Principles and Practice of Tissue Engineering

Module 3, Lecture 1

20.109 Spring 2008

Dr. Agi Stachowiak

Topics for Lecture 1

- Introduction to tissue engineering
 - basic principles
 - examples
- Introduction to Module 3
 - background: cartilage
 - module structure
 - focus on week 1

What is tissue engineering?

"TE... applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function."

-R. Langer & J.P. Vacanti, *Science* 260:920 (1993)

- By what means?
 - natural or synthetic materials and cells
- Which functions?
 - the replacement is not usually identical to native tissue

[Langer & Vacanti]

Why tissue engineering?

- Severe trauma (acute or diseasestate) challenges natural repair
 - e.g., shallow vs. deep cuts or burns
 - scar tissue formation
- Donor tissue problematic
 - scarcity of available tissue
 - immune response (graft or host)
- Autologous tissue can be problematic
 - no available site with excess tissue
 - permanent damage at donor site

[Public domain image, Wikimedia Commons]

Components of a TE construct

soluble factors

5

scaffold/matrix

Principles of TE: scaffolds

- Why a degradable, porous scaffold?
 - scaffold initially provides mechanical support for cells
 - degradability: scaffold may block new tissue growth, and/or overstimulate inflammation
 - porosity: promotes nutrient+oxygen diffusion
- How is the scaffold made degradable?
 - cross-links susceptible to chemical cleavage
 - cross-links susceptible to enzymatic cleavage
- Example: collagen or collagen-mimetic scaffolds
 - e.g., West JL & Hubbell JA, Macromolecules 32:341 (1999)

Principles of TE: soluble factors

- Types of soluble factors (cytokines)
 - growth factors for proliferation or differentiation (TGF, BMP)
 - factors promoting angiogenesis (VEGF)
 - chemokines that attract the cell type(s) of interest
- Delivery of soluble factors:
 - release from transplanted cells or scaffold itself
- Example: CCL21 promotes T cell migration Stachowiak et al., *J Immunol* **177**:2340 (2006).

Control

+CCL21

Principles of TE: cells

- Progenitors vs. differentiated cells
 - progenitors: hard to obtain large numbers
 - differentiated: may have lost functions
- Transplanted vs. in situ cells
 - cell expansion *in vitro*: can transplant large numbers
- Example: tumor-infiltrating lymphocytes (TIL)
 - T cells lose function in tumors
 - expand TIL ex vivo, treat with cytokines, and transplant: regression in some patients

Review: Rosenberg, et al. *Nature Med* **10**:909 (2004). Data from: Overwijk, et al. J *Exp Med* **198**:569 (2003).

Putting it all together: TE construct

Stachowiak et al. J Biomed Mater Res, in press

Successful TE example

- Skin regeneration after severe burns
 - bilayer polymer [Yannas IV, et al. Science 215:174 (1982)]
 - top layer protects wound, prevents fluid loss
 - bottom provides scaffold for growth
 - results in neotissue comparable to native skin
 - not contracted scar tissue
 - however, lacks sweat glands and follicles
 - sold as Integra Dermal Regeneration template

www.integra-ls.com/products/?product=46

Our focus: cartilage tissue

Avascular, highly water-swollen, heterogeneous tissue. 11

Cartilage TE basics

- Progenitor cells: mesenchymal stem cells
 - require growth factors for differentiation
 - may be difficult to obtain or work with
- Differentiated cells: chondrocytes
 - require special environment to maintain phenotype
 - otherwise, may de-differentiate to fibroblasts
- Our goal: *in vitro* culture of chondrocytes to preserve or destroy phenotype
 - observe collagen content, morphology, viability
 - collagen II:collagen I ratio reflects cell state
 - ultimately, knowledge of key environmental effects can help with design of cartilage TE constructs

Module overview: lab

Day 1: design

Day 2: seed cultures

Day 3: viability assay

Day 4: prep RNA+cDNA

Day 5: transcript assay

Day 6: protein assay

Day 7: remaining analysis

Day 8: your research ideas!₁₃

Module overview: week 1

Days 1+2: design and seed cultures

2D culture: plastic surface

 prepare in duplicate
 design maintenance plan

[bdbiosciences.com]

Alginate: material for 3D culture

- Water-swollen gel
- Seaweed-derived polysacharride
- Co-polymer of M and G acids
 mannuronic and glucuronic
- G-block polymer chains crosslinked by cations (e.g., Ca²⁺⁾
- G/M content and MW influence
 - degradability
 - swelling
 - mechanical properties
 - viscosity of solution

Method preview:

liquid droplets

Lecture 1: conclusions

- Tissue engineering is an emerging field at the interface of engineering, science and medicine
- Maintaining cell function is a key part of TE
- Monolayer and alginate cultures provide a system for testing microenvironmental effects on chondrocytes

Next time... types of biomaterials, their properties, and cell-biomaterial interactions.

Ideas for varying culture conditions

scaffold/matrix

 \rightarrow usually degradable, porous

soluble factors

- \rightarrow made by cells or synthetic
- \rightarrow various release profiles

cells

- → precursors and/or differentiated
- \rightarrow usually autologous

Other targets for change? Most realistic options?