall variability within
the group; (b) λ in (18) shows the percentage of total variability that
comes from the ith subject; and (c) the Wald test (19) for each sub-
ject indicates the significance level of how much the subject deviates
from the weighted average effect of the group.

The results of the three measures for the experiment data are
shown in Fig. 4. The Q-statistic (Fig. 4A) indicates that there was sig-
nificant amount of variability in the visual cortex across the ten sub-
jects while moderate amount of heterogeneity existed in the STS
area. Such heterogeneity, measured with τi, was partly due to the in-
trinsic differences across subjects and partly due to the imperfect
alignment from individual brains to a template in standard space,
and it is a daunting job to tease apart these two components. The
ICC-type measure 1−λi (Fig. 4B) shows that the data variability is
dominated by within-subject variance, and that the percent of voxels
with the ratio of cross-subject to total variance below 0.01, 0.10, 0.30
and 0.50 was 71.4%, 79.6%, 89.8%, and 95.5%, respectively, among all
voxels in the brain. The histogram distribution for those voxels with
one-tailed significance level of 0.05 under TKH is not shown in
Fig. 4B but is very similar, and the percentage of voxels with the
ratio of cross-subject to total variance below 0.01, 0.10, 0.30, and
0.50 was 75.8%, 81.7%, 88.9%, and 93.6%, respectively. Consistent
with the heterogeneity assessment of the Q-statistic at the group
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Fig. 4. Outlier detection with MEMA. (A) Homogeneity of subjects (τ2=0) under Gaussian distribution assumption for cross-subject random effects can be tested with Q-test (8)
with a χ2-distribution. (B) Histogram of cross-subject relative to the total variance among 1,829,050 voxels (resolution 2×2×2 mm3) in the brains of 10 subjects. The number of
cells at the x-axis is 100 with a resolution of 0.01 for the variance ratio. The cross-subject variance τ2 is estimated with REML (14). (C) The Wald test Oi result for four subjects in
outlier identification is shown. In both (A) and (C) the upper panel (Z=59) shows the visual cortex region in axial view while the lower panel (Z=74) focuses on the STS. One-
tailed significance level was set at 0.05 without cluster thresholding.
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level, the Wald test from (19) shows more specific outliers at the in-
dividual subject level (Fig. 4C). For example, subject 7 was relatively
close to the group average in both visual and auditory response, and
so was subject 9 in auditory response. Subject 2 mostly had signifi-
cantly lower visual response, while the visual response from subjects
4 and 9 was largely higher than average. Similarly, subject 2 had
lower response in the auditory region STS, and subject 9 had higher
response. These Wald test results can assist the researcher in pin-
pointing those specific subjects that may need further investigation,
including alignment improvement and incorporating auxiliary vari-
ables that may account for such outlying effects.
MEMA: Model performance with simulated data

Description of the simulations
Simulated data were generated to assess power and controllability

for type I errors in a much broader and more controlled spectrum
than is possible with the results from real data. We aimed to compare
various testing statistics from the following three perspectives: sample
size n (number of subjects), heterogeneity among within-subject vari-
ances (how different are σi

2's across subjects?), and the relative ratio
of within- to cross-subject variance. Six significance testing statistics
were considered: Student t(n-p-1), TS(n-p-1) and TKH(n-p-1) with the
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Gaussian assumption for cross-subject random effects, TKH(n-p-1) with
Laplace assumption for cross-subject random effects, and FLAME 1 and
FLAME 1+2 in FSL.

The simulated data were in the units of percent signal change. We
adopted a similar approach toMumford and Nichols (2009) with an av-
erage within-subject variance �σ 2 for the majority (90% or 80%) of sub-
jects and with the rest of the subjects in the sample having a different
within-subject variance denoted by �σ 2

o; 12different caseswere simulat-
ed,with �σ 2

o ranging over 1/3, 1/2, 1, 2,…, 10 times �σ 2 (so the last 9 cases
have “outliers”, the first 2 cases have “inliers”, and the third case is the
reference situation with all subjects having the same variance). For all
subjects, the number of degrees of freedom for individual subject anal-
ysis was set as DF=400 (corresponding to over 400 time points in EPI
time series), and for the majority (90% or 80%) of subjects, the nominal
total variance was fixed at VT = τ2+ �σ 2

o=10−4. The nominal cross-
subject variance τ2 was simulated with 20 cases in the interval [0, VT),
with sampling step of 5.0×10−6, and the corresponding average
within-subject variance was set to �σ 2=VT−τ2 for themajority of sub-
jects. The effect size δ for power simulationswith n subjects was chosen
to achieve a power of 0.8 for a two-tailed Student t(n−1)-test with a
known total variance VT based on pt qt 1−a=2; n−1ð Þ−ðffiffiffi
n

p
δ=

ffiffiffiffiffiffi
VT

p
; n−1Þ ¼ b, where pt, qt, a=0.05, and b=0.20 are the Stu-

dent t cumulative distribution, its quantile function, and the types I
and II error probabilities, respectively. Group analysis was run with
the number of subjects n=10 and 20 respectively for each of the six
testing statistics, and with 5000 repetitions sampled with βi~N(
α0; τ2 þ σ̂ 2

i ) for the ith subject, where the intercept α0 in the model
(3) is the group mean effect (α0=0 for type I error simulations and
α0=δ for power simulations), and σ̂ 2

i is the estimated within-subject
variance drawn from �σ 2χ2(DF)/DF for the majority of subjects and
from �σ 2

oχ
2(DF)/DF for the outlying subjects.

In real data the ratio of cross-subject variance to the total variance
τ2= τ2 þ �σ 2
� �

varies significantly across different studies. This hetero-
geneity measure is very small or mostly close to zero for most voxels
in our experimental data, as shown in Fig. 4B, with values below 0.01,
0.10, 0.30 and 0.50 being 71.4%, 79.6%, 89.8% and 95.5%, respectively
among all voxels in the brain. Among the six group analysis datasets
surveyed in Table 2 of Mumford and Nichols (2009), the average
values were 0.74, 0.31, 0.54, 0.71, and 0.56. Due to this wide variabil-
ity, we ran 20 simulation cases with τ2= τ2 þ �σ 2

� �
sampled at 20

equally spaced points within [0, 1), as described above.
To summarize, our simulations were performed for cross-subject

variance τ2, type I error rate, and power from four dimensions: (a) out-
lying mean within-subject �σ 2

o varied from 1/3, 1/2, 1, 2,…, 10 times of
�σ 2; (b) τ2 varied at 20 equally spaced points within [0, 1.0×10−4); (c)
sample size n=10 and 20; and (d) proportion of subjects that have out-
lying mean within-subject �σ 2

o was set to 10% or 20%.

Simulation results
The simulation results are summarized from three perspectives: es-

timated cross-subject variance τ̂2 (versus the nominal value τ2), the
type I error rate, and the statistical power. These three values are
graphed in the three columns of Fig. 5 for the case n=10 with 1 outly-
ing subject, for various values ofτ2= τ2 þ �σ 2

� �
, with the x-axis being the

relative amount of outlier variance �σ 2
o− �σ 2

� �
= �σ 2, which ranges from

−2 to 9. (Similar figures for n=20 and for two outlying subjects are
given in the online Supplemental Material.) Assuming outliers in
FLAME 1+2 took much longer time than the analyses without this as-
sumption (total simulation time: 1 week versus 2 days), but it did not
lead to any difference in simulation results. The FLAME 1 results (pur-
ple) are virtually invisible in Fig. 5 because they are basically the same
as and thus hidden underneath TS with the Gaussian assumption
(green). The two plots of type I error and power on the fourth row
(with 50% of cross-subject relative to total variance), within the interval
[0, 7] of the x-axis, roughly correspond to and are consistent with Fig. 3
in Mumford and Nichols (2009). Note that the x-axis �σ 2

o− �σ 2
� �

= �σ 2 in
Fig. 5 here is plotted linearly with respect to the outlying mean
within-subject variance �σ 2

o while the x-axis �σ 2
o− �σ 2

� �
= �σ 2

o þ τ2
� �

in
Fig. 3 of Mumford and Nichols (2009) was arranged nonlinearly with
respect to �σ 2

o , leading to the outlying cases being densely populated at
the far right end of their x-axis.

All tests, except FLAME 1+2, converge in type I error rate (second
column) and in power (third column) as τ2= τ2 þ �σ 2

� �
approaches

100%, consistent with the fact that all the MEMA methods reduce to
the Student t-test when the cross-subject variance �σ 2≪τ2. Such con-
vergence also holds for cross-subject variance (first column) for all test-
ing methods, except for TKH with the Laplacian distributional
assumption; presumably this mismatch is due to underestimation
with the Laplacian assumption since the data is actually sampled from
Gaussian distributions. The first row of Fig. 5 corresponds to τ2=0
(i.e., no random effect across all subjects) under which the MEMA
model reduces to the fixed-effects model (6) and WLS.

In terms of estimation for the cross-subject variance τ2 (first column
in Fig. 5), FLAME 1 (purple), TS (green) and TKH with the Gaussian as-
sumption (red, overlaying purple and green) have the same estimate.
(Student t does not provide such estimation because of the assumption
of equal within-subject variance.) When τ2= τ2 þ �σ 2

� �
is relatively

small (30% or less), the positive bias due to numerical truncation is ev-
ident for all three τ2 estimates. FLAME 1, TS and TKH with Gaussian as-
sumption have the highest bias, while the bias from TKH with the
Laplacian assumption (blue) is the lowest. However, as τ2 becomes
moderate or large, all methods tend to have unbiased τ2 estimates, ex-
cept that TKH with the Laplacian assumption gives an exceptionally
small estimate.

In regard to type I error controllability (second column in Fig. 5),
Student t-test (black) is slightly conservative when the outlying var-
iance �σ 2

o becomes relatively large. In contrast, TS (green) and FLAME
1 (purple, mostly overlaid by green) are overly conservative when
τ2= τ2 þ �σ 2
� �

is 50% or below, due to the overestimated cross-
subject variance from the numerical truncation involved in the
methods. When τ2= τ2 þ �σ 2

� �
is more than 50%, these two methods

have type I errors very close to the nominal rate (0.05). TKH with
the Gaussian (red) and Laplacian (blue) assumptions also have type
I errors close to the nominal level when τ2= τ2 þ �σ 2

� �
is 10% or

below, indicating the effectiveness of modifying the estimated
variance adopted in TKH. When the outlying within-subject variance
�σ 2
o is relatively big or small, their type I error control becomes a

little liberal when τ2= τ2 þ �σ 2
� �

is 30% or above, with TKH for the
Gaussian assumption going up to 0.055 and TKH for the Laplacian
assumption up to 0.06, probably due to the uncertainty in replacing
within-subject variances with standard errors. FLAME 1+2 (orange)
shows the poorest control in type I errors, that in some cases ex-
ceeds 0.1. This assessment of the poor type I error control of
FLAME 1+2 is consistent with the simulation results presented in
Fig. 6 of Woolrich et al. (2004), which unfortunately seems to have
been mistakenly interpreted in the opposite direction in their
conclusion.

In power comparisons with 10 subjects, one of which has outlying
within-subject variance (Fig. 5), all the MEMA testing statistics are
more powerful than Student t, except that TS and FLAME 1 are slightly
underpowered only when �σ 2

o is between 1/3 and 3 times of �σ 2,
probably due to their over-conservative performance in controlling
type I errors. The general trend is that more heterogeneous within-
subject variance or a higher ratio of within-subject relative to total
variance leads to higher power gain of MEMA methods. TKH with
the Gaussian and Laplacian assumptions achieve roughly the same
power, with the latter having a slightly higher edge when
τ2= τ2 þ �σ 2
� �

is between 50% and 90%. FLAME 1+2 shows the highest
power among all methods, but at the significant cost of poorest type I
error control.

The above overall assessment is still generally true with a bigger
sample size (n=20 subjects, Fig. S1 in Supplementary Material). In
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Fig. 5. Simulation results with six testing statistics (color coded as shown in the legend of upper left plot) and n=10 subjects one of which had outlying within-subject variance �σ 2
ο .

The 6×3 matrix of plots is arranged as follows. The three columns are estimated cross-subject variance, type I error controllability, and power respectively, and each row corre-
sponds to the proportion of cross-subject variance relative to the total variance, τ2

τ2þ �σ 2 . The x-axis is �σ 2
ο− �σ 2

�σ 2 , the multiple of outlying within-subject variance more than the average.
The dotted black line in the third column shows the nominal cross-subject variance, τ2. The curves were fitted through loess smoothing with the second order of local polynomials.
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addition, the power advantage of MEMAmethods with 20 subjects rel-
ative to Student t-test is slightly smaller than the case with 10 subjects
when τ2 is about 50% relative to the total variance, consistent with
Mumford and Nichols (2009). However, the power gain for the MEMA
methods with 20 subjects becomes bigger than the case with 10 sub-
jects when τ2 is 30% or below. With 10 subjects 20% of which have out-
lying within-subject variance �σ 2

o (Fig. S2 in Supplementary Material),
the power loss for Student t-test becomes even more significant, and
all MEMA methods keep bigger advantage in power than Student t
while TKH with Gaussian and Laplacian assumption also shows slightly
increased type I errors.

Also notice that at the origin of the x-axis �σ 2
o− �σ 2

� �
= �σ 2 ¼ 0,

where the assumption for the “summary statistics” lies, presumably
all the MEMA methods should converge to Student t-test, as shown
in Appendix C, which is mostly true in type I error rate and power
for TKH for both the Gaussian and Laplacian assumptions. However,
it is not clear to us why such convergence largely fails to occur in
type I error rate and power for FLAME 1+2.

In summary, TS and FLAME 1 have good control in type I errors
and may become too conservative due to numerical truncation
when the cross-subject variability is small. They mostly achieve a
moderate power advantage over Student t-test, and may become
slightly underpowered when the cross-subject variability is small.
TKH for the Gaussian and Laplacian assumption strikes a reasonable
balance in type I error control and power achievement, and both
are mildly liberal in type I error rate, with the former being slightly
less liberal than the latter. The mildly liberal control in type I errors
occurs when the outlying subjects have much more or less reliable
effect estimates, and likely results from the uncertainty when using
the sampled (instead of “true”) within-subject variances. Even with
the simulated data sampled from Gaussian distributions, TKH for the
Laplacian assumption performed relatively well in type I errors and
power. It is worth noting that the power advantage of all MEMA
methods over the conventional Student t-test occurs with the pres-
ence of outlying subjects, not only with higher within-subject vari-
ance, but also with higher precision for the effect estimate,
especially when the heterogeneity measure τ2= τ2 þ �σ 2

� �
is less

than 30%. FLAME 1+2 is generally highly powered, but this apparent
advantage is associated with its overly liberal type I error control.

Discussion

Overview

Conventional FMRI group analysis hinges on the assumption that
the within-subject variance for the effect of interest is the same across
all subjects, or alternatively that the within-subject variance is negli-
gible relative to the cross-subject variance. In addition, outliers are
commonly not considered in the analysis. These models range from
one-, two-sample, or paired Student t-tests, ANOVA, ANCOVA, to mul-
tiple regression and, most generically, linear mixed-effects (LME)
analysis. We illustrate here that such assumptions about the within-
and cross-subject variability are not always accurate, and present a
frequentist approach to FMRI group analysis, mixed-effects multilevel
analysis (MEMA), that incorporates both the variability across sub-
jects and the precision estimate of each effect of interest from individ-
ual subject analyses, and is capable of modeling outliers. That is, we
take both the effect estimates (typically referred to as β values or
their linear combinations) and their t-statistics from time series anal-
ysis at the individual level as inputs for group analysis. If the cross-
subject random component is assumed to follow Gaussian statistics,
its voxel-wise variance is estimated by maximizing a restricted likeli-
hood (REML) function. Optionally, a Laplace distribution can be used
to model outliers for the cross-subject random component, and the
corresponding voxel-wise variance is then estimated through maxi-
mizing the likelihood (ML). The group effect is estimated through
weighted least squares (WLS) based on the estimates of both
within- and cross-subject variances, which is more accurate than
the equally weighted approach in conventional group analysis. More-
over, we adopt a statistical testing procedure more accurate than the
usual alternatives, especially when the sample size is moderate or
small.

Our MEMA algorithms involve iterative schemes at voxel level and
the computational cost is relatively low. The method allows one-
sample tests and comparisons among conditions and among groups.
In addition, it has the capability of incorporating covariates such as
subject-specific measures (e.g., age, IQ, or behavioral data). It can
also include one or more subject grouping (or between-subjects) fac-
tors (e.g., sex, genotype, handedness). In addition to group effect esti-
mates and their corresponding t-statistics, our approach provides
cross-subject heterogeneity estimates and significance testing with
a χ2-test, and for each subject the percentage of within-subject vari-
ability relative to the total variance and a Z-score showing the signif-
icance of a region in the subject being an outlier.

Theoretically, almost all the methods that incorporate within-
subject variability in group analysis (Kiebel et al., 2003; Woolrich et
al., 2004; Worsley et al., 2002) share the same estimation philosophy
for the effects of interest as our WLS solution (5), but differ in numer-
ical strategy for estimating the cross-subject variance and in signifi-
cance testing methodology when dealing with the precision issue of
estimating the within-subject variances. Worsley et al. (2002)
obtained a slightly biased estimate for the cross-subject variance τ2

using a few iterations, and then compensated for the increased bias
through the effective degrees of freedom for TS, based on spatial reg-
ularization with EM algorithm. Kiebel et al. (2003) proposed that the
degrees of freedom be estimated for TS with the Satterthwaite correc-
tion. Woolrich et al. (2004) estimated the effect of interest and the
degrees of freedom for TS through the posterior approximation of
MCMC simulations. Here, we present two options for estimating the
cross-subject variance τ2: REML approximation with a Gaussian dis-
tributional assumption, and ML estimation with a Laplace assumption
when outliers might be present. Instead of modifying the degrees of
freedom, we make adjustment of the variance estimate for the effect
of interest, and achieve a counterbalance between type I error rate
and accurate power in significance testing with TKH. Our simulation
results showed that our adoption of TKH achieved a good balance in
type I error control and power. In comparison, FLAME 1 in FSL is
equivalent to our TS with REML estimate of cross-subject variance
with the Gaussian assumption. On the other hand, FLAME 1+2, al-
though highly-powered, seems to have unsatisfactory control of
type I errors.

Weighted versus unweighted effect estimation

Mumford and Nichols (2009) investigated the specificity and
sensitivity of the conventional group analysis in the case of one-
sample test, and found that the one-sample Student t-test is valid
in the following sense: (a) its type I error was slightly conservative,
especially when the number of subjects is small and/or the hetero-
geneity of within-subject variability is significant; (b) the power
loss is little to moderate, depending on the sample size and the pre-
cision differences across subjects. Such assessment was consistent
with the fact that the sum of within- and cross-subjects variance es-
timates is unbiased, although not the minimum variance estimate
(BLUE) used in MEMA. Our simulations included the scenario ex-
plored in Mumford and Nichols (2009) as a special case, and inves-
tigated a much wider spectrum of the ratio of within-subject
relative to total variance and the proportion of outlying subjects.

Given the fact that our implementation is computationally effi-
cient, we recommend that MEMA be the default approach for test-
ing. We also recommend that users consider the heterogeneity Q-
maps, and individual outlier Z-score maps as a guide for potential
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inclusion of covariates or for subject grouping categories. This ap-
proach would also allow users to readily test whether the assump-
tions of the conventional approach are justified and whether they
alter the resultant maps. Moreover, much effort has been invested
into modeling the temporal correlation in the residuals of the
time series regression model at the individual subject level, leading
to relatively more accurate statistical testing (Kiebel and Holmes,
2007; Woolrich et al., 2001; Worsley et al., 2002) and more accu-
rate estimates of effect reliability (i.e., standard error of β̂ i). These
results should be used not only at the individual subject level,
which is usually not the ultimate goal and interest in FMRI-based
research. They can and should further lead to more accurate and
fruitful results at the group level by bringing the precision informa-
tion about the effect estimates as extra inputs for group analyses.
With the computationally efficient implementation, the higher ac-
curacy of statistical tests (e.g., TKH versus TS), and the potential
gain in statistical power, we have no reason not to recommend
the MEMA approach instead of the Student t-test. Under most cir-
cumstances, the gains are modest but appreciable; in some cases,
the MEMA analysis has detected and compensated for outlier re-
sults that were otherwise disruptive in a standard group analysis.

Implementation of our modeling strategies in AFNI

Our program 3dMEMA in AFNI is written in the open source statis-
tical language R (R Development Core Team, 2010), taking advantage
of parallel computing on multi-core systems. As the FS algorithm for
REML (10) is very efficient, convergence is achieved within a few iter-
ations at most voxels, leading to a runtime of a few minutes for a typ-
ical analysis on a Mac OS X system with two 2.66 GHz dual-core Intel
Xeon processors. The software outputs the estimate (5) for each effect
of interest at the population level, and its corresponding significance
testing statistic TKH, plus the cross-subject heterogeneity estimate τ̂2

and its Q-statistic. 3dMEMA also provides λi, the proportion of total
variability that originates from the ith subject based on (18), and Z-
value (19) for the significance of residuals of the ith subject. When
the outlying within-subject variance is relatively too big or small
and when cross-subject variance is moderate or large, the slightly lib-
eral control of type I errors in TKH especially with the Laplacian as-
sumption may be of some concern; however, the effect of
potentially increased false positives would be relatively negligible
with regard to cluster thresholding in multiple testing correction.2

When comparing two groups, the investigator can presume the
same or different within-group variability (homo- or hetero-
scedasticity) in 3dMEMA, and in the latter case the two within-
group variances and their ratios are also provided.

To save runtime, the implementation of MEMA is a combination of
all the three methods discussed in this paper: MOM, REML with FS,
and ML with EFS. The MOM estimate (9) is tried first, since it does
not involve iterations; this method is adequate for most voxels in
the brain where the effect size is essentially 0. If outlier modeling is
requested by the user, the program implements the iterative Laplace
model (11) only when the statistic for MOM is likely significant (e.g.,
a lenient two-tailed significance level of 0.2 for the effect estimate), or
when at least one subject is a potential outlier, evaluated through the
2 Simulations to demonstrate the effect of inflated type I errors with realistically uncorrect
from a different perspective: the following table compares the minimum cluster size require
ter size in number of voxels is estimated through Monte Carlo simulations with 3dClu
tion=2.75×2.75×3 mm3, and an FWHM size of 8 mm is assumed.

p uncorrected

p corrected

0.02 0.01 0.005 0.002 0.001 0.0005 0.0

0.05 133.4 81.4 54.4 34.6 25.7 19.1 13

0.06 129.7 78.9 52.4 33.4 24.5 18.3 12
significance in (19). If outlier modeling is not requested, the program
uses the FS algorithm (10) for REML estimation only when the statis-
tic for MOM is likely significant.

Missing effect estimate data from individual subjects often occurs
in FMRI along the edge of the brain, due to imperfect alignment in spa-
tial normalization to standard space, as shown in Fig. 3with our exper-
iment data. This missing data issue is even more prevalent in
electrocorticographical (ECoG) data from neurosurgical patients, be-
cause not all patients get the same cortical coverage and the implanted
subdural electrodes (SDEs) record from cortex only in the immediate
vicinity (Conner et al., 2011). The conventional approach with a Stu-
dent t-test usually excludes voxels with missing data from analysis
or interprets subjects with missing data as having an effect of zero
value, leading to distortions in both group effect estimates and signif-
icance testing. In our implementation, subjects with missing data are
not considered in the analysis at such voxel, and the degrees of free-
dom are adjusted accordingly as well.

Currently 3dMEMA handles the situation with one effect estimate
from each subject, due to the complexity of robustly allowing for
within-subject correlations among multiple effects (e.g., deconvolved
hemodynamic response function amplitudes). Put differently, it al-
lows generalized t-type tests for individual hypotheses (e.g., no
activation difference between two conditions), but not F-type tests
for composite hypotheses (e.g., none of the conditions activate a
brain region). It is often argued that the conventional ANOVA type
analysis is desirable for teasing apart various interactions among cat-
egorical variables in FMRI group analysis. Such a popular batch mode
approach is appealing frommultiple aspects. For instance, all the pos-
sible main effects and interactions are obtained in one full model; post
hoc tests can be further pursued based on the F-statistic results for
main effects and interactions; and ANOVA can gain statistical power
if the variances from multiple levels of a between- or within-subject
factor (e.g., groups or conditions) are pooled together. Multiple
ANOVA programs have long been available in AFNI in the “summary
statistics” fashion. However, voxel-wise ANOVA-style analysis either
is not widely available in the FMRI software world, or is often mis-
used, leading to distorted and hard-to-replicate statistical inferences.
In addition, the convenience and power gains of ANOVA come with
constraints on complete data balance and with some rigid underlying
assumptions that are not always credible. If the data balance is bro-
ken, the decomposition of the data variability into error strata be-
comes problematic and the estimation of the degrees of freedom for
the denominator, sometimes through various adjustments (e.g.,
Satterthwaite (1946) and Kenward–Roger corrections (Kenward
and Roger, 1997)), can be tricky; for instance, the null statistic distri-
bution might not be t or F, as originally assumed. When sphericity is
violated, adjustment to the degrees of freedom must be made, but
the Greenhouse–Geisser correction tends to be over-conservative
while the Huynh–Feldt correction can become too liberal. In addition,
the gain in statistical power through error pooling can only materia-
lize when the underlying assumptions, such as compound symmetry
(or sphericity/circularity) or homoscedasticity, are satisfied; other-
wise, compromised power might actually occur. Such sophisticated
assumptions can be tested in small samples, but are impracticable at
the voxel level for FMRI data. Because of this practical constraint,
ed p-values (e.g., 0.001) are computationally costly. However, such effect can be shown
d to achieve a corrected p-value of 0.05 vs. a potentially inflated value of 0.06. The clus-
stSim in a brain mask from the experiment data used in this paper: voxel resolu-
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the process of modeling building, checking (mostly through visual
display), and selection for both random- and fixed-effects is unfortu-
nately impractical in brain imaging. Instead of relying on F-statistics
to serve as a guide for further post hoc tests, most of the time individ-
ual t-tests are straightforward and can be more robust when these as-
sumptions are violated. In addition to the parsimonious assumptions
(e.g., Gaussian or Laplace distribution) involved in the t-type tests,
missing data or unbalanced data is no longer an issue. An F-statistic
with one numerator degree of freedom is essentially a t-type test.
For example, when all the factors in a multi-way ANOVA have two
levels (e.g., 2×2 within-subject/repeated-measures or mixed design
ANOVA — one within-subject and one between-subject factor), all
the tests in such a model can be analyzed with multiple t-type
analyses. Currently in MEMA, there is no equivalent test to the
omnibus F-test when a within-subject factor has more than two
levels. However, an omnibus F-test is of little use in FMRI if it is not
followed by pairwise level comparisons to pinpoint the source of
significance. If correction for multiple different tests is needed (al-
though not typically practiced in brain imaging community), it
should be applied regardless of how the tests are performed, through
post hoc t-tests in ANOVA or directly through multiple individual
tests via MEMA.

Conclusions

The conventional group analysis using only the subject-level effect
estimates is prevalent in the neuroimaging community, but its under-
lying assumptions are often violated, sometime to large degrees. Het-
erogeneous effect variance and the presence of outliers particularly
affect experiments with small numbers of subjects or unbalanced de-
signs (Mumford and Nichols, 2009).We have implemented a frequen-
tist approach that accounts for outliers and takes into account the
reliability of effect estimates, thereby resulting on average in in-
creased statistical power. The approach is comparable to the conven-
tional approach under conditions of normality and homogeneous
effect reliability, and is superior otherwise. Under the same t-
statistic formulation, results of our frequentist implementation were
also comparable with or even better than those from a Bayesian ap-
proach (Woolrich, 2008). However, MEMAwas at least 10 times faster
and readily exploits multiple processors when present. Given MEMA's
more accurate effect estimate and significance testing and its efficient
implementation, we recommend its use in lieu of the conventional
group analysis approach.
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Appendix A. Derivation of FS algorithm for Group REML

The profile residual log-likelihood for REML is the density of the
observed effect treated as a function of the cross-subject variability
τ2 given the data b̂ (Raudenbush, 2009; Viechtbauer, 2005),

l a; τ2; b̂
� �

¼ −1
2
n ln 2πð Þ þ 1

2
ln det Wð Þ½ �−1

2
ln det XTWX

� �h i
−1

2
b̂−XTa
� �T

W b̂−XTa
� �

¼ −1
2
n ln 2πð Þ þ 1

2
ln det Wð Þ½ �−1

2
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2
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T
Pb̂

:

Using the following properties,
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we obtain the first derivative of the log-likelihood function,
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where W0 ¼ diag 1
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1
;…; 1
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n
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∂τ2 ¼ − 1
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1
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PPb̂ to 0, and obtain the REML estimate
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When within-subject variance is the same across all subjects

(σ1
2=…=σn

2=σ2), tr WX XTWX
� �−1

XTW
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¼ pþ1
τ̂ 2þσ2, tr WW b̂−XT â

� �hn
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the REML estimate has a closed form τ̂2 ¼ b̂−XT âð ÞT b̂−XT âð Þ
n−p−1 −σ2.

With ∂PP
∂τ2 ¼ −2PPP and ∂tr Pð Þ
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¼ −tr PPð Þ, we have the sec-

ond derivative of the log-likelihood function,
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2 tr PPð Þ. The general Fisher scoring (FS) al-

gorithm (Demidenko, 2004) is of the following form, τk+1
2 =τk2+

λkδk, where δk ¼
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step length λk=1, we have a Fisher scoring algorithm for REML,

τ2kþ1 ¼ τ2k þ
b̂
T
PPb̂−tr Pð Þ
tr PPð Þ :

It is instructive and revealing to compare the REML results with its
counterparts of ML. The profile residual log-likelihood for ML has one

less term,− 1
2 In det XTWX

� �h i
, than REML, leading to an ML estimate

τ̂2 ¼
tr

n
WW b̂−XT âð Þ b̂−XT âð ÞT−W−1

0


 �
�
o

tr WWð Þ , which reduces to τ̂2 ¼
b̂−XT âð ÞT b̂−XT âð Þ−σ2

n when within-subject variance is the same across
all subjects (σ1

2=…=σn
2=σ2). The denominator in the reduced

forms reflects the difference between REML and ML in accounting
for the uncertainty of estimating a. A similar Fisher scoring algorithm

for ML can be constructed as τ2kþ1 ¼ τ2k
b̂
T
PPb̂−tr Wð Þ
tr WWð Þ .

Appendix B. Derivation of EFS algorithm for GroupMLwith Laplace
assumption of subject-specific terror term

First we start by assuming a Laplace distribution for the cross-
subject variability in Eq. (3), δi~L(0, ν), i=1, …, n, where L(m, ν) has
a density p xð Þ ¼ 1

2v e
− x−mj j

v with location parameter (mean/mode/
median) m and scale parameter ν (variance 2ν2). The Laplace distribu-
tion has heavier tails than normal distribution, allowing us to better
handle the situation than the convention approach with REML, when
one or two subjects have exceptionally unreliable effect estimates at a
voxel or region.

Since Cov(εi, δj)=0 for all i and j, εi and δj are independent, and
the density function of ηi=εi+δj can be obtained through the follow-
ing convolution
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where Φ is the cumulative distribution function (cdf) of the standard
normal distribution N(0, 1). The joint density function is
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with the corresponding log-likelihood function
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We adopt the empirical Fisher scoring (EFS) algorithm
(Demidenko, 2004) in the following format,

a
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k
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where k is the iteration index, Hk is a positive definite matrix,
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3775 is
the gradient of the likelihood function, and λk is the step length
with (0, 1], and we usually start with λk=1 and then halve it if the
objective function value is greater than the value at the previous iter-
ation. Although not as efficient as FS, EFS does not require second de-
rivatives that are often difficult to compute.
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Now we obtain the first derivatives of the likelihood function
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Plugging all these results back into the EFS algorithm (20), we
have a numerical scheme for outlier modeling.

Appendix C. Equivalence of MEMA t-tests to one-sample Student t-
test under the “summary statistics” assumptions

Consider p=0 and X=1n×n in model (3). When within-subject
variability is relatively small (σi

2≈0), or when it is the same across
all subjects (σ

1

2=…=σn
2=σ

1

2), we denote weights W=wIn×n,
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where w ¼ 1
τ̂2 or 1
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is the variance estimate of the group

effect estimate α̂0, TKH is simply the conventional one-sample Student

t-test statistic. As the variance of α̂0, V α0ð Þ ¼ XTWX
� �−1 ¼

w1T1
� �−1 ¼ w−1

n , and w−1 ¼ τ̂2 or τ̂2 þ σ̂ 2 is the variance estimate

of the group effect estimate α̂0, we also see the equivalence of TS to
the conventional one-sample Student t-test.

Appendix D. Estimation of Individual Subject β and σ2 values

The use of the MEMA methods described in the main body of the
paper requires accurate estimation not just of the individual subject
effect sizes (the βi) from each voxel time series, but also accurate es-
timates of the variances (the σi

2) of the βi in each voxel for each sub-
ject i. If just the βi are needed, then OLS is consistent and accurate,
even in the presence of moderate serial correlation in the time series
data. However, the OLS estimate of variance can seriously underesti-
mate the variance (negative bias) when positive serial correlation is
present.

To allow for serial correlation in the AFNI MEMA processing
chain, we implemented generalized least square regression
(GLSQ) combined with REML estimation of the serial correlation
parameters in each voxel time series. We chose to use an ARMA
(1,1) model for the temporal correlation structure, as this is the
simplest model that has any plausibility for FMRI data, allowing
for the sum of a noise component with exponentially decaying cor-
relation (i.e., an AR(1) model modeling physiological and scanner
temporal fluctuations) with a white noise component (modeling
the baseline thermal noise level). Our regression model takes the
form

z ¼Yβþη with η∼N 0;σ2R
� �

Rij p; qð Þ ¼ 1 i ¼ j
r1p

κ ið Þ−κ jð Þj j i≠j

� �
where r1≡

pþ qð Þ 1þ pqð Þ
1þ 2pqþ q2

:

Here, Rij denotes the correlation coefficient between the noise at
time indexes i and j; z=voxel data time series vector (∈Rn);
Y=FMRI regression design matrix (∈Rn�n); and β=unknown pa-
rameters of the model (∈Rm). The two unknown ARMA parameters
(p,q) are best understood as p as being the decay rate of the corre-
lation, and via the combination r1, which is the noise correlation
coefficient at lag=1 TR. An AR(1) noise model with decay param-
eter p and variance σA

2 summed with a white noise model with var-
iance σW

2 has the temporal correlation structure of an ARMA(1,1)
model with the same value of p and with r1=pσA

2/(σA
2+σW

2 ). The
natural range of both p and q is (−1,1). The term κ(i) denotes
the “original” time index of data point number i, which allows for
censoring of time points and for temporal discontinuities resulting
from the catenation of multiple imaging runs (we add 10,000 to κ
between runs); in the plainest case of one imaging run with no
censoring, κ(i)= i. The simple device of κ(i) allows us to analyze
multiple imaging time series, with their time discontinuities, from
one subject in a single regression model, thereby eliding the prob-
lem of how to combine data from multiple runs. (The use of κ(i),
however, means the R matrix is not necessarily Toeplitz, except
for the case of a single imaging run with no time points censored
out.)

The REML log-likelihood function to be minimized over (p,q) in
each voxel is (after removing constant terms)

lGLM p; qð Þ ¼ n−mð Þ log zTPz
� �

þ log det R p; qð Þ½ � þ log det YTR p; qð Þ−1Y
h i

where P p; qð Þ ¼ R−1−R−1Y YTR−1Y
h i−1

YTR−1ð∈Rn�nÞ:

Note that the last two terms in the log-likelihood function do
not depend on the data vector z; these terms act as a “penalty”
favoring some values of (p,q) over others. In the case of the
ARMA(1,1) noise correlation model, the values p=q=0 are the
most penalized, meaning that these terms favor nonzero
correlations.

Once p̂; q̂ð Þ are estimated, then the noise variance estimate is σ̂ 2 ¼
zTP p̂; q̂ð Þz= n−mð Þ and the regression parameter estimate is given by

GLSQ as β̂ ¼ YTR p̂; q̂ð ÞY
h i−1

YTR p̂; q̂ð Þz.
For computational efficiency, the calculations are organized

somewhat differently than the bare matrix formulas above indi-
cate. The matrix R(p,q) is truncated to a limited bandwidth by set-
ting correlations |Rij|≤0.001 to zero, and then it is stored in a
sparse structure. Define its upper triangular Choleski factor
C∈Rn�n by R=CTC; C shares the same sparsity pattern as R,
since there are no zero entries inside the sparsity profile. (C− T is
a pre-whitening matrix for R.) Also define the (dense) upper
triangular matrix D∈Rm�m as the Choleski factor of YTR− 1Y=DTD;
there is no need to form the matrix YTR− 1Y explicitly at any point,
since D is easily seen to be the upper triangular factor in the QR
decomposition of the matrix C− TY. Since the matrices C and D
are triangular, their determinants are easily calculated, and the
“penalty” terms in the log-likelihood function lGLM become

log det R p; qð Þ½ � þ log det YTR p; qð Þ−1Y
h i

¼ 2
Xn
i¼1

logCii þ 2
Xm
j¼1

logDjj:

Noting that zTPz ¼ zTPTCTCPz ¼ CPzj j2, the following 8 step algo-
rithm is used to compute the vectors needed for estimation:

1. Solve triangular system CTb1 ¼ z for b1∈Rn

2. Solve triangular system Cb2 ¼ b1 for b2∈Rn

3. Multiply b3 ¼ YTb2 to get b3∈Rm

4. Solve triangular system DTb4 ¼ b3 for b4∈Rm

5. Solve triangular system Db5 ¼ b4 for b5∈Rm (¼ β̂)
6. Multiply b6 ¼ Yb5 to get b6∈Rn (= fitted model time series)
7. Solve triangular system CTb7 ¼ b6 for b7∈Rn

8. Subtract to get CPz ¼ b1−b7 ∈Rnð Þ (pre-whitened residuals; sum
of squares of CPz is used in lGLM).

In this progression of matrix–vector operations, “solve” operations
are always forward or back solutions with triangular matrices; explic-
it matrix inverses are never needed. Matrix Y is also stored sparsely,
since in FMRI it is common that less than 20% of Y's entries are



Appendix E. Group effect estimates and their statistical significances at five voxels

MEMA 

Gaussian Laplacian 

Test 

            Results 

Student 

t-test 

TS TKH TS TKH
Estimate 0.643 0.667 0.682 

4.542 5.006 5.153 5.942 5.443 Group effect 

0.0014 7.33e − 4 6.01e − 4 2.17e − 4 4.09e − 4 

0.200 0.0633 0.0296 

− 15.11 (0.0880) 

Voxel 1 

Cross-subjects 

heterogeneity

− 1.296, 0.406 1.149, 0.242 

Estimate 0.508 0.381 0.364 

3.89 5.536 4.705 7.334 5.156 Group effect 

3.67e − 3 3.63e − 4 1.11e − 3 4.40e − 5 5.98e − 4 

0.171 0.0177 0.0004 

− 18.49  (0.0299) 

Voxel 2 

Cross-subjects 

heterogeneity

− 1.30, 0.409 1.009, 0.018 

Est imate − 0.319 -0.319 -0.323

− 3.168 − 5.020 − 4.501 − 4.564 − 4.308 Group effect 

0.011 7.20e − 4 1.49e − 3 1.36e − 3 1.97e − 3 

0.101 0 0.007

− 11.20(0.2622)

Voxel 3 

Cross-subjects 

heterogeneity

− 1.0, 0.0001 1.081, 0.145

− 0.193 − 0.138 − 0.138 

− 5.449 − 2.971 − 3.915 − 2.971 − 3.915 Group effect 

4.1e − 4 1.57e − 2 3.54e − 3 1.57e − 2 3.54e − 3 

0.0013 0 0 

− 5.18 (0.8183) 

Voxel 4 

Cross-subjects 

heterogeneity

− 1.0, 0.0 1.0, 0.0 

Estimate 0.0496 0.0493 0.0493 

4.7152 0.8937 4.6376 0.8937 4.6376 Group effect

0.0011 0.3947 0.0012 0.3947 0.0012 

1.1e-4 0 0 

− 0.3342 (1.0) 

Voxel 5 

Cross-subjects 

heterogeneity

− 1.0, 0.0 1.0, 0.0 

Talairach coordinates (x, y, z) of the five voxels: (31,−91,−2) (Voxel 1), (−23,−89, 0) (Voxel 2), (−53,−17, 10) (Voxel 3), (−51,−11, 6) (Voxel 4), and (−5, 11, 0) (Voxel 5),
where+x, y, z=RAS (neurological coordinates)
ap-values for the t-statistics with 9 degrees of freedom are two-sided.
b The variance for the conventional approach (paired Student t-test) is the estimated τ2+σ2 in the effect estimates, including both within- and inter-subject variances, assuming
the within-subject variability being homogeneous in the group. The adjustment in TKH relative to TS does not involve the estimate of inter-subject variability τ2, which remains the
same between the two tests.
c The conventional approach assumes equal or no within-subject variance; thus, all the variability in the data is assumed to come between subjects. There is no way to test the sig-
nificance of the inter-subject variability in the case of paired Student t-test under this assumption. The Q-statistic, defined in (8) for testing inter-subject variability (null hypothesis
τ2=0), follows a χ2(9) distribution with the data at the five voxels (p-value shown within parentheses).
d Approximate criteria for heterogeneity: H>1.5 (or I2>0.56), significant; 1.2bHb1.5 (or 0.31b I2b0.56), moderate; Hb1.2 (or I2b0.31), negligible.
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nonzero. Using the sparse structure of various matrices speeds the
computations up significantly. For further speed, the program is care-
fully written for efficiency (in C) and utilizes the OpenMP paralleliza-
tion API to take advantage of multi-core processors. This code is
named 3dREMLfit in the AFNI software suite, and is invoked by the
AFNI single-subject processing script afni_proc.py and graphical user
interface uber_subject.py.

Voxel-wise optimization over (p,q) is done by restricting their po-
tential values to a 2D grid 2G+1 on each side; the default value of G is
4 over the domain (−0.8,+0.8)×(−0.8,+0.8), resulting in a grid
spacing of 0.1. The matrices C and D are pre-computed for each (p,
q) grid point before the voxel-wise calculations begin. Binary search
in this grid is used to find the values p̂; q̂ð Þ that minimize lGLM in
each voxel. This low resolution in (p,q) might seem crude, but in
our trials we found that higher precision in estimating these parame-
ters made very little difference in the final results. In fact, it seems
that any reasonable attempt at pre-whitening to allow for serial cor-
relation produces adequately accurate results for most FMRI purposes
(Marchini and Smith, 2003).
Finally, the variance estimate for any particular linear combination
gTβ of the regression parameters is given by σ̂ 2

gTβ ¼ σ̂ 2 D−Tg
��� ���2. This

estimate is used to form t-statistics of interest at the individual sub-
ject level, and is also carried to the group level in MEMA.
Appendix F. Supplementary data

Supplementary data to this article can be found online at doi:10.
1016/j.neuroimage.2011.12.060.
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