Principles and Practice of Tissue Engineering

Module 3, Lecture 1

20.109 Spring 2008

Dr. Agi Stachowiak
Topics for Lecture 1

• Introduction to tissue engineering
 – basic principles
 – examples

• Introduction to Module 3
 – background: cartilage
 – module structure
 – focus on week 1
What is tissue engineering?

“TE... applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function.”

• By what means?
 – natural or synthetic materials and cells

• Which functions?
 – the replacement is not usually identical to native tissue
Why tissue engineering?

• Severe trauma (acute or disease-state) challenges natural repair
 – e.g., shallow vs. deep cuts or burns
 – scar tissue formation
• Donor tissue problematic
 – scarcity of available tissue
 – immune response (graft or host)
• Autologous tissue can be problematic
 – no available site with excess tissue
 – permanent damage at donor site

[Public domain image, Wikimedia Commons]
Components of a TE construct

scaffold/matrix
- usually degradable, porous

soluble factors
- made by cells or synthetic
- various release profiles

cells
- precursors and/or differentiated
- usually autologous

integrated implantable or injectable device
Principles of TE: scaffolds

• Why a degradable, porous scaffold?
 – scaffold initially provides mechanical support for cells
 – degradability: scaffold may block new tissue growth, and/or overstimulate inflammation
 – porosity: promotes nutrient+oxygen diffusion

• How is the scaffold made degradable?
 – cross-links susceptible to chemical cleavage
 – cross-links susceptible to enzymatic cleavage

• Example: collagen or collagen-mimetic scaffolds
Principles of TE: soluble factors

- Types of soluble factors (cytokines)
 - growth factors for proliferation or differentiation (TGF, BMP)
 - factors promoting angiogenesis (VEGF)
 - chemokines that attract the cell type(s) of interest

- Delivery of soluble factors:
 - release from transplanted cells or scaffold itself

- Example: CCL21 promotes T cell migration
Principles of TE: cells

• Progenitors vs. differentiated cells
 – progenitors: hard to obtain large numbers
 – differentiated: may have lost functions

• Transplanted vs. in situ cells
 – cell expansion in vitro: can transplant large numbers

• Example: tumor-infiltrating lymphocytes (TIL)
 – T cells lose function in tumors
 – expand TIL ex vivo, treat with cytokines, and transplant: regression in some patients

Putting it all together: TE construct

Successful TE example

- Skin regeneration after severe burns
 - top layer protects wound, prevents fluid loss
 - bottom provides scaffold for growth
 - results in neotissue comparable to native skin
 - *not* contracted scar tissue
 - however, lacks sweat glands and follicles
 - sold as Integra Dermal Regeneration template

1. silicone
2. collagen-GAG

www.integra-ls.com/products/?product=46
Our focus: cartilage tissue

Avascular, highly water-swollen, heterogeneous tissue.
Cartilage TE basics

• Progenitor cells: mesenchymal stem cells
 – require growth factors for differentiation
 – may be difficult to obtain or work with

• Differentiated cells: chondrocytes
 – require special environment to maintain phenotype
 – otherwise, may de-differentiate to fibroblasts

• Our goal: *in vitro* culture of chondrocytes to preserve or destroy phenotype
 – observe collagen content, morphology, viability
 – collagen II:collagen I ratio reflects cell state
 – ultimately, knowledge of key environmental effects can help with design of cartilage TE constructs
Module overview: lab

Day 1: design
Day 2: seed cultures
Day 3: viability assay
Day 4: prep RNA+cDNA
Day 5: transcript assay
Day 6: protein assay
Day 7: remaining analysis
Day 8: your research ideas!
Module overview: week 1

Days 1+2: design and seed cultures

- 2D culture: plastic surface
 - prepare in duplicate
 - design maintenance plan

- 3D culture: alginate beads
 - prepare in duplicate wells
 - vary one parameter
Alginate: material for 3D culture

- Water-swollen gel
- Seaweed-derived polysaccharide
- Co-polymer of M and G acids
 - mannuronic and glucuronic
- G-block polymer chains cross-linked by cations (e.g., Ca\(^{2+}\))
- G/M content and MW influence
 - degradability
 - swelling
 - mechanical properties
 - viscosity of solution

Method preview:

liquid droplets into Ca\(^{2+}\) solution semi-solid gel beads
Lecture 1: conclusions

• Tissue engineering is an emerging field at the interface of engineering, science and medicine
• Maintaining cell function is a key part of TE
• Monolayer and alginate cultures provide a system for testing microenvironmental effects on chondrocytes

Next time… types of biomaterials, their properties, and cell-biomaterial interactions.
Ideas for varying culture conditions

scaffold/matrix
→ usually degradable, porous

soluble factors
→ made by cells or synthetic
→ various release profiles

cells
→ precursors and/or differentiated
→ usually autologous

Other targets for change? Most realistic options?