THE UNIVERSITY OF CHICAGO

DYNAMICS AND THERMODYNAMICS OF PROTEINS:

INSIGHTS INTO THE PROTEIN FOLDING PROBLEM

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMISTRY

BY

MUHAMMAD HAMID ZAMAN

CHICAGO, ILLINOIS

JUNE 2003



UMI Number: 3088801

®

UMI

UMI Microform 3088801
Copyright 2003 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346



© 2003 by Muhammad Hamid Zaman

All rights reserved



To my family

il



TABLE OF CONTENTS

TABLE OF CONTENTS ..ottt et snaeesreesneessessvnesvnassaeas v
LIST OF FIGURES ...ttt sttt st vii
LIST OF TABLES ... .ottt e viii
ACKNOWLEDGEMENTS ......oootiiiiiiiteitenieesteesrre ettt e sve e sne e 1
ABSTRACT ...ttt sttt s Xii
Chapter 1. INTRODUCTION .......cooiiiiiiiriiiieeie ettt 1
The Protein-Folding Problem: ..........ccccceereiiiinininiiiniinietieniecseneieseereseeereenens 1
Challenges in studying protein-folding and related problems..........cccccevveevieriennnnne 2
Current MEthOdS :....coouivieiiiiiiiiiiieieneriecr et sre e et see s eenens 3
Experimental Methods..........ccooveieiiiniiieiece et 3

Theoretical Methods and SIMulations ..........cccceeeeveeenenenenicneenienecnenen 6

Answering Fundamental Questions Related to Protein-Folding: Combining

Theory, Experiment and Computations. ........ccceecverieerierienreineesnenieesessreensaesenns 11
Chapter 2. ENTROPIC BENEFIT OF CROSS-LINKING..........ccc0eeennnnnee. 13
INEEOQUCHION....c..eeiiieiiierieeer ettt sttt st sb e 13
IMETROMS: ...ttt sttt et et ra et san e et ere e reenteraans 15
Results and DISCUSSION ........evvviriiriirieniieiieniietente st te st sbeesreesiae et ebeeneeenesanens 16

Loss of translational and rotational entropy upon cross-linking............... 16

Entropic benefit of cross-linking. .........ccceeeeeveecveeieinvieneeee e 32

CONCIUSION: ...ttt ee e e e e st e s e e ae e ae e b e e raanraassaenes 50

Chapter 3. THEORETICAL TREATMENT OF MACROMOLECULAR

REACTIONS THROUGH MULTIPLE PATHWAYS ..o 52
IO OAUCTION: .eveviviiiii ittt ettt ettt e et e e e et et erteneeteeeesessesassaaas e nenanenenss 52
MEIOAS: .ttt ettt et et e e e s s s et bamt e bt btsteereasessssesssssesssanasannataeens 53

iv



Model Systems and ResUlts: ........ccceverrieniiiiieiieniiciececrreeeree e ser e 55
MOAEL L ettt e e e e e e e e e e e eeeaearaeeneesaeaeresaaaaane 55
IMOAEL 2 oottt et e e e e et e e e e et eereeeeaeeaesaeaaeesaaananne 56
IS CUSSION: . eiivirrrereeeiereiirte et eseeesesstraettteeaeesetees s asstanentsaaeneessasssessassssannnssnenesens 62
CONCIUSION ettt e e e e e e e e e e e eee e e e aeaaeeaeaeeeaeaassasaaee s semeenneans 69

Chapter 4. COMPARISON BETWEEN UNITED ATOM AND EXPLICIT

ATOM FORCE FIELDS ...ttt esieessreessreesssraesveeesnaassanaeens 71
INtrOAUCHION. ..cvetiiiiiietetect ettt st b e ettt et nee e 71
Computational Details .......ccccovviiiiiiiiiiiiieeie et eer e e e e aeeera s 74
Results and DISCUSSION ....ccueiiuiriieiiiiiieierteiniete ettt sresaeessreseensne 77

Conformational DyNamicCs: ........ccccevveeviveeirierireeeireerernecerneesseressreessaesessessnns 87
CONCIUSION: ...ttt ettt ettt st et se bt et s b st e e e ba et sseesse et e snensenes 89

Chapter 5. BACKBONE DYNAMICS, FLORY ISOLATED PAIR
HYPOTHESIS AND INTER-BASIN DYNAMICS OF AMINO ACIDS.. 97

INELOAUCHION. ..cvveririiieiieitecce ettt ettt et sat e bt e be e et saeeae 97
RESUIES ..ttt ettt s e s e sbe et 101
Sequence dependence of NN effects........cccccvevviiieiiieniiericieinicncie e 103
Backbone dynamics: ...........ccceeeivieiiiiiieeeiieeeeee et 122
DIASCUSSION ...ttt ettt e st as 128
Differences and accuracy of FFs........ccccoovirviiriiiiiiniiniiceniceeeneceien 132
Glycine flexibility and helical propensity.........c.cccveeveerereeviersnirenienennns 135
Time Scales and Comparisons with Experiments. ..........ccccccvveereueeennnnn. 140
CONCIUSIONS...cuvirererereriieerirtetenteeesteee sttt eestestesasesbesteeseessaessesbesseeasensesseensessens 143
IMELhOAS: ..ottt ettt e st e s e st er e st e e s e enteesaeenten 143
Identification of Basin 1oCations. .......cccccvevecverrerrrieeconiieniinieeessnensseeeen 145
Independence of initial conditions and length of simulation................... 146
Calculation of k;; (inter-basin transition rates) from basin auto correlation
FUNCHION: 1.ttt et ettt et saeas 147

Calculation of backbone entropies..........cccvevcueeereeeeciieeereeenneeeseneserensnees 147



Chapter 6. CONCLUSIONS AND FUTURE WORK ........cccccvvveevrnennne. 148
SUIMMATY ..ttt st te e ae e s aeesba e e b aeesseasssseeesseasssnesnseesesseenses 148

FUBUTE WOTK ..ttt ettt ettt st e e nenns 149
Application of calculation of NN method to RNA:.........c.ccovvvrverienenne, 149

Application of density of states method to sequential pathways: ........... 150

Improvements in the LD-Implicit solvent algorithm..............cccecuveneenne. 151

Combining torsional dynamics and LD simulations...........ccccceceveenvenens 152

Testing FFs for folding ........ccoveeviviieiiceeceeeeceeece e 154

Long range effects on Dynamics: ........ccecvecveeiieecieniesiesieeieesieereeneenne 155

FF optimization for dynamics...........ccceevueeiieeieeneenieciecieee e 156
APPENDIX 1. PLOTTING RAMA MAPS ..., 158
APPENDIX 2. PLOTTING LTM PLOTS ..o, 160
APPENDIX 3. CALCULATION OF CORRELATED ENTROPY .......... 163
APPENDIX 4. CALCULATION OF BACKBONE ENTROPY .............. 165
APPENDIX 5. CALCULATION OF CORRELATION FUNCTION ...... 166
APPENDIX 6. CALCULATION OF HOPPING RATES.......cccceeevriene 168

REFERENCES ...ttt e 170



LIST OF FIGURES

Figure 2.1.Individual steps in binding, folding and cross-linking..........cccccecevereercencnne 17
Figure 2.2. Probability Distribution Functions..........ccccocevvirviiciinnnncnienncnicneceeene, 21
Figure 2.3. Loss of Rotational ENtropy.......cccceceerieeverneinenieenencneneenreseeeieseneieesenennes 31
Figure 2.4. Entropic Benefit of Cross-Linking. ........cccceeevverveneerencencnninennnnneneiinnennn 34
Figure 2.5. Higher order reactions. ........coecererinerirnieneeneneceeentesreceeeencenesae e saessesans 38
Figure 2.6. Excluded volume effects. ..........coeouevirininiiiiininiiiiiiicciinncncneeecein 42
Figure 2.7. Properties of a polyalanine tether. ..........ccoccvvvverierniienienieenienieneeeeeeeieeenen 45
Figure 3.1. Model # 1: The two-pathway re€action..........ccccecveeeeereerreercriererineneeneieerennes 57
Figure 3.2. Model # 2: Log Rate Coefficient vs 1/Temperature for different mean
ACLIVALION EMETEIES. .oeeuveevrerreriieeieeeteenieeeeeenuteebee e beeenseeeaseeeasessneesannessnnesanneeenseases 60
Figure 3.3. Model # 2: Log Rate Coefficient vs Variance of Gaussian distribution plots
for different mean activation energies and different temperatures. ..........coovvvnuene. 63
Figure 4.1. Three classes of conformation accessed during the dynamics of Met-
ENKEPNAIIINL L..eeeiieeieeceete ettt st eae s r e s sane e 78
Figure 4.2. The probability distribution for the radius of gyration Rg2 for Met-enkephalin
as computed with the six different force fields..........ccovirverierrrinvnieienieneiiceeee 80
Figure 4.3. The central backbone C-C bond TCF from different force-fields.................. 85
Figure 4.4. The peptide end-to-end [N(Tyr 1) — O(Met 5)] TCF from different force-
1151 LS O OO PSRRI ORRPRRPO 88
Figure 4.5. The Phe-Phe (C; — C,) VECtOT ....ccoiviiiiiiiiiiiiinitnecci e, 90
Figure 4.6. Time Dependent Conformational Dynamics of the central Gly-3 residue..... 93
Figure 5.1. Tri-alanine .........ccoceeverieerienieniieniteniieintcr ettt e senesrne e aes 99
Figure 5.2. Ramachandran plot of Ala” in Ala'-Ala®-Ala’ . ......c..ccoooeveivrreerrerrerrenene. 104
Figure 5.3. Backbone dynamics of different center residues in Ala-X-Ala.................... 106
Figure 5.4. Phi-Psi basin populations for Ace-Ala-Nme for different force fields......... 110
Figure 5.5. Basin Populations of Tri-peptides. .....c.c.cecervieierireneeneneieneicieninererenienes 112
Figure 5.6. Sequence dependence of Nearest Neighbor effects (AAX). ..cocevcveverennenne. 116
Figure 5.7. Sequence dependence of Nearest Neighbor effects (XAA). ...cccccovveerenenn. 119
Figure 5.8. Backbone dynamics in di-peptides.........coceeveeverneenieniinienernecneienenennenne 124
Figure 5.9. Backbone entropy and sequence dependence of NN effect. ..........cccceeneenee 126
Figure 5.10. Backbone entropy and conformational dependence of NN effect.............. 129
Figure 5.11. Basin Hopping Rates and directional sampling............cccceeeveeiiveeciveennennn 133
Figure 5.12. Torsional Biases in the Force Fields. .......ccccccvviniiiniininninncniineninene. 136
Figure 5.13. Basin population for Gly in Ala-Gly-Ala using the OPLS-AA-01 FF....... 141

vii



LIST OF TABLES

Table 2.1. Change in translational entropy upon cross-linking ...........ccceeveevievveerecvreennnne. 26
Table 2.2. Effect of tether on the association of denatured and pre-folded helices.......... 29
Table 2.3. Comparison between experiment and NN method...........cccocevvivieiccreciennnne. 48

Table 4.1. Basin populations and configurational entropy for different force fields...... 102
Table 5.1. Alanine conformational preference as a function of its NN chemical identity

................................................................................................................................. 111
Table 5.2. Influence of NN sequence on Alanine’s basin population fractions ............. 123
Table 5.3. Reduction in backbone entropy due to NN correlations..........ccccecevverrevernnene. 130
Table 5.4. Sequence dependence of backbone entropy in Ala-X-Ala with unconstrained

NEIZNDOTS ..ottt sttt sttt e et et e s e e b seer s e besaeeraaeranas 139

viii



ACKNOWLEDGEMENTS

It’s a divine blessing that I was productive and efficient in my graduate career,
however it wouldn’t have been possible without the contributions of my advisors,
colleagues, friends and family members. I am grateful to all of them for their patience,
support and guidance.

Steve, Tobin and Karl made possible what seemed rather impossible four years
ago. I still remember my uncertainties, my concerns and my fears at the beginning of my
graduate career. My advisers gave me confidence, provided guidance, yet gave me
enough independence to pursue all of my crazy ideas. Steve made me think like a
scientist and made me bold, independent and innovative. Tobin was always there to
challenge my ideas and guide me in the right direction, and Karl initiated my interest in a
wide variety of interesting problems. It is due to these people that today I can take pride
in my work. I can’t thank them enough!

The atmosphere in the three research groups was very different, yet they all
complemented each other. Tobin’s group was skeptical of simulations and theory, so I
always had to prove the accuracy of my methods to a group of skeptical experimentalists.
Steve’s group was diverse so I had to learn my problems from different angles to satisfy
their curiosity. Karl and his group was rigorous in their methods, so I had to make sure I
knew enough before I could talk to them about the obstacles in my research. All in all,
these three groups made me think and rethink about my research problems and gave me

ideas that contributed to my success. I am especially grateful to my colleagues, namely

X



X
Nima Panahi in Steve’s group, for he was always there as a friend and as a colleague, to

Dorel Buta in Karl’s group, who taught me some of the basic aspects of simulations, to
Bryan, Adarsh, Kevin, Shane and Alj, in the Sosnick group for making my time in the lab
so much fun, to Abhishek for his help with Stat-Mech, to Tahlee, for his support in the
rough times, and to Min-Yi, for teaching me everything that I know now about MD
simulations.

I am also grateful to Professors Norbert Scherer and Steve Kron, for selecting me
as a fellow in the Burroughs-Wellcome program and for constantly providing a rigorous
atmosphere where every idea was challenged until proven to be true. I am indebted to
Steve Kron, for his recommendation played a key role in helping me secure a post-doc
position at Whitehead. I also appreciate the comments and suggestions of the Burroughs-
Wellcome fellows regarding my research. In this regard, Wendy, Richard and Alexei
deserve my special thanks. I also thank Prof. Peter Rossky at the University of Texas for
his hospitality and guidance during my stay in Austin in summers of 2001 and 2002.

I am also grateful to the staff in the Chemistry department, especially ZG, for he
was extremely patient with me, and taught me a lot about using computer clusters even
after I had been guilty of not following the guidelines of the cluster. I thank Mary
Giacomoni, Mary Kulberg, Melinda Moore and Joanne Vetroczky, for they are the best
secretarial staff any department can have.

Last, but not the least, I am eternally grateful to my family. My mother Bushra,
my brother Qasim, my sisters Rabia and Fakiha, and my wife Afreen and her parents Mr
and Mrs. Siddiqi, who were always supportive and encouraging of my endeavors. My

success would not have been possible without the constant support and prayers of my



Xi
family. I would have quit graduate school long time ago if it was not for the

encouragement of my wife and the support of my mother, thus it is to my family that I

dedicate my thesis.



ABSTRACT

The dynamic and thermodynamic properties of proteins are studied using mathematical
models and computer simulations. These models are then tested by comparison with
experimental results. First, a method based upon traditional statistical mechanics is
developed to study the entropic benefit of cross-linking. This method has applications in
protein folding, binding and protein-engineering. Second, a method based upon the
transition state theory is used to study macromolecular reactions through multiple
pathways. Our method takes into account the intrinsic densities of states of initial and
final stages of the reaction, and is able to explain the curvature in the Arrhenius plots in
protein folding and unfolding experiments. Third, the dynamics of small peptides are
studied as a function of force fields used in computer simulations. Our results show that
the force fields show strong biases towards certain conformations and show an ~8-fold
dispersion in dynamics. Finally, the effect of nearest neighboring residue’s conformation,
identity and sequence on a given amino acid is studied using implicit solvent, Langevin
Dynamics (LD) simulations. The results show that the Flory Isolated Pair Hypothesis is
invalid for small proteins, and that the nearest neighbor interactions play a major role in

the overall dynamics and thermodynamics of the system.

xii



1. INTRODUCTION

The Protein-Folding Problem:

Proteins are nature’s machinery that perform specific functions. From enzymes that
regulate the biological reactions to antibodies that help the immune system to rid the
organism of unwanted invaders, proteins play a vital role in biological organisms. In
1961 John Kendrew showed that proteins have a unique three-dimensional structure, and
then in early 1970s Chris Anfinsen showed experimentally that the amino acid sequence
of a protein contains all the information to form a three-dimensional structure (Anfinsen,
1973). Hence, all the information regarding the final structure of the protein is encoded in
its sequence, which in turn determines whether the protein can perform its specific
function in the cell. To understand how a protein forms a unique three-dimensional
structure from the sequence of its amino acids is one of the most challenging problems in

modern biophysics.

This problem has special significance in the post-genomic era, for the genome
contains the DNA code that specifies the protein's sequence. In addition, many human
proteins are membrane bound and extremely hard to crystallize, therefore the ability to
predict the protein structure from its sequence is extremely important. Furthermore, the
loss of this three dimensional structure can lead to a protein’s inability to perform a
specific task, thereby causing diseases such as Alzheimer’s, cystic fibrosis etc (Dobson,

2001).
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Understanding how a protein folds can also help engineer nanoscale materials that

will perform tasks similar to those performed by proteins in their native environment.
Finally, the ability of a protein to interact with another protein greatly depends upon its
structure, and understanding processes such as binding will require a better understanding

of the folding process.

Challenges in studying protein-folding and related problems

Even though the peptide bond was discovered over a hundred years ago, the
principles of how a chain of amino acids forms a unique three dimensional structure
remains a mystery. Cyrus Levinthal reasoned that a protein molecule can not search
through all the possible conformations (Levinthal, 1968), for if each conformation is
searched at a rate of conformation per fsec it would require 10'® years for a 100 amino
acid protein to fold, whereas proteins usually fold in microseconds to seconds. The
problem is therefore to find the lowest energy conformation(s) in a very short time.

This time scale of folding demands use of experimental methods with a short time
resolution to study the folding problem. Traditional methods such as x-ray
crystallography are not useful as they only measure the static structures. In addition,
though the proteins typically fold at milliseconds and microseconds, dynamics occurring
at nano- and pico-second time scales also have a lot of useful information about the
interactions between amino acids. These short timescales therefore require experimental
methods which have a short time resolution to probe dynamics at nano and pico-second

level.
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In addition to the experimental challenges, the protein folding problem is also

difficult to study through traditional theoretical methods. This difficulty is due to the
complexity arising from a large number of atoms of different types in the system, the
complicated many dimensional potential energy surface, and the lack of any obvious
symmetry and reaction coordinate to study the protein-folding reaction. In addition,
modeling the folding process in aqueous media is challenging due to the complexity of
water structure and solute-solvent dynamics.

Current Methods :

This section reviews current methods most often used to study the folding process.
The section is divided into two main parts, namely experimental and theoretical methods,
and discusses the some of the state-of-the-art techniques to study protein folding.
Experimental Methods
Stopped-Flow spectroscopy

Stopped-Flow spectroscopy is one of the most effective and commonly used
technique to study the kinetics of the protein-folding event. Small volumes of solution are
driven from syringes through a mixer just before passing through an observation cell,
where the measurement is taken. As the solution flows, the reaction is only a few
milliseconds old at the time of measurement. The solution then passes into a collection
syringe or a stopping syringe, at which point the solution stops flowing. The most
common methods of measurement to follow the kinetics of the folding event through

measurement of fluorescence, absorbance and circular dichroism.
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The technique is attractive as it uses a small volume and can be used to study the

folding of small single domain proteins, which often fold in a two-state fashion and have
the folding time scales of milli-seconds or more. However, for proteins folding at a much
faster-time scale (folding rate ~ 1 microsecond or less), the technique can not be as used

at the moment.

Hydrogen Exchange Methods

Hydrogen exchange (HX) is one of the few non-perturbing method to study the
folding of a protein. Amide hydrogen atoms in the protein exchange at different rates
with the solvent, depending upon the tendency of that atom to ionize, and therefore
measurement of the rate of exchange gives information about structural and functional
properties of a protein (such as folding, energy transduction etc.

HX experiments can measure the stability and the global unfolding of a protein at
native conditions (Englander et al., 1997). As a result, the technique does not suffer from
the uncertainties and difficulties often encountered at extreme denaturing conditions.
Thus, HX can be used to study the entire folding pathway without any perturbation due to
the presence of denaturant. In addition, HX pulse labeling experiments can give valuable
information about the kinetic intermediates in a folding reaction. By changing the solvent
and the pH of the solution at different mixing stages of the experiment, H-D exchange
pattern in the protein can be observed. A variety of such experiments, with pH and
solvent changes at different times, can then give information about the time course of
structure formation, and hence show the existence or absence of kinetic intermediates

(Englander & Mayne, 1992). Finally, the HX experiments have also been used to study
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the structure of proteins in their equilibrium molten globule form, and therefore yield

information about why certain proteins form molten globules while others don’t. Such
experiments also outline the presence of secondary structure elements in the molten
globule intermediates (Raschke & Marqusee, 1997)

Temperature jump experiments

The temperature at which a protein unfolds is known as melting temperature.
Raising the temperature of the solvent above the melting temperature therefore induces
unfolding. In a temperature-jump experiment, the solution is kept a few degrees under the
melting temperature. With a short laser flash or electrical discharge, the temperature of
the solution can be raised to a value above the melting temperature, therefore initiating
unfolding of the protein. This technique is used to study the unfolding process at much
shorter time scales than the ones available through stopped-flow spectroscopy. The
unfolding process induced by the laser flash, can give useful information about the
unfolding event as well as some information about the folding of the protein. The
detection process is usually carried out by following the fluorescence of Tryptophan
excited by UV lasers.

In order to study the folding process, a cold-denatured protein (unfolded protein at
low temperature) is subjected to a laser pulse, and the temperature jump results in the
folding event. One major drawback in using this technique comes from a short
temperature range of the experiment, and hence the reaction is observed under unstable or
weakly stable conditions. As a result, the folding or the unfolding reaction can only be

observed in the transition region.



Theoretical Methods and Simulations
Theoretical Modeling

Though similar to polymers to a certain extent, proteins pose many problems for
traditional mathematical and statistical methods of enumerating conformations, and
detailed molecular modeling. Part of this problem arises from the large number of atoms
involved, therefore enumeration of all possible conformations is extremely difficult, if
not impossible. In order to solve this problem, lattice-models (similar to the ones often
used in polymer physics) have been introduced and will be discussed in a later section of
this chapter. In addition, the presence of solvent around the protein increases the
complexity of the problem.

In spite of these problems, there have been several efforts to use mathematical
models to study protein-folding, protein-protein interaction and protein-binding. Many of
these studies have focused on calculating the thermodynamic and kinetic properties using
Statistical Mechanics (Pande et al., 1997; Zaman et al., 2002) , path integrals (Wang et
al., 1996)and Transition State Theory (Zaman et al., 2003b). The presence of solvent has
been dealt with implicitly in most of these techniques. Unfortunately, due to the complex
nature of the problem, analytic methods are either applicable to very few systems or use
approximations that make the system unrealistic. To overcome these obstacles, numerical
methods are often used to deal with the complexity and non-linearity of the problem. One
such method is the use of computer simulations, which is discussed in the following

section.



Molecular Dynamics Simulations and Force Fields

Molecular Dynamics or MD simulations have become a standard computational
technique in studying protein-folding. The MD algorithm is based on calculating the
“trajectory” (position and velocity) of every single atom in the system (solute and
solvent). The calculation of the trajectory is achieved by calculating the force on each
atom, which is equal to the negative derivative of the energy with respect to position. The

total energy is given by equation 1.1

U = Ukinetic + Upotential
1 1

Ukinetic :_Zmivi(t) :En BT (11)
25

Upotential = Ubond—bend + Ubond —stretch + Uvdw + Utorsion + Usolv

where kg is the Boltzmann constant, and » is the number of coordinates. The
potential energy can be written as the sum of individual contributions from bond-
bending, bond-stretching, van der Waals interactions and interactions between solvent
and solute. A central element of MD simulations is a list of parameters known as a
“potential” or a Force-Field (FF). This list has all the information about atomic charges,
bond bending and stretching, van der Waals radii, penalties for disallowed motions etc.
The total energy must stay constant with time, whereas the force between atoms changes
over time, since all atoms are moving together. Analytic solution of the position x(t) and
velocity v(t) is impossible, so numerical solutions of the position and velocity are
calculated.

Though MD simulations are extremely useful in providing pico and nano-second
picture of the dynamics of the molecules, there are some fundamental problems with MD

simulations. For protein folding simulations, the first and the foremost problem is
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computational cost of MD simulations. Since the trajectory for every single atom,

including those of the solvent is calculated, a single trajectory of 1 microsecond of a
small (~50 amino acids) can take months on even the fastest computers (Duan &
Kollman, 1998). This major problem limits the study to only small proteins. Also most
proteins fold on the order of milliseconds (three orders of magnitude longer than the
longest MD trajectory on a protein), and finally because one trajectory of folding
simulation is often insufficient to reach any conclusion.

In order to overcome these problems, several methods have been introduced
which include implicit treatment of solvent (later section in this chapter), use of united
atom force fields (chapter 4) and distributed computing over the internet (such as

Folding@Home; (Zagrovic et al., 2002)) to improve the statistics. One method to

overcome the computational costs is to study the unfolding events at higher (> 500 K)
temperatures. However, in order to construct a picture of folding events from an
unfolding trajectory one has to rely on microscopic reversibility. In addition, these high
temperature and pressure conditions are far from being realistic, and can only study the
melting of large domains and structures, Finally, MD simulation results are also
unreliable due to problems with force fields and their optimization for structure and not

dynamics (Chapter 5).

Langevin Dynamics (LD) Simulations and Treatment of Solvent
One of the major obstacles in achieving long time dynamics ( > 1 us) with an all-

atom representation of the protein-molecule is the inclusion of the solvent atoms. The
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Duan-Kollman trajectory of 1 us of villin headpiece utilized 256 Cray T3E processors

with 255 of them tracking the solvent and one tracking the protein molecule.

One method that has been very successful in reducing the computational costs of
all-atom simulations is the use of implicit solvent and Langevin Dynamics to calculate
the forces on the protein-molecule. The representation of the implicit solvent has three
major requirements (in addition to the usual algorithm for LD/ MD simulations), a
microscopic “solvation” potential, a distance dependent dielectric term to screen charge-
charge interactions and the calculation of friction-coefficients required for the LD
algorithm. The method is discussed in detail in Chapters 4 and 5.

The implicit solvent-LD method has shown to decrease the computational costs of
LD simulations by a factor of almost 200. In addition, it has been shown by Shen and
Freed (Shen & Freed, 2001) that the difference between explicit solvent and implicit
solvent methods is almost an order of magnitude smaller than the difference between the
individual force-fields employed to study the dynamics of small proteins.

The implicit solvent-LD simulations are still under development and need
improvement on several fronts. One aspect that needs improvement is the use of a better
dielectric screening constant. Also, the solvent-solute hydrogen bonds cannot be

accurately studied with this method.

MC Simulations and Go Models
Monte Carlo simulations have been used to reduce the computational costs

associated with dynamics (MD and LD) simulations. This is achieved by choosing the
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configurations in phase space at random by a weighting algorithm rather than integrating

the equations of motion. This is usually achieved by using Metropolis sampling, where
the configurations are chosen with a probability of exp(-E /kgT) and the algorithm weighs
the configurations evenly. The MC algorithm starts at a configuration of the system Ay,
and then the system is perturbed randomly to give a new configuration A,. In the NVT
(constant number of particles, volume and temperature) ensemble the probability of
accepting this new configuration is given by:

exp(—E, /kpT)
" exp(~E, / k,T)

p =min[l ]

Thus, if the energy of the new configuration A, is less than A,, the new
configuration is accepted and recorded, and the process of a random step is repeated with
A, being the initial configuration. If the energy of A, is greater than that of A, then, the
probability p is compared to a random number z between 0 and 1 and the move is
accepted if p=z, and is rejected otherwise. If a move is rejected, the original
configuration, the move is repeated with A; being the starting state until the system
reaches a new configuration according to the criterion above. The art of running a
successful MC calculation lies in choosing a perturbation step of appropriate size, which
is not large enough so the rejection rate is high, or not too small such that the volume of
the sample phase space increases very slowly with time and makes the process
computationally expensive.

MC calculations have been applied to the protein-folding problem in a variety of
different flavors. These include MC using torsional dynamics (Fernandez et al., 2001),

MC using an all-atom description of the system and MC using a Go model (Shimada &
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Shakhnovich, 2002). A Go atom-atom potential (Go, 1983) makes two atoms attract each

other if they are neighbors in the native state and repel each otherwise. The energy
function strongly favors the native state, making it a global minimum. Though this model
is useful in reducing the computational costs, it lacks the ability to accurately search the
phase-space and is unable to predict the structure from a sequence of amino-acids for
which the native structure is unknown.

One major draw back of using MC simulations is the limited information that can
be obtained about the time dependent dynamics of the of individual amino acids
Nonetheless MC simulations have had some success in predicting the final structure of
the protein from a given sequence.

Answering Fundamental Questions Related to Protein-Folding: Combining Theory,
Experiment and Computations.

The current thesis discusses the applications of theory, computer simulations and
experiments to understand some of the key processes related to protein-folding. Chapter 2
discusses the application of statistical mechanics to the calculation of entropic benefit in
cross-linking. The methodology developed has applications in protein-folding, binding,
protein-protein interactions and protein-engineering, where the presence of loops can
play a major role in stabilizing a complex.

The next chapter outlines a method rooted in the Transition State Theory to study
the kinetics of multiple-path processes. It has been shown that the reaction from the
unfolded to the folded state can take place through multiple pathways, depending upon

the reaction conditions. There is, however, a surprising dearth of theoretical studies of
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such pathways in macromolecular reactions. The chapter discusses a elegant method to

study the reactions through multiple pathways as a function of reaction conditions. The
method is general enough to be applicable to a wide variety of macromolecular reactions.

The dynamics of small peptides, as a function of various force fields are studied
in chapters 4 and 5. Chapter 4 discusses the difference between the united atom and
explicit atom force fields, with emphasis on dynamics. The current force fields have been
optimized for thermodynamic properties, and their ability to capture the dynamics is
unknown. Chapters 4 and 5, study the internal consistencies among the force fields and
their ability to reproduce experimental results. The chapters also suggest possible
improvements in the current force fields.

Chapter 5 discusses nearest neighbor interactions in peptides. The conformational,
geometric and sequence dependence of such interactions are discussed. Such interactions
play a vital role in the overall dynamics and thermodynamics of the peptide. The study
gives a quantitative measure of these interactions, and the shows that the Flory Isolated
Pair Hypothesis is not valid for small peptides.

The final chapter of the current thesis suggests possible future projects and

research directions that naturally emerge out of the research presented in earlier chapters.



2. ENTROPIC BENEFIT OF CROSS-LINKING

Introduction

“Thus we are forced to the conclusion that there is no basis for estimating the
standard free energy change for the binding of a molecule to a macromolecule from the
corresponding energies of binding for molecules representing its component parts without
a detailed knowledge of the properties for the system.”(Jencks, 1975)

Part of this dilemma posed by Jencks in his classic treatise on enzymology, is the
difficulty of calculating from association constant of n component system (K, units of
M™1), the related association constant for the lower order reaction where two of the

™2 This issue can be cast in the

components are tethered(Jencks, 1981) (Kyss, units of M
specific ~ situation of concentration-dependent bimolecular docking reaction
A+ B <> AeB: Given the free energy of this reaction, AG%;mo, can one predict the
concentration independent AGy,; for the corresponding unimolecular reaction where the
components are cross-linked with a flexible tether 4---B <> AeB?

The first important issue to note here is that the loss of entropy upon tethering is
completely distinct from the loss of entropy upon binding (Fig. 2.1). Binding of two
species of comparable sizes effectively reduces the independent translational and
rotational freedom of the two bodies to that of a single body. Upon cross-linking,
however, each of the two species retains a considerable amount of translational and
rotational freedom, given that the tether is of moderate size and flexibility. The difference

between the cross-linking and binding processes is clearly noted by considering the two-

step process, A+ B <> A---B <> A B, where the tether is introduced, followed by the
13
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two tethered species binding to each other in a complex (A4 e B). Hence, binding and

tethering represent fundamentally different processes even though they both reflect a
reduction of the dimensionality of the system.

Traditionally, the Sackur-Tetrode equation describing entropy in the gas phase
has been used to estimate the entropy of binding, cross-linking, and association of atoms,
molecules and macromolecules(Amzel, 1997, Mammen et al., 1998). However, this
equation does not consider the molecular volume occupied by the solvent, and hence,
probably overestimates the entropy in the liquid phase. In the cell theory of liquids,
another approach to the problem, the entire volume of the solvent is divided into fixed
cages or cells(Barker, 1963). Each cell contains a single given molecule, an unrealistic
assumption that precludes the molecules from fully sampling the entire volume.

To compare the bimolecular to unimolecular system, the center-to-center

probability distributions are calculated for the two species before and after their tethering.

These distributions, P/** (r) and P'*(#), respectively, are used to calculate the entropy

dimer tether

of each state according to
S=-R I4nrzP(r) In P(r)dr (2.1)
0

The distribution P!“(r) inherently depends upon the concentration of reactants,

dimer
typically chosen to be at 1 M standard state. The more concentrated the reactants, the less

entropy is lost upon introduction of the tether. The distribution P"**(r)depends upon the

tether
length and nature of the tether.
One of the major benefits of using probability distribution functions is that the

presence of the solvent does not significantly affect the calculation of the benefit of cross-
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linking. Although the volume occupied by the solvent molecules may restrict the

available volume of each helix, the distribution functions themselves are not significantly
altered by the liquid. Additionally, any reduction should be independent of the presence
of the tether. Hence, the entropy of both states should be reduced by the same amount,
which cancels out in the calculation of the overall change in entropy.

To calculate the untethered system’s distribution, we introduce the "Nearest

Neighbor" Method, where P/’ () is posited to reflect the probability that a partner can

dimer
travel a given distance from a reference helix while still being its nearest neighbor (NN).
The center-to-center and relative angle distribution functions of the tethered system,
connected by Gaussian random coils or poly-L-alanine chains, are compared to their
untethered counter-parts to estimate the loss of translation and rotational entropy
accompanying cross-linking. Here, we illustrate this methodology to the docking of two
helices, as well as to the general association of three components where two of them are
pre-tethered. The method is extended and compared to experimental results for a variety

of proteins.

Methods:

The entropy calculations were performed using a program written in
Mathematica® 4.1 developed by Wolfram Research Inc. A chain of » residues (unfolded
peptide or the cross-link) was modeled either as a Gaussian random walk with 2n
segments (length 1.5 A= % (C,-to-C, distance)), or as a poly-alanine chain. For the
latter, each alanine’s conformation was specified by the occupation of three discrete

regions in the Ramachandran ®,¥ plot (extended, a- and 3,9 helical regions which are
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the upper left, lower left and upper right quadrants, respectively). The regions were

approximated as ellipsoids according to Flory's method(Flory, 1953). The ®,¥ values
were randomly chosen within each region in proportion to the size of each ellipsoid to
determine the overall conformation of the chain.

The excluded volume effects were investigated as outlined by Pappu et al(Pappu
et al., 2000). Based upon a hard-sphere model, the sterically allowed ®,¥ angles for an
alanine dipeptide were generated. A steric clash between two atoms exists when their
contact distance is less than the hard-sphere contact distance. Equally distributed values
of these sterically allowed @,¥ angles were used to generate conformations of chains up
to twelve alanine residues. Each chain’s conformation was then screened for steric
clashes between any two atoms of non-adjacent residues. The conformations without any
clashes were tabulated to calculate the percentage of allowed conformations for each

chain length.

Results and Discussion

Loss of translational and rotational entropy upon cross-linking

The folding and binding of a pair of helices is modeled with six states, which are
related by transitions representing either folding, cross-linking, or binding (Fig. 2.1). The
horizontal arrows represent the cross-linking process whether the system is in the
denatured (1<>2), helical (3<»4), or docked conformations (5<>6). The vertical arms

represent the folding from a random coil to helical structure (1<>3 and 2<>4), or the

docking of two pre-folded helices (335 and 4<>6). The translational entropy depends
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Figure 2.1 Individual steps in binding, folding and cross-linking

The left column represents the process of two untethered, denatured
chains that form helices, and then bind to form a helical dimer. The
two unstructured monomers are modeled as Gaussian random walks
(State 1); the isolated (State 3) and bound (State 5) helices are
modeled as thin rods. States 2,4, and 6, are the corresponding states
for a system where the two chains have been tethered. The
introduction of the tether, a shift from the left to the right column,
results in a decrease in the reaction order for the isolated chains
(12, and 3<>4), but not for pre-docked helices (5¢>6). The loss of
translational entropy upon introduction of the tether for the upper
two transitions is calculated according to the NN method, while for
the lower transition, the loss is calculated according to loop closure
entropy.
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upon the distribution of center-to-center distances whereas the rotational entropy depends

upon the distribution of the relative angles between the two components. The reduction in

translational entropy upon cross-linking of pre-folded helices is calculated by comparing

the center-to-center probability distribution of the two helices before, P;“" (r), and after

dimer

tethering, P"**(r), according to:

tether

tether tether dimer dimer

AStrans = Stether-Sdimeric = — R j (47272 {(P!= (p)In P™™ (r)— P () 1n P} (r)})dr (2.2)
0

where R is the gas constant, and the distribution has normalization .[4727’2}’,:';13 (rydr=1.
0

Although internal vibrational motions of the docked complex must be accounted
for in a calculation of the energetics of a given binding process (AG yimo1 0r AGyy;) (Brady
& Sharp, 1997), these motions are not altered by introduction of an ideal tether. They
should contribute equally in the bound state of both the tethered and untethered systems,
and do not affect ASyans as defined in Eq. 2.2. Thus, internal motions do not need to be
considered in the present calculation of the change in entropy upon tethering.

The reduction in rotational entropy is obtained from a comparison of the
rotational distribution function for the tethered species, Pieme(0,0), with that of the
untethered species, which is a uniform distribution Pyptether(6,0):

AS1or= -R J [Pectrer(8,0) In Pretner(8,0)-Punitorm(8,0) In Punitorm(6,0) 1d(6,0) (2.3)
where 0, and ¢ are the angles in spherical coordinates between the axes of the two helices
with normalization [P(6,$)d(6,0)=1. The unfolded peptide and unstructured tethers are

initially approximated as Gaussian random walks (or chains)(Jacobson et al., 1950;
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Jacobson & Stockmayer, 1950) and the helices as thin, non-interacting rods. Both the

tether and the unfolded polypeptide are assumed to Gaussian random walks. The

excluded volume effects of the chain are discussed in a later section.

Translational Entropy
The loss of translational entropy is calculated upon the introduction of the tether

for each of the three horizontal transitions shown in Fig. 2.1.

Docked helices:

The process 5>6 represents the ligation of the tether and the formation of a closed loop.
The ligation process is unimolecular (ignoring the covalent peptide bond formation).
Hence, the concentration of reactants is irrelevant to the loss of translational and
rotational entropy. According to Flory as well as Jacobson-Stockmayer Theory for
Gaussian chains, the entropic cost of loop closure of # segments is(Flory, 1953; Jacobson

et al., 1950; Jacobson & Stockmayer, 1950)

ASs=-3/2 R In (n 7/2) (2.4)

Undocked helices:

The process 3<>4 represents the cross-linking of a system of two pre-folded, but
undocked helices. Tethering of the helices results in a change from a bimolecular to a
unimolecular system. The loss of entropy for this process is calculated from the change in

the probability distribution of center-to-center distances that describes the configuration

before and after the introduction of the tether, i.e. P/ (r)and P (r) respectively.

dimer tether
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Figure 2.2 Probability Distribution Functions

The center-to-center probability distribution functions for unfolded
chains and cross-linked helices, either untethered, (calculated
according to the NN Method), or connected by a six residue tether
(modeled as a Gaussian random coil). a) P(r) distribution. ) The
unit normalized 47> P(r) distribution, and ¢) 47> P(r)In P(r).
The area under the curve in ¢) for each distribution (multiplied by -
R) is the translational entropy. For comparison, the distribution is
shown for a molecule uniformly distributed within a spherical
volume, but having the same entropy as the NN distribution.
Symbols are the same in all three panels.
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The relative motion of the two cross-linked helices is restricted by the tether which itself

has an end-to-end probability distribution (Fig. 2.2). For an n residue tether, this
distribution is approximated by a freely-jointed Gaussian random walk of 2» segments

(each amino acid has two torsion angles):
Poe(r) = (BINmy e (25)
where = /3 /(2nl?) , and [ is the length of each step(Cantor & Schimmel, 1980; Flory,

1953), taken to be 1.5 A.

Rather than the end-to-end distribution of the tether, the relevant quantity for the
calculation of the loss of entropy for the helices is their center-to-center distribution. This
distribution can be calculated from the tether’s end-to-end distribution by adding to the

ends, an extra step of half the length of the helix chosen at random exit angles. We obtain

P (1) by simulating such a random walk (Fig. 2.2), and the translation entropy of the

tether
tethered helices from Eq. 2.1.

Next the center-to-center distribution function for the unlinked system, P.“ (r)

dimer

is calculated. In principle, the two unlinked helices are uniformly distributed over the
entire volume of the system, V7. The application of this uniform distribution, however,
greatly over-estimates the accessible volume and results in an incorrect, system-size
dependence to the entropy.

To circumvent this problem, we introduce the Nearest Neighbor (NN) Method.
The relevant volume for a given partner helix is limited to the region around a reference
helix where the partner is the nearest neighbor. As the partner diffuses a distance away

from the reference helix, another helix is likely to become the closest helix. The distance
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the original partner can travel while remaining the nearest neighbor is dependent upon the

number density, p=N/Vi=1/Vp.
We posit that the probability of the partner being the closest, Pwyn(7), is

proportional to the center-to-center distance distribution, P“* (), between the partner

dimer
and the reference helix, differing only by a scale factor required to maintain unit
normalization. As the initial choice of both the reference helix and partner are arbitrary,
and their mutual association is not fixed in time (i.e. a third helix can become the NN),

1ssues related to distinguishability are circumvented.

The NN, and hence, P, (r) distribution can be calculated from the probability

dimer

that no other helix is the NN. For the partner at a distance  from the reference helix, the

probability that another particular helix is the NN is %/ = V%] , where v = 47 % . The
T

probability the original partner remains the NN is the probability that none of the other N

helices are closer:
P,(r)=0-vp/N)" ~e™” (2.6)

After normalization, we obtain P> (r) =€ —% .

dimer

Having determined P’ () in this manner, we can calculate the entropy of the

dimer
untethered, dimeric helices according to Eq. 1. At 1 M standard state, 1/p=Vpo=1661 Al ,
and Sgimeric= -17.02 e.u. Interestingly, this value of entropy is equivalent to that for a
helix uniformly distributed within a volume of 1839 A’. This volume is very close to

Vimor, for which S =-16.82 e.u. (Fig. 2.2).
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The difference in entropy between the untethered system and the cross-linked

helices (process 3«>4) provides the entropic cost of cross-linking in the helical, but
undocked state, as per Eq. 2.2. For the introduction of a six residue tether to a
bimolecular system at 1 M standard state, the entropy is decreased by 2.15 e.u., or
TASans = -0.64 kcal mol! at T=300 K. Values for other length tethers are listed in Table
2.1.

Although the tethering the two undocked helices at 1 M standard state by six
residues decreases the entropy of the system, a tether of twelve or more residues results in
an increase in the entropy of the system. It may seem paradoxical that the tethering can
result in an increase in entropy. The increase indicates the tethered, but undocked helices
sample more volume than do the isolated helices at the (high) standard state
concentration of 1 M. The entropy of an untethered helix equates to it uniformly
sampling a box of dimensions of only (12.2 A)’, whereas the mean center-to-center
distance of two helices with a twelve residue tether is over two-fold larger. This increase
for the tethered helices explains why a twelve-residue tether actually increases the
entropy in the cross-linked state when compared to the free state at 1 M standard state
concentration (see discussion below). Part of the effect comes from the fact that the
tethered helix cannot be exchanged with another helix, however far away it moves,
whereas the untethered one can when it moves further away than 12.2 A. For a more
realistic standard state concentration of 1 pM, the volume sampled by the untethered
system is increased 10°-fold, and the introduction of the tether does reduce the

translational entropy of the helices.



Table 2.1. Change in translational entropy upon cross-linking

AS denatured pre- folded
Length of tether rans trans

(ew)’ (ew)?
6 3.89 215
9 4.11 -0.838
12 432 0.104
15 4.51 0.84
18 4.69 145

! Tethering of denatured helices, Process 1432

? Tethering of pre-folded helices, Process 3<>4
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The use of the distribution function and Eq. 2.1 to calculate the translational entropy

correctly accounts for the concentration dependence, AS(C) = AS(Cref) - R In Cpew/Cref,
where Cew and Cr are the new and reference concentration, respectively. For example,
an N-fold increase in solute concentration results in the distribution function being

uniformly contracted N-fold along the r-axis (with a commensurate increase in height to

maintain unit normalization): P, (r)= NP, (rN). The entropy of the system at higher

concentration is
S(C) =R [4mr* P (r)In Py (r)dr

—_R j [4nr> NP, (rN)In P, (rN)+4nr’ NP, (rN)InNldr
0 2.7)

——R j 4nr’P, (rN)InP, (#N)(Ndr)—RInN j 4Py (rN)Ndr
0 0

=S(C,;)-RInN

Hence, the method has the correct dependence on the solute concentration.

Denatured polypeptides.
The analysis for tethering in the denatured state (Process 1<>2 of Fig. 2.1), is similar to
that for the undocked helices. Again, the change in translational entropy is calculated

from the change in the center-to-center distance distributions, P2 (r) and

dimer

plenawred (1) The P (r) distribution is identical to its helical counterpart, P{* (r),

tether dimer dimer
as the NN Method did not assume any shape for the reactants.
The tether restricts the center-to-center distribution of the two denatured

polypeptides. The tether’s end-to-end distribution when convoluted with each polymer’s



28
end-to-center distribution is the desired center-to-center distance distribution between the

Pdenatured
tether

two polypeptides. Alternatively, (r) can be calculated by realizing that it is the

end-to-end distribution for the portion of the chain connecting the two centers of the
denatured (identical) helices. The number of residues in this portion is Mpelix+Niether-

The calculation of change in entropy upon the introduction of a cross-link in the
unfolded state is carried out by using Eq. 2.2. We find ASg;ns=3.9 e.u. (TASyans = 1.16
kecal mol™ at 300 K) for the introduction of a six amino acid long tether in the denatured
state, Process 1<2. The increase in entropy indicates that the center of tethered
polypeptide samples more configurational space than it does when it is untethered at a
standard state concentration of 1 M.

Size dependence of cross-linking entropy

The entropic cost of cross-linking depends upon the size of components. An
increase from 33 to 66 residues, for example, results in the entropy of tethering increasing
by 0.6 and 1.82 kcal M (2 e.u. and 6.06 e.u respectively) for denatured and pre-folded
helices (Process 1<>2, and 3<>4), respectively, when they are connected by a six-residue
helix. The increase in entropy for the denatured helices of 66 residue is because the
center-to-center distance distribution is that of a 72 residue (=NhelixtNeether) random walk
rather than the original 39 residue random walk. Likewise, the increase in entropy for the
pre-folded helices is because of their increased length, which results in a more extended
distribution function. The entropy values listed in the Tables 2.1 and 2.2, and mentioned
elsewhere in this paper are for tethers of different lengths. The helix, however, is kept at a

constant 33 residues and length of 30 A.



Table 2.2. Effect of tether on the association of denatured and
pre-folded helices

29

AS° AG pi-AGyy=-TAS° Cetr
Length of tether (e..) ™'
6 “10.6 (-4.6) 3.2(1.4) 0.0049 (0.10)
9 -12.0 (-7.1) 3.6 (2.1) 0.0024 (0.029)
12 -13.1 (-8.9) 3.9 (2.7) 0.0014 (0.012)
15 “14.0 (-10.3) 42 (3.1) 0.00092 (0.0056)
18 -14.7 (-11.5) 44 (3.4) 0.00063 (0.0032)

Values given' in the table are for process 14>5 relative to process 2<>6, at 1 M

standard state concentration.

Values for Process 3<>5 relative to Process 4<>6 is given in parenthesis.

Stability is given in kcal M, at T=300 K

! Calculated according to Cpp= e
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Rotational Entropy.

The analysis of the loss of rotational entropy parallels that for translational
entropy, except that the restriction in the relative angle, rather than the distance, between
the two helices is the pertinent quantity. Of the three horizontal processes in Fig. 2.1, the
relative angle is likely to affect only for the tethering of the two, undocked helices
(Process 3<>4). The tether does not change the orientation between two docked helices
(Process 5¢>6), nor does it significantly restrict the rotational freedom between the two
denatured polypeptides (Process 1<>2).

The angular distribution of the undocked helices, P(0,¢), relative to a uniform
distribution, Pynirorm(0,9), is used to calculate loss of rotational entropy (Eq. 2.3). For
arbitrarily shaped objects, a third angular degree of freedom is required. However, for the
cylindrically symmetric helices with a freely jointed tether examined here, there is no
restriction in this quantity.

A tether composed of amino acids has steric restraints due to restriction of each
residue’s @,V dihedral angles. This restriction may result in a decrease in the angular
freedom between the two helices. In order to investigate this effect, simulations are
carried out with polyalanine tethers. The dihedral angles for each residue are chosen to
reflect the restriction of the polypeptide backbone and side-chain moieties. The tether’s
conformation is coarsely specified for each residue by the occupation of three discrete
regions in the Ramachandran ®,¥ plot(Flory, 1953). The regions are approximated as

ellipsoids according to Flory's method(Flory, 1953). The ®,¥ values are randomly
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Figure 2.3 Loss of Rotational Entropy.

The angle between the two helices, approximated as the angle between
the first segment and the last segment of the polyalanine tether, are
shown. The uniform distribution indicates that the loss of rotational
entropy upon tethering is minimal at these linker lengths.
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chosen within each basin according to their relative areas to determine the overall

conformation of the chain.

To assess the loss of rotational entropy, the angle between the long axes of the
helices is histogrammed for each configuration. This angle is assumed to be the same as
the angle between the first and last segment of the tether (i.e. the helix is fixed in angle
relative to the adjoining segment in the tether). The histogram of angles is coarsely
divided into octants of a sphere (Fig. 2.3). For a six residue tether, the angular
distribution is nearly uniform, indicating that the helices are essentially freely jointed for
this length of tether. Hence, the loss bf rotational entropy upon tethering is quite small (<
0.5 e.u.), and generally negligible as compared to the loss of translational entropy.
Furthermore, the loss of rotational entropy upon tethering is considerably less than 45 e.u.
(TAS= 13.5 kcal mol at T= 300 K), the loss of rotational entropy for the binding of two

4 kD proteins(Mammen et al., 1998).
Entropic benefit of cross-linking.

Having calculated the entropic cost of cross-linking for each of the individual steps, and
concluded that the loss of rotational entropy is insignificant, we can estimate the net
benefit of cross-linking to the entire docking equilibrium of the unfolded (Process 1¢>5
relative to 2¢>6) or pre-folded helices (Process 3<>5 relative to 4<>6). Under the
assumption that docking is intra-molecular, the introduction of a cross-link results in a
loop closure penalty in the docked state. The tether either decreases or increases the

entropy of free, undocked state, depending upon its length (Tables 2.1, 2.2). For example,
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closing a six residue tether in the docked state (Process 5<»6), results in a loop closure

penalty equivalent to a reduction in entropy of 6.7 e.u. At 1 M standard state, the
introduction of the tether increases the translational entropy by 3.9 e.u. for the denatured
helices (Process 1<>2), but decreases it by 2.15 e.u for the pre-folded, undocked helices
(364).

Thus, the introduction of the tether in the denatured state (Process 1<>2) favors
the tethered state while in the docked state (Process 5¢>6), it favors the untethered state.
Hence, for the entire reaction (Process 1<»>5 relative to 2<>6), the tether’s effect in both
the undocked and docked states opposes the formation of the docked state by a total 10.6
e.u. When the undocked state is already helical, the tether’s contribution favors the
untethered state in both undocked and docked states. The net of these opposing factors
still inhibits the formation of the docked state by a total of 4.6 e.u. Therefore, in either
situation, the introduction of a tether results in a decrease in the amount of docked
species.

However, the conclusion that tethering is entropically destabilizing explicitly
depends upon the standard state concentration used in the calculation. The less
concentrated the reactants, the more translational entropy each helix has prior to binding.
Thus, the loss of entropy upon introduction of the tether in the undocked state is greater
when compared to reactants at lower concentrations. The loss of translational entropy
generally is calculated relative to the free state at I M concentration, the concentration
where free energies for bimolecular systems are calculated (i.e. AG%= -R T In K,g). As

noted above, the use of 1 M standard state concentration explains the paradoxical result
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Fig 2.4 Entropic Benefit of Cross-Linking.

a) Decrease in effective concentration as a function of the increase in
the number of residues in the cross-link. b) Increase in AGpi-AGyy; as
a function of the cross-link length.
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that a twelve residue tether between two helices, whose average center-to-center distance

is 25-30 A, results in an increase in entropy relative to the free species, whose
translational entropy is equivalent to the uniform exploration of a cube having a volume
of only 1661 A~ (12.2 A)’. In essence, the helices explore more volume when tethered
than they do at 1 M standard state concentration according to the NN method.

For macromolecules, the 1 M standard state concentration is unrealistically high.
At a more realistic concentration of C.r= 1 UM, the entropic penalty of adding the tether
is increased by 26.7 e.u. (Eq. 2.7), and the introduction of the tether now is very
entropically restrictive, as one expects. Further, at this lower concentration, the
assumption that the tethered helices dock intramolecularly is more likely to be valid.

In terms of free energy for the denatured helices at 300 K connected by a six
residue tether, AGy, is less than AG%; by 3.2 kcal mol! at 1 M standard state
concentration, but is 5 kcal mol™ greater at Crer= 1 uM. Hence, the introduction of the
tether does increase the population of docked species when concentration of the
individual helices is below ~1 mM.

The tether’s effect on stability, and its dependence on the choice of Cs, also can
be cast in terms of effective concentration of reactants, C.g upon the introduction of a
tether. Once AS values are calculated at a given reference concentration, C,.; the
effective concentration upon cross-linking, Cs can be calculated according to:

Co= Crre™® (2.8)
For six and eighteen residue tethers, denatured helices have an effective concentration 4.1

and 0.57 mM, respectively (Table 2.2). At a reference concentration equal to C.y, the free
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energy of the bimolecular and tethered systems are equal. When the effective

concentration induced by the tether exceeds the dissociation constant, the docked

[docked] C.s
[undocked] K

complex is stable. K """ =

diss
Higher order reactions.

The methodology presented above can be used as a framework for determining
the binding constant for a multimeric association after two of the individual components
are tethered(Jencks, 1981). The analysis is illustrated with the sequential binding of three
individual components, 4, B, and C (Fig. 2.5). If the tether does not interfere with either

untether her

binding step (e.g. K¢ = K<), then the difference in the two processes is reduced to
B-C B-—C

the difference in the second binding step where A binds to the complex B e C . This
situation directly corresponds to that for the docking of the pre-formed helix before and
after the introduction of the tether (State 3<>State 5 versus State 4¢>State 6 in Fig. 2.1).
Prior to 4 binding the complex, its effective concentration is altered by the presence of
the tether, and consequently its translational entropy is changed. After binding, there is a
loop closure penalty associated with the restriction of the ends of the tether. The loss in
entropy, ASunbound, Upon introduction of the tether between A and the complex Be C is
the same as that calculated using the NN Method for the two helices (although excluded
volume issues may become more important). The corresponding loss in entropy in the
bound state, ASpeund, i the loop closure entropy penalty for the tether. This value depends

upon the actual end-to-end distance of the tether in the bound state, which may not be
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Figure 2.5 Higher order reactions.

Diagram depicted the sequential binding of three components, A,

B and C when A and B are untethered (upper) and pre-tethered

(lower). For the untethered system, the association constant is

given by
AeBe

Kzrit;tflér — Klz;ritétheerlitlegtél'er — [ C] (K;Iitgther ,
[4][B][C]

untether . ) untether . } .
KA_BC in units of M, KA—B—C in units of M 2), while the

association constant for the corresponding reaction where A and
B are tethered, is given by:

ether etner einer [A.B.C]
K. =Kph Ko = T4 BI[C]

tether tether tether
(K B-C ,K 4-B—C in units of M, K A-BC 1s dimensionless).
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zero, and will depend on the details of the system. The loop closure penalty for Gaussian

random coil for a given r end-to-end distance (relative to a zero end-to-end distance) is
b RC(r) 2.2
ASypna =S8(r)=S8(0) =-RIn[——]=RB"r (2.9)
FPrc)
where [ is defined in Eq. 5.
The net effect of the introduction of the tether is ASiether =ASbound-ASunbound- This entropy
can be converted to Ces according to Eq. 8. We obtain the association constant of the

tethered reaction according to

tether  __ untether
Kis'c = CoyKipC (2.10)

An empirical value of K . which equates to a Ces that is higher than predicted by Eq.
p A-B—C

10 generally implies that the tether provides an orientational benefit. Conversely, a lower
value of Cger implies that the tether may be directly interfering with binding or that it is

insufficiently long or flexible, and is strained in the bound complex.

2.3.4 Gaussian coil approximation.

The simulations of the poly-alanine tether used in the rotational entropy
calculation can also be used to test the validity of the Gaussian random coil
approximation for real amino acid tethers. The average end-to-end distance distribution
for poly-alanine tethers of various lengths is compared to that for an ideal Gaussian

random coil in Fig 2.6 a-c. A three residue tether behaves significantly differently than
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the idealized coil, but a six residue chain already is a reasonable approximation for a

Gaussian coil, both in terms of the mean end-to-end distance and the distribution of end-
to-end distances.
Excluded volume effects:

In order to correct for the excluded volume of the helices and steric overlap,
simulations are carried with finite size helices. The 30 A long, 10 A diameter helices
overlap in about 1/3 of the configurations of a six residue tether. For an eighteen residue
chain, the occurrence decreases to 5% (Fig. 2.7a). The elimination of these disallowed
configurations results in a more extended center-to-center probability distribution. Hence,
the entropy of the tethered helices is higher, and the loss of translational entropy is, in
fact, reduced. Numerically, this effect results in a decrease of only 0.43 eu. (2.9 %
decrease from the original Seemer) and 0.12 e.u (0.7% decrease) in cross-linking entropy
for six and eighteen residues respectively.

In order to investigate excluded volume effects due to the steric clashes of non-
neighboring residues, we performed hard-sphere simulations similar to Pappu et al(Pappu
et al., 2000) (Fig. 2.7b). Polyalanine chains were constructed using dihedral angles
randomly chosen from all the sterically allowed possibilities in a dipeptide (without
restriction to a given region such as a-helical, as was done by Pappu et al). The number
of overlapping chains increases nearly linearly from 7 to 16% going from six to twelve
residues. Furthermore, the effect on the end-to-end probability distribution also is very
small. As this distribution directly relates to the entropy, excluded volume effects of the
tether with itself (and presumably with the helices that extend out in the opposite

direction) has a minimal impact on the entropy of tethering.



Figure 2.6 Excluded volume effects.

a). The fraction of configurations where the finite sized helices
(30 A long, 10 A diameter) overlap for different length poly-
alanine tethers. b) Number of allowed configurations for
different length poly-alanine chains. The steric clashes of non-
nearest neighbors were calculated using the hard-sphere model
described in the text.
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Comparison to other methods:

The NN Method provides an explanation as to why the Cell Theory of Liquids
provides a reasonable result, even though the basic premise, that the solute particles are

localized to cells, is invalid. The distribution function for the untethered system,

P!“™ (), has nearly the equivalent entropy to that of a uniform distribution within

dimer
volume equivalent to the average volume per solute molecule. Hence, the Cell Theory of
Liquids provides a reasonable approximation even though the basis of the method is
unrealistic.

Likewise, the NN Method for calculating the entropy of a free helix (not the loss
of entropy for the tethering process) agrees with the gas phase Sackur-Tetrode Eq. in that
a solute particle has nearly the same effective volume per particle in both methods. We
point out, however, that the Sackur-Tetrode Eq. for classical particles requires the ad hoc
introduction of an extra factor of N in the volume per particle to account for the
particles’ indistinguishability. No such correction is needed in the NN Method.

Amzel(Amzel, 1997) as well as Whitesides, Shahknovich and co-
workers(Mammen et al., 1998) have presented similar corrections to the Sakur-Tetrode
Eq. to account for restriction due to the finite volume occupied by solvent molecules.
The effective, or free volume of the solute is the volume the center of the solute can
sample without bumping into a solvent molecule. Using this method, Amzel accurately
estimates the entropy of liquid water. Amzel also predicts the loss of entropy upon
binding (Process 4<>6) by comparing the free volume for the solute in solution to the

solute’s free volume when it is bound to another protein.
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Figure 2.7 Properties of a polyalanine tether.

a) Comparison between end-to-end distances for Gaussian
random coils and polyalanine chains. The distributions are
significantly different for three residue polyalanine chains, but
are similar for six residues (and longer) chains. b) Probability
distribution of end-to-end distances for Gaussian random coils
and polypeptides. ¢) The results for six or more residues are
well approximated by a Gaussian distribution. The solid line
represents a Gaussian fit whose width is within 10% of the
corresponding Gaussian random coil distribution of the same
length.
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Mammen et al(Mammen et al., 1998) accurately estimated the standard entropy of
condensation of monatomic gases using the concept of free volume. They also estimate
the (maximum) loss of entropy for a binding reaction of a tethered system (Process
46>6), as distinct from our calculation where entropic benefit of introducing the tether is
calculated (Process 4<>6 relative to Process 3<>5). Regardless, our calculation is similar
in that the loss of entropy is based upon a comparison of the volume accessible prior to
docking to that available afterwards. However, certain details are different, for example,
the present analysis is based upon probability distribution functions of the tether.

Another method used to calculate the translational entropy of binding or cross-
linking in aqueous media is the empirical quantity "cratic entropy" (mixing entropy)
given by:

AS=-RIn 55 (2.12)
The value of 55 reflects the ratio of the concentration of 1 M solute to the molarity of
pure water. Cratic entropy was proposed by Gurney(Gurney, 1953) and
Kauzman(Kauzmann, 1959) to explain the entropy of mixing of ideal solutes in pure
solutions. This correction is not derived from any principles of thermodynamics(Holtzer,

1995) or statistical mechanics(Gilson et al., 1997; Janin, 1996).

Comparison to Experiments:
In this section we compare the NN method to the results for proteins where the
entropy or the free energy between the monomeric and dimeric versions has been

measured (Table 2.3).



Table 2.3. Comparison between experiment and NN method

Protein (structure)

Experimental AS

(AGobi 'AGuni)

Predicted AS

(AGObi 'AGuni)

GCN4 coiled-coil(Moran ~0 -10.66
et al., 1999)
(~0) (3.2)
(a-helical)
Designed coiled-coil(Yu 548 -34
et al., 1999)
(-1.5+2.4) (1.0)
(a-helical)
SSI(Tamura & Privalov, -5+4 -7.20
1997)
(1.5£1.2) (2.2)
(o/B)
Arc repressor(Robinson -11.8+0.5 -13.4
& Sauer, 1996)
(a/B) (3.5£0.2) (4.0)

Entropy values given in the table are given in e.u., stability in kcal mol™,

calculated according to AG = -TAS at 300 K.
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For variants of the dimeric GCN4-p1 coil coiled and analogs cross-linked with a

disulfide bridged, Cys-Gly-Gly amino terminal tether, the difference between the dimeric
and unimolecular stability was approximately zero(Moran et al., 1999). For this system,
however, the NN method predicts the dimeric stability is stronger by 3.2 kcal mol™ for
the difference in the stability of the two versions. The excess stabilization of the tethered
species may reflect stabilizing interactions between the tether and the helices. The
amount of denaturant sensitive surface buried in the native structure (the m-value) was
increased by about 10% in the tethered version. Potentially, the helix was capped by the
glycines in the tether, which stabilized additional helical structure(Krantz et al., 2000).
Privalov and coworkers have performed detailed calorimetric measurements of
the stability of homodimeric coiled coil and a version cross-linked with an internal
disulfide bond(Yu et al., 1999). They showed that the entire change in free energy upon
cross-linking was due to the loss of entropy upon introduction of the tether. The heat
capacity of these molecules was not affected by the cross-link, and therefore, the
vibrational modes were not perturbed. Also, the AHgiging did not change upon
introduction of the tether. The pre-docked conformation is essentially fully denatured in
this system, thus the calculated loss of entropy is for the difference in AS between
Processes 1¢»2 and 5¢>6. For a system with just an internal disulfide bond, the loop
closure entropy in the folded complex is minimal (~1 e.u). Therefore, the entire entropy
change probably is only due to the tethering process in the denatured state. For such a
system, according to the NN Method, the loss of entropy is 3.4 e.u., which is in good

agreement with the experimental results (5+8 e.u).
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In a very similar study by Tamura and Privalov(Tamura & Privalov, 1997) on

Streptomyces subtilisin inhibitor (SSI), the authors have measured the loss of entropy
upon cross-linking by calorimetric and magnetic resonance methods. For this
homodimeric system, cross-linked by only a single internal disulfide bond, the NN
method predicts the loss of entropy to be —7.20 e.u. which is close to the experimentally
determined value of —-(5+4) e.u.

Robinson and Sauer(Robinson & Sauer, 1996) examined the effect of a 15 residue
cross-link on stability and folding kinetics on dimeric arc repressor. The cross-link
connects the C-terminus of one Arc subunit to the N-terminus of the second subunit (Arc-
L1-Arc). Comparison of the equilibrium stabilities of the linked and unlinked proteins
yielded a Cegr= 2.7+ 0.7 mM. We model the system by taking into account the length of
the cross-link and the end-to-end distance between the C-terminus of one Arc subunit and
the N-terminus of the second subunit. For the Arc-L1-Arc system, the NN method

predicts Cer =1.2 mM, or a difference of 1.6 e.u. from the observed value.

Conclusion:

A clear distinction exists between binding and cross-linking, two processes which
are often considered to be equivalent. This chapter presents a method to calculate the
entropic benefit of cross-linking. The major underpinning of the method is the realization
that the probability distribution for the dimeric system represents the probability that a
partner can travel a given distance while still being the closest molecule to a reference
helix. Also, by comparing entropies based upon probability distributions, the method is

independent of the nature of the solvent. The contribution of rotational entropy is
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relatively negligible for a reasonable length tether. The NN method is applicable to a

wide variety of protein systems. The methods outlined in this paper can be applied to
higher order association processes and nucleic acid hairpins, although the exact results
should be sequence dependent. For dimeric proteins, the introduction of a ten-residue
tether results in an effective concentration of reactants in the millimolar range. When the
concentration of the dimeric system is less than this concentration, the introduction of the
tether will increase the fraction of docked species, and generally, result in a net

stabilization for systems with mM or stronger dissociation constants.



3. THEORETICAL TREATMENT OF MACROMOLECULAR

REACTIONS THROUGH MULTIPLE PATHWAYS

Introduction:

With recent advances in experimental and theoretical methods to study
macromolecules, there is a rebirth of interest in the temperature-dependent kinetics of
complex reactions(Bryngelson et al., 1995; Chan & Dill, 1998). These theoretical and
experimental methods have provided extremely useful information about the potential
energy surfaces and the pathways that lead from one state to another. However, the
picture is still incomplete.

One uncertainty is the effect of multiple pathways on the temperature dependence

“of reactions. An analysis of this issue can provide vital information about the shape of the
potential energy surface. The problem has been addressed by both experimental (Krantz
& Sosnick, 2001; Moran et al., 1999) and theoretical (Chan & Dill, 1998) research groups
in recent years. One example is the protein-folding problem where the energy landscape
picture has been quite useful. Determining the presence or absence of multiple pathways
can provide critical information about the folding landscape and the overall folding
behavior. Therefore, a clear experimental signature of multiple pathways can be a very
useful tool for the interpretation of complex reactions. In this study, we show that the
temperature dependence of rate coefficients k(T), specifically the deviation from the

traditional Arrhenius linear dependence of In k on 1/T, can contain this information.
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The analysis of complex kinetics through multiple pathways can be divided into

three categories; parallel pathways, sequential pathways and combinations thereof. This
chapter, the first case is studied by applying the transition state theory to calculate the rate
of a two-state reaction with parallel pathways having different activation energies. The
method discussed takes into account the implicit temperature dependence of the reaction
rates, and addresses the consequences of the distribution of activation energies of
pathways. The results show that the presence of multiple pathways results in curvature in
Arrhenius plots. However, the sign of the curvature depends upon the relative rates of

increase, with energy, of the densities of states of the saddle and the initial state.

Methods:

According the Transition State Theory (TST),

k, T AG! kBT AH! AS!
k=-2 ~ = - 3.1
i exp( RT) P exp( RT ) exp( R) (3.1)

where the superscript || refers to the activation parameters.
The activation enthalpy of many macromolecular systems (e.g. protein-folding
process) is of the order of a few kcals/mol (Scalley & Baker, 1997; Wolynes et al., 1996).

Therefore in our model, we use the Arrhenius approximation of AH' = E, — RT . The

entropy of activation of the system is calculated by considering the densities of states,
p(E), for the initial and the saddle states in the rate-determining step (see equations 3.2
and 3.3 below). The contribution to the entropy of activation from initial and transition

(saddle) state densities depends on temperature. For our model, we assume that the
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population in the density of states either increases linearly or quadratically with

temperature. More complex behavior is plausible, but in the absence of specific
information about any particular system, and in the present situation of our examination
of general behavior, the linear and quadratic models are sufficient to demonstrate the
behavior we seek to interpret.

We also assume that if the density of states of the reactant increases linearly with
temperature then the density of states for the saddle state increases quadratically and
vice-versa. Once again, this is to ensure that we are using the simplest possible model.
For a process such as folding or unfolding, the densities of states of the initial and the
saddle states do not increase at the same rate. Therefore we use this assumption to model
such processes where the densities of states of the initial and the saddle state increase at
different rates.

The change of entropy of between two given states (initial and transition or
transition or final) at a given temperature is then calculated by using the densities of

states:
AS(T) = R((ln p™(1))-(ln p' (1)) (3.2)

where the superscripts TS and I refer to the densities of states at the saddle state and the

initial state respectively. The overall rate coefficient is thus given by:

E
ks exp(l——=

KD==, RT

) exp(AS(T)) (3.3)

The density of states at the saddle is a measure of the multiplicity of pathways, but no
reference need be made to the extent to which there is mode-coupling among them. In the

system with multiple pathways, the pathways differ from each other due to different E,.
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For an ensemble of pathways, each with different activation energies E_;, the

observed rate coefficient is the sum of rate coefficients through each individual pathway
i is given by:

kobserved = z ki (3 '4)

Assuming that the activation energies have a Gaussian distribution, we can determine P
(Ea), by using the standard equation of a normalized Gaussian distribution with mean

activation energy p and variance Og;:

_M) (3.5)

1
P(E,) = ——=exp(
O N2 20-Ea2

This value of P (E,) is multiplied to its corresponding E, in equation 3 to ensure the
Gaussian weighting of activation energy. Hence the overall rate depends on the nature of

the distribution of activation energies, the mean activation energy and the variance.

Model Systems and Results:
Model 1:

Two different model systems are examined in this study. In the first model, there
are two routes, a singular low energy pathway with activation energy E,, and an ensemble
of g-fold degenerate higher energy pathways having a higher activation energy E, = E, +
o E, (Fig. 3.1a). The purpose of this model is to examine how the presence of an
ensemble of high energy pathways affects the behavior of kes; explicitly, identifying the
temperature range where the flux switches from the lower energy route to the higher

energy routes. The net rate of the reaction depends, in addition to the temperature and the
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activation energy barriers of the two routes, on the degeneracy of the higher energy

pathways.
If the reaction rate through each pathway obeys the Arrhenius approximation, the
net rate coefficient of the reaction can be written as the products of the exponentials of

entropic and enthalpic terms:

— _ Ea - Eb .
kops = Aexp(In[1]) exp( RT)+BZ exp(In[g]) exp( =T a6
E, E,+0F, '
kops = Aexp(= RT)+BZGXP(1n[g])eXp(———RT )

where A and B are constants which are obtained from the initial conditions of the
reaction. The summation is over all the possible pathways. The degeneracy of the low
energy pathway is 1 and hence its entropic contribution is zero. The degeneracy of the
higher energy pathway is g, and hence its entropic contribution is In [g].

The rate coefficient of the reaction for a system depicted in Fig 3.1a as a function of

temperature is plotted in Fig 3.1b with g = 4000, E,=10 kcal and 6 = 0.51.

Model 2:

This model is in fact an extension of the first model, as this model takes a sharp
distribution of energies in Model 1 and spreads them out over a range of energies. The
reactant molecules can now go through a wider distribution of singular pathways, i.e.

pathways with a Gaussian distribution of activation energies with a variance og,. The rate
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Figure 3.1. Model # 1: The two-pathway reaction

a) The reaction diagram of a two-pathway system. The single
lower energy pathway, with a single activation energy E,, and a
higher energy ensemble of pathways with activation energy

Ej, = E, + 8E, and degeneracy “g”, where g =4 x 10°.

b) The Arrhenius plot for the system shown in la, with &=
0.51E,. The observed rate coefficient through only the lower
energy pathway, and through the ensemble is plotted to show
the “temperature switch” that changes the flux from one

pathway to another pathway.
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through each pathway then depends upon the density of states in the reactant and the

saddle state, whose populations vary with temperature as discussed above in the methods
section. The rate of reaction through each individual pathway is calculated according to
Eq. 3.3 and the overall observed rate coefficient is given by Eq. 3.4.

The plots of In k versus 1/T for different mean activation energies are shown in
Fig 3.2 (a and c). These plots are obtained by calculating the rate coefficient for N
(N=1500) pathways in 5 K temperature intervals. Fig. 3.2 (a) shows the behavior of a
two-state system for which the density of states for the reactant increases faster (increases
quadratically with T) than the density of states of the in the saddle state (increases
linearly as T), i.e. p' > p'°. Fig. 3.2 (c) depicts the opposite behavior (o' < p™).

The plots in Fig. 3.2 (a and c) show increased curvature at lower and higher
temperatures. The curvatures increase several fold at even higher( >373) and lower (<

270) temperatures; however such a temperature range is unlikely to be observed
experimentally for biological systems. The results are plotted for various mean activation
energies (n); the variance of the distribution (o) is kept the same for these plots. If the
density of states of either the reactant or the saddle state were higher and varied more
rapidly, the curvature would of course appear within a narrower range of temperature.
For this system, our calculations suggest that dH/ dT is not a constant with temperature,

so we have a non-zero value of dC,/dT. For a process whose the density of states
increases faster in the initial state than in the saddle state ( i.e. p' > p™), dCp/dT is
negative, the opposite effect is observed in the case in which the density of states of the

saddle state increases faster (Figs. 3.2 b and d respectively).
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Figure 3.2. Model # 2: Log Rate Coefficient vs 1/Temperature
for different mean activation energies.

a) The log of the observed rate coefficient of the reaction versus

1/T, also known as an Arrhenius plot. The y-axis is k'= ( ) as

k,T
often used in macromolecular kinetics plots™'®. The origin of
curvature is described in detail in the text. The plot represents a
system for which the density of states of the initial state increases
at a faster rate than that of the saddle state.

b) dH/AT (= C,) versus temperature for a system for which the
density of states of the initial state increases at a faster rate than
that of the saddle state. The curvature in the plot suggests that the
slope is non-zero (dC,/dT < 0).

c¢) The y-axis is the same as in Fig 3.2a. The plot represents a
system for which the density of states of the initial state increases
at a slower rate than that of the saddle state.

d) dH/dT versus temperature for a system for which the density of
states of the initial state increases at a slower rate than that of the
saddle state. The curvature in the plot suggests that the slope is
non-zero (dCp/dT > 0)

The plots are based on different mean activation energies of the
Gaussian distribution, however the variances of the distributions
are kept the same.
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Fig 3.3 shows the behavior of the natural log of observed rate coefficient versus the

variance of the distribution at different temperatures. The plots show the behavior of the
system at different mean activation energies (u). Fig 3.3(a) show the behavior of the
model two-state system whose density of states of the initial state increases at a faster rate
(increases quadratically with temperature) than that of the saddle state (increases linearly

with temperature), whereas the opposite effect is depicted in Fig 3.3(c).

Discussion:

The first model involving just two pathways with one lower-energy pathway and
an ensemble of degenerate higher energy pathways, though very simple, is quite useful. It
shows that the presence of high energy paths can influence the rate of the reaction
significantly at physiological temperatures (Fig 3.1b), under certain conditions, e.g. when
the degeneracy of higher energy paths is high (g > 10°) and the activation energy gap

between the lower and higher energy paths is small ( E,- E, < 0.5 E, ). This model also

shows the presence of a temperature “switch”, at which the flux from one pathway is
greater than that of the other. Such information is going to be very useful to design,
conduct and interpret macromolecular kinetic experiments at different temperatures.

The results using model # 2 also show curvature in the Arrhenius plots. As stated
earlier, the plot shows more curvature at higher (> 373 K) temperatures than in the
intermediate temperature range (273 < T < 373). The curvature in our model is due to the
presence of multiple pathways and the individual rates of reaction through those

pathways. Since we are working with a Gaussian distribution, at lower temperatures
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Figure 3.3. Model # 2: Log Rate Coefficient vs Variance of
Gaussian distribution plots for different mean activation
energies and different temperatures.

a) The log of the observed rate of the reaction as a function of
the variance of the Gaussian distribution. The y-axis shown is

k'= (kk};’) . The plot represents a system for which the density of

B
states of the initial state increases at a faster rate than that of the
saddle form.

b) The plot of change of C, with variance magnifies the fact
that these variance plots are very sensitive to changes in
activation energy and insensitive to changes in temperature.

¢) The plot is similar to Fig. 3.3a and represents a system for
which the density of states of the initial state increases at a
slower rate than that of the saddle state.

d) The plot is similar to plot 3.3b, except the system plotted is
the one for which the density of states of the initial state
increases at a slower rate than that of the saddle state

The plots have two different mean activation energies and are
plotted at two different temperatures.
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pathways with very low activation energies are populated, whereas at T> 310 K the flux

goes through all the possible pathways.

The origin of curvature in Arrhenius plots in macromolecular processes such as
protein folding has been a subject of debate (Bryngelson et al., 1995; Chan & Dill, 1998;
Scalley & Baker, 1997; Wolynes et al., 1996). According to some theories, the origin is
due to diffusion on the landscape (Bryngelson et al., 1995; Chan & Dill, 1998; Scalley &
Baker, 1997; Wolynes et al., 1996) whereas the experimentally observed curvature in
Arrhenius plots is usually attributed to hydrophobic effect and other temperature
dependent interactions that stabilize the folding molecule (Scalley & Baker, 1997).

First principle theoretical methods have failed to reproduce the experimentally
observed curvature in Arrhenius plots for protein-folding reactions. In fact, these
theoretical results predict curvature in the Arrhenius plots with a sign opposite to that of
experiments. This is because the entropic contribution is modeled as a term completely
independent of temperature, and hence there is an increase in the observed rate at higher
temperatures (also shown in model # 1; fig 3.1b). Based on our model (model # 2, where
the densities of states of initial and the saddle state, and their implicit dependence on
temperature are taken into account) we can correctly predict the sign of the curvature for
protein-folding and unfolding reactions. Though there might be a difference in magnitude
of the rate (because of complexities that our model does not take into account) our results
agree fairly well with the experimental results (Chen & Schellman, 1989; Jackson &
Fersht, 1991) in predicting the sign of the curvature in the Arrhenius plots.

For a protein-folding reaction, the density of states of the initial unfolded state

increases faster than that of a saddle state, whereas the opposite effect is to be expected



66
for the unfolding reaction. This is because the random coil is less restrictive than the

transition (saddle) state and hence is expected to have a density of states, up to some
rather high energy, that increases rapidly. The transition state is presumably more
constrained, hence its density of state increases more slowly, and the native state is the
most restricted of all, and hence has the slowest-growing density of states. Interpreting
our model with this assumption gives the observed curvature for both the unfolding and
the folding reactions.

Our results also suggest that for a multiple path process the effective dH/dT is
nonzero. Though the change in magnitude is relatively small, the slope of the plot of C,
(= dH/dT) versus temperature is non-zero for both cases discussed above (Fig 3.2 b and
3.24d).

From a theoretical perspective, reaction along a single pathway will result in a
constant C, if no other interactions (e.g. hydrophobic effect) are taken into account. This
is not the case with our model, since the densities of states of the initial and saddle states
are populated as functions of temperature, and result in a temperature-dependent heat
capacity, i.e. dC,/dT # 0.

It is sometimes said that the hydrophobic effect results in the curvature in the
Arrhenius plots. The origins of hydrophobic effect (difference in C;, in the unfolded and
the folded state) lie in the difference in organization of water around the folded and the
unfolded molecule and the difference in accessible energy states. Therefore the
hydrophobic effect can be interpreted as a microscopic model that carries with it a
difference in densities of conformational states between the unfolded and transition (or

folded) states. This, in turn, results in curvature in the Arrhenius plots. Therefore our
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analysis is not contradictory, but complimentary to other work showing the curvature in

Arrhenius plots due to hydrophobic effect. Rather, our model shows that any effect
associated with the differing patterns of densities of state in initial and transition states
will yield such curvature.

Another interesting feature of the presence of multiple pathways is the
compensation between enthalpic and entropic factors. The enthalpic term in the free
energy for a folding reaction is fairly small, and is the only term depending explicitly on
the activation energy. However, this might not be the case for other macromolecular
reactions, where the enthalpy plays a more significant role. Eq. 3.1 indicates that enthalpy
and entropy act in opposite directions. In our model, for a system whose density of states
of the reactant increases faster than the saddle state in the rate-determining step (i.e. p' >
p™), the entropic contribution is positive, therefore entropy and enthalpy work in
opposite directions (see eq. 3.1, 3.2 and 3.3). Thus for a system with a small enthalpic
contribution, or small E, (e.g. folding reaction) the curvature is primarily due to the
entropic contribution. On the other hand, the enthalpy and entropy terms in the rate of the
reaction act in the same direction for a system whose density of states of the saddle state
increases faster than that of the initial state ( i.e. p' < pTS). This is because the entropic
contribution in eq. 3.1 and 3.3 is negative, and thus both entropy and enthalpy have the
same sign. This is observed from Fig 3.2¢ (blue curve, p =9.6), which has the maximum
curvature, due to higher activation energy and hence greater enthalpy. Because the
enthalpic component of the overall reaction rate depends only upon the activation energy
and is independent of any variation in the density of states, the enthalpic component

shows the same behavior for the forward and the backward reaction. Consequently, for
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macromolecular processes which are governed overwhelmingly by enthalpic forces, we

predict the shape of the In k vs. 1/T plot would be the same for forward and backward
reactions.

We can also predict the rates of reactions through parallel pathways as a function
of the variance of the distribution of activation energies (Fig. 3.3). Though it is not yet
possible to observe the rate of the reaction experimentally as a function of this parameter,
nonetheless these plots can give us valuable information about the behavior of the system
as a function of the nature of the distribution of activation energies. One of the most
striking features of these plots is the change in the shape of the curve as a function of the
mean activation energy W (Figs 3.3a). At the same temperatures, the two curves (Fig 3.3a.
black (1 =7.5) and green curves (u =8.9)) have different shapes, whereas the curves with
the same activation energy (Fig 3.3a) have similar shapes even though the systems have
different temperatures.

A similar observation can be made about Figs 3.3c for which the density of states
of the initial state is higher than that of the saddle state in the rate-determining step (i.e. pI
> pTS). The only source of difference in these curves is the difference between the
activation energies. Similarly the variations in temperature do not seem to have any
significant effect on the shape of the curves. These results show the effect of the change
in E, (i.e. enthalpic contribution) on the overall rate coefficient which is not obvious from
the Arrhenius (In k vs 1/T) plots. It is interesting to note that whereas variations in the
entropic term in the rate equation result in changes in the shape of Arrhenius plots, the
variance plots show the dependence of the rate coefficient on the changes in activation

energy and are insensitive to temperature changes. This observation is magnified in the
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corresponding plots in which the derivative of C, with variance is plotted against

variance (Fig 3.3 b and d).

From a theoretical perspective, the Arrhenius plots represent only part of the
overall picture. We believe that these rate-variance plots, in combination with rate-
temperature plots will give an improved picture of the contribution of various

thermodynamic terms to the overall rate.

Conclusion:

In this chapter we present a simple method to address the issue of
reactions across a single barrier per pathway in a system of multiple pathways. The
presence or absence of multiple pathways can play a very important role in visualizing
the potential energy surface of a reaction. This chapter also addresses the issue of the
effect of multiple parallel pathways on the overall kinetics of complex reactions. Though
initial theoretical studies of macromolecular kinetics failed to agree with experiments, our
study shows that the inclusion of the density of states in the initial and the saddle state
corrects for the previous discrepancy between theoretical and experimental results. Our
study indicates that presence of multiple parallel pathways and the density of states
assignment to the initial and the saddle state plays a key role in providing this curvature
observed in the Arrhenius plots in protein folding reactions although other factors may
also contribute.

The Arrhenius plots show high sensitivity to the density of states, as well as to the
variance of the distribution of energies. The rates at which actual densities of states vary

with temperature are presumably more complicated than the one discussed here; however
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the good agreement with experiments suggests that more sophisticated modifications of

the dependence of densities of states on temperature will only improve the quality of the
results. The success of our model in predicting the correct sign of curvature in Arrhenius
plots is intended to stimulate experiments designed and conducted to observe the
presence of multiple pathways, since initial comparisons to experimental results are very
encouraging (Chen & Schellman, 1989; Jackson & Fersht, 1991; Scalley & Baker, 1997).
More sophisticated calculations taking into account the densities of states of the initial
and saddle states, as well as different rates at which these two densities of states increase

will provide a more rigorous test of our theory.



4. COMPARISON BETWEEN UNITED ATOM AND EXPLICIT

ATOM FORCE FIELDS

Introduction

The accuracy, speed, and reliability of computer simulations depend crucially upon the
force fields employed. The commonly used “atomistic” force fields can be divided into
two broad categories, namely all-atom (also called explicit atom) and united atom force
fields. The explicit atom force fields treat each atom in the molecule as an interaction site
(Williams, 1967), whereas the united atom force fields unite the carbon atoms and their
directly bonded hydrogen atoms into single, often spherically symmetric interaction
sites(Ryckaert & Bellemans, 1978). In other words, the explicit atom force fields
represent CH3, CH; and CH in terms of four, three and two interaction sites respectively,
whereas the united atom force fields employ single pseudo-atom representations for each
CHj3, CH; and CH group. The explicit atom force fields appear to be more realistic and
are believed to be more appropriate at higher densities. However, the use of united-atom
representations is quite desirable because the reduction of aliphatic groups to a single
pseudo-atom can increase the simulation speed by as much as an order of magnitude
(Martin & Siepmann, 1999) and can thereby render computationally expensive
simulations quite inexpensive and tractable on a personal computer. For example, the
ambitious “Folding@Home” program currently employs the united atom OPLS force
field as part of its efforts at simulating the folding rates of small proteins(Shirts & Pande,

2001; Smith et al., 1993).

71
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Equilibrium and dynamic properties of alkanes (Karayiannis et al., 2002, Martin &

Siepmann, 1998; Martin & Siepmann, 1999; Smith & Yoon, 1994; Smith et al., 1993)
silicone polymers (Sides et al., 2002) , as well as tri-alanine in water (Mu et al., (in
press); Stock & Mu, 2002), have been simulated extensively using both explicit atom
and united atom models, and the corresponding structural, equilibrium, and dynamic
properties have been compared to experimental data. These studies delineate the regimes
where the united atom models agree well with experiments. In contrast, however, very
little analysis exists comparing the predictions of these two types of force fields for the
conformational dynamics of flexible peptides, i.e., for systems that access a wide range of
conformations that depart considerably from those in the neighborhood of the native
structures of folded proteins.

As in their application to problems in polymer physics, computer simulations for
biopolymers have contributed to the understanding of equilibrium and dynamical
properties of these large and complex systems at short and long time scales. This
understanding of the dynamics of these systems is important in identifying potential
candidates for better and more effective drug design, for the influence of mutations on
different proteins, and for the interaction of proteins with ligands, membranes, and
solvents. In order to perform these simulations with reasonable computational times,
united atom models are often used, for example in studies of protein folding (Bryant et
al., 2000), but no direct comparison has been made of the dynamical properties emerging
from simulations using explicit atom and united atom models. Moreover, force fields for
proteins have generally been devised by comparison with experimental thermodynamics

and structural data (perhaps with some ab initio information), but the peptide dynamics
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samples a wide range of non-native conformations and thereby provides a far more

stringent test of the quality of the potential functions. Thus, force fields that predict
similar native structures may deviate considerably in their description of the dynamics of
very flexible peptides such as the one studied herein.

We study the long time dynamical behavior of a penta-peptide, Met-enkephalin
using an implicit solvent method that has been tested by comparison with explicit solvent
MD simulations for this same peptide (Shen & Freed, 2002b) and for the initial stages of
folding of the villin headpiece (Shen & Freed, 2002a). Shen and Freed have shown that
implicit water LD simulations are 200 times faster than explicit solvent MD
simulations(Shen & Freed, 2002b), therefore making the study of peptide dynamics more
tractable on personal computers. The additional speed enhancement from using united
atom models scales roughly as the square of the ratio of numbers of united atom groups
to explicit atoms, which for Met-enkephalin is a factor of (75/57)* = 1.73.

Met-enkephalin (Tyr-Gly-Gly-Phe-Met) is one of the smallest neurotransmitter
peptides and was first isolated from pig brains (Hughes et al., 1975). This peptide has
been studied extensively using X-ray crystallography (Hughes et al., 1975), NMR (Smith
& Griffin, 1978) and computer simulations (Deber & Behnam, 1984; Shen & Freed,
2002b; Wang & Kuczera, 1996). This large body of research has established that similar
to other short peptides Met-enkephalin does not exhibit a single native conformation.
Rather, Met-enkephalin rapidly traverses a wide range of different conformations in
aqueous solution (Graham et al., 1992; Shen & Freed, 2002b). The implicit solvent-LD
method has been tested against explicit solvent MD simulations, and has been shown to

work better than nearly two dozen other implicit solvent methods screened (Shen &
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Freed, 2002b). In order to compare and contrast the predicted dynamical behavior of

Met-enkephalin by united atom and explicit atom models, we study the long time
behavior (~130 ns) using six different commonly used force fields. Four of these force-
fields (AMBER 94, AMBER 96, CHARMM-27 and OPLS all-atom) are explicit atom
force fields, whereas two of them (OPLS and CHARMM-19(Neria et al., 1996)) employ
the united atom method. Three pairs are matched sets that have been developed by the
same group and therefore provide checks on their internal consistency. The main aim of
our study is not to show the superiority or inferiority of any of the force fields; rather it is

aimed at suggesting criteria that can be used to test and improve existing force fields.

Computational Details
The implicit water Langevin Dynamics (LD) simulations follow the procedures
discussed in detail by Shen and Freed. Thus, the method is reviewed only briefly in this
section. Within the implicit solvent model, the total system energy is given by
Utor = Up + Usend + Uimp-tors + Utors T Uch (§) + Usawt Uson, 4.1)
where the subscripts b, bend, imp-tors, tors and vdw denote the bonding, bond-bending,
improper torsions, torsions, and van der Waals interaction terms in the overall system
energy. The subscript ch designates the contribution involving the dielectric screening of
electrostatic interactions, and the subscript so/v denotes the solvation potential portion of
the overall system energy. The implicit water expression for the overall system energies
differs from its explicit water counterpart in presence of the dielectric screening in Uy, (&)
and in the solvation term (Usn) that replace the Coulomb interactions and the protein-

solvent and solvent-solvent interactions, respectively, in the explicit solvent treatments.
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We utilize the macroscopic solvation potentials Uy, given by the Ooi-Scheraga

solvent-accessible surface area (SASA)(Ooi et al., 1987) method because comparisons
between implicit and explicit solvent simulations demonstrate the superiority of this
potential in more faithfully approximating the results of explicit solvent simulations. The
potential contains a contact free energy term that is evaluated in terms of the accessible
surface area (o;) of all atoms i in the peptide. The SASA accessible surface area is
computed from a hypersurface bisecting the first solvent shell using a water (probe)
radius of 1.4 A. Therefore, the overall solvation free energy can be written as a sum of

free energy contribution from all atoms,
Usolv = gio-i 3 (42)

where g; denotes the empirical atom solvation energy parameters> determined by fitting
experimental aqueous solvation free energies of amino acids and selected organic
compounds to equation 2.

The LD simulations are based on non-linear generalized Langevin equations
(GLE) and a procedure similar to MD simulations, apart for the need of an additional
algorithm for computing the frictional forces and the corresponding random forces that
represent the frictional forces due to implicitly treated water. These friction coefficients
are computed by the method of Pastor and Karplus(Pastor & Karplus, 1988) and are
updated every 100 integration steps. More explicitly, the LD simulations are generated by
integrating the atom positions and velocities by using the standard velocity Verlet

algorithm,(Allen, 1987)
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1 2 43
r(t+At)=r(t)+c,v, (1) At + E—czl.ai(t)At +7, 43)
v, (2 + At) = ¢ v, (1) + ¢ ,a, ()ALt + v, (4.4)
The coefficients cg;, ¢1; and c,; are given by
o, = exp(~¢, ) @3)
m;
¢ = (¢, 20 (1= ¢y) @6)
m; ,
~ At
€y = (_;i _nz) (1 - cli) 4.7

where m; is the mass of i atom. The r, and v, are Gaussian random variables with
variances depending upon the friction coefficients in the usual manner. The friction
coefficients ; are determined from the solvent accessible surface area (o{) with zero

probe radius using stick boundary conditions,

¢, = 6., (48)

where 1 is the solvent viscosity and res; is the effective hydrodynamic radius of atom i

that is computed from the solvent accessible area by

(4.9)

As mentioned above, we compare and contrast the results of two united atom and
four all atom force fields that are present in commercially available packages. The LD

simulations have been performed using a modified version (by Shen and Freed) of the
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TINKER software package(Ponder, 1999) for protein molecular dynamics simulations.

The parameters of the CHARMM-19 force field were incorporated into the TINKER
package using the published parameters by Karplus and co-workers (Neria et al., 1996).
Both the explicit atom and united atom force fields have been used to generate 130 ns
trajectory of Met-enkephalin. The simulations use a 1.5 fs time step and are run on 1.4

GHz Pentium IV and 1.2 GHz AMD machines.

Results and Discussion

Met-enkephalin does not occupy a unique native state in aqueous solution;
rather, its dynamics are highly flexible. Previous studies show that the molecule jumps
between extended, semi-packed, and packed states(Shen & Freed, 2002b) (Fig 4.1 a, b,
and c, respectively), that may be classified in terms of the distribution for the square of
the radius of gyration, which is defined by

1 i=N
R = ﬁz (r,-r,)’ (4.10)
i=1

where ry denotes the position of the center of gravity of the molecule and r; denotes the
position of the ith atom. The extended state is classified as the range of conformations
where Rg2 > 40 A?, the semi-packed state for conformations having Rg2 between 20 A 2
and 40 A %, and the packed state for conformations with R,* less than 20 A *. The
normalized distributions for R,> are computed by binning the values of R,* into 100
discrete regions with values between 0 and 60 A2,

Figure 4.2 exhibit the probability distributions of Rg2 for the six different force

fields. The first interesting feature of Fig. 4.2 is the contrast between the explicit atom
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Figure 4.1. Three classes of conformation accessed during the
dynamics of Met-enkephalin.

a) Typical examples of extended (Rg2 ~ 42 A?), b) semi-compact
(Rg2 ~33 A?), and c) compact (Rg2 ~18 A?) conformations. Carbon
atoms are shown in gray, nitrogen in blue, oxygen in red and
hydrogen atoms in green.
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force fields. Whereas the all-atom AMBER 94 and CHARMMS-27 have fairly similar

behaviors, the OPLS all-atom force field displays different dynamics in which the Met-
enkephalin molecule spends most of its time on the border between semi-compact and
extended conformations and almost never samples the compact state. AMBER 96 shows
a behavior similar to that of OPLS all atom force field. In contrast, the CHARMM-27 and
AMBER 94 all-atom simulations describe Met-enkephalin as remaining mostly on the
border between compact and semi-compact states and spending very little time in the
extended state. These differences are, however, rather small compared to the departures
between the explicit atom and united atom distributions. The LD simulations with the
CHARMM-19 united atom force field suggest that the molecule remains in the semi-
compact state (very close to the compact state) essentially all of the time, in sharp
contrast with the other force-field predictions for which Met-enkephalin prefers one state
but still significantly samples all the other conformations. The OPLS united atom
distribution departs considerably from the OPLS all-atom distribution but is more similar
to the other all-atom distributions for the radius of gyration. The OPLS united atom
simulations thus do not overly constrict the peptide to one conformation as is found for
the CHARMM-19 united atom simulations, but the OPLS united atom distribution under
samples the compact state.

The comparison of the united-atom and explicit atom distributions in Fig. 2 raises
two important questions, namely the origin of the differences between the two kinds of
force fields and the observation that the CHARMM-19 force field produces a distribution
significantly different than those of the other force fields. The answers to both these

questions require a careful analysis of the parameters of the force fields. The primary
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Figure 4.2. The probability distribution for the radius of
gyration R,;2 for Met-enkephalin as computed with the six
different force fields.

The radius of gyration is computed using trajectories of 130 ns
by employing the implicit solvent LD simulations using the
methods of Shen and Freed (Shen & Freed, 2002b). The plot
displays the Rg2 distribution for the six force fields discussed in
the text.
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difference between united atom and explicit atom force fields (apart from the numbers of

interaction sites) is the presence of partial charges on aliphatic groups. Both CHARMM-
19 and OPLS united atom force fields assign a vanishing partial charge to all CH;, CH,
and CH groups that are connected to other aliphatic groups. This difference can then lead
to energetics of molecular conformations that significantly differ from the ones that are
observed for the explicit atom force fields where these groups have partial charges on the
carbon and hydrogen atoms. Consequently, both the united atom force fields lead to
dynamics that sample only parts of the overall conformational space available and, more
explicitly, constrict the molecule to only one region of conformational space. The
resolution of the second question regarding the differences between the simulations with
CHARMM-19 and with the other force fields also requires a careful analysis of the
parameters. The CHARMM-19 force field uses a wide variety of “wild-card” parameters;
in other words, there are several torsional and improper-torsional parameters that have
been assigned the same ad hoc value regardless of the types of atoms present. This
departs from the procedure used in developing the other force fields, although they too
contain a few torsional parameters that are assigned the same ad hoc values. This
constancy of torsional parameters may not cause a problem for modeling the dynamics of
certain alkanes, but proteins have a highly diverse group of bonds and torsions. A proper
description of protein dynamics may require more careful parameterization of the
torsions associated with such bonds. The difference between the results computed with
the AMBER 94 and AMBER 96 force fields is probably due to modified torsional
parameters in AMBER 96, which are based upon empirical data and which have been

adjusted to reproduce the energy difference between extended and constrained alpha
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helical energies for the alanine tetrapeptide. The similarity between the results of

AMBER 96 and OPLS all atom force field simulation has also been observed by other
groups (Mu et al., (in press)). Likewise, the results produced by AMBER 94 and
CHARMM-27 have also been found to be quite similar (Mu et al., (in press)). The two
united atom force fields discussed here also differ in their description of the van der
Waals radius of the hydrogen atoms attached to nitrogen or oxygen atoms. While the
OPLS-united atom force field assigns a value of zero to the van der Waals radius of
hydrogen atoms attached to oxygen or nitrogen atoms, CHARMM-19 assigns a non-zero
radius. This difference can also lead to divergent results between the two united atom
force fields. Similarly, slight differences among the explicit atom force fields also arise
because the OPLS all atom force field specifies a vanishing van der Waals radius for
hydrogen atoms bonded to oxygen or nitrogen atoms, whereas AMBER (94 and 96)
assigns a non-zero radius. CHARMMS-27, on the other hand specifies a non-zero van der
Waals radius for hydrogen atoms bonded to either oxygen or nitrogen atoms.

We also compare and contrast a variety of time-correlation functions (TCF) for
Met-enkephalin as predicted by the four explicit atom and two united atom force fields.
The TCFs compared here are P; dipole autocorrelation functions of the interatomic

position vectors, which are defined as,

<l;(0)el (2)>

2
4.
I,.J. (4.11)

C, (1) =

where the interatom vectors [; are ly= r ;— r ;. The angular brackets in Eq. 11 denote the

equilibrium average. The P, correlation function depicts the local or global flexibility of



83
the molecule depending upon whether the atoms i and j are distant or proximate. We

compare three TCFs for the united and explicit atom force fields to sample some
interesting local and global motions. Explicitly, these TCFs are those for the end-to-end
vector, the C,-C, vector, and the central backbone C-C vector.

The statistical error in the correlation function C(t) due to the finite trajectory is

estimated by the method of Zwanzig and Ailawadi (Zwanzig & Aliwadi, 1969) as:

o= 2%[(1 —-C(1)] (4.12)

where T>> 1’ is the duration of the trajectory and 7’ is the correlation time defined by
/ IN12 A4/
r' = [[c@)) ar @13
0
Figures 4.3-4.5 present several computed TCFs and contain error bars placed at 500 ps,

/
1000 ps and 2000 ps with the extremum values C: (t) = C(t) £ 2%[(l -C()].

Figure 4.3 depicts the dipole correlation function for the central backbone C-C
bond that is exhibited over the curves. The short time dynamics produced with the united
atom force fields are fairly similar, but this correspondence is lost at longer times where
the CHARMM-UA (i.e. CHARMM-19) force field curve decays faster than its OPLS
counterpart. The explicit atom C-C TCFs (except for that from AMBER 96) are fairly
similar, and partially mirror the similar R, distributions from the explicit atom AMBER

94 and CHARMM-27. A larger difference between the predictions from the OPLS-UA
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and CHARMM-UA force fields at longer time scales is also obvious from Fig. 2 for the

R,” from the two force fields. The TCFs for the C-C backbone vector (Fig. 4.3) from the
two united atom force fields are more similar at short (~1 ns) time scales; however, the
Rg2 distributions are more sensitive to the dynamics over much larger (~ 120 ns) time
ranges. The TCFs for the two united atom force fields differ considerably and probably
reflect the differences in the corresponding Rg” distributions. Interestingly, the TCFs
from both OPLS force fields become more similar for longer times.

Figure 4.4 presents the TCFs for the dynamics of the end-to-end (N(Tyrl) to
O(Met5)) vector. (The TCF for the backbone end-to-end (C;4—Cs,) vector behaves very
much the same.) The OPLS-UA and OPLS-AA TCFs have quite similar shapes but yield
very different Rg2 distributions. Once again, this difference probably arises from the
difference in time scales that are relevant to the two sets of properties. The OPLS-UA and
OPLS-AA TCFs agree better at shorter time scales but begin to depart for longer times.
The AMBER 94 and CHARMM-AA (CHARMM-27) force fields again produce fairly
similar TCFs, but the dynamics from these two force fields differ considerably from those
calculated using the OPLS-AA force field. Once again, the AMBER 96 force field
correlation function decays the slowest.

Figure 4.5 displays the TCFs for of the phenyl-phenyl C,-C, vector. Once again,
the CHARMM-UA TCF decays the fastest, the AMBER 96 decays the slowest, the TCFs
from the OPLS-UA and OPLS-AA force fields are quite similar, as are the AMBER 94
and CHARMM-AA TCFs.

A further analysis of the TCFs reveals several important features about the nature

of the force fields. The OPLS-UA and OPLS-AA force fields yield similar TCFs at
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The backbone vector is shown by an arrow in the structure of Met-
enkephalin. The two united atom force fields exhibit similar behavior
at very short time scales (< 1000 ps), whereas the explicit atom force

fields display similar dynamics.
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shorter time scales for the motions that vary more slowly (such as the end to end vectors

and the phe-phe C,-C, vector), whereas they depart considerably at shorter time scales for
relatively rapid motions (such as the backbone C-C vector). The CHARMM-UA yields
TCFs that depart substantially from those from all the other force fields, due to the
reasons discussed above. The TCFs computed from the AMBER 94 and the CHARMM-
AA force fields exhibit the most consistent agreement over all time scales and reflect the
similarities in their R, distributions. While their shapes differ slightly, both sample
almost equally from the three sections of the peptide conformational space. The
differences between the distributions of R, from the OPLS-AA force field, on one hand, .
and from AMBER 94 and CHARMM-27, on the other hand, is also reflected in their
respective TCF plots. Except for the C-C backbone dynamics, the TCFs from OPLS-AA
deviate from those computed with the other three explicit atom force fields. The
similarities between the OPLS-AA and OPLS-UA force fields TCFs at shorter time
scales are lost in the longer time behavior of the peptide. The AMBER 96 force field
shows R, distributions that are similar to OPLS-AA but depart considerably from all the
force fields for all the three TCFs. Once again, we believe the similarity in the results
between AMBER 96 and OPLS-AA becomes more pronounced at longer time scales,
whereas for shorter time scales the two force fields produce significantly different results.
The Rg2 distributions and the TCFs demonstrate that the explicit and united atom force
fields predict quite disparate dynamics, probably due to the absence of partial charges on
aliphatic groups and because all of these force fields have been optimized for equilibrium

structures and not for large scale conformational dynamics.
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Conformational Dynamics:

We have also studied the time-dependent conformational dynamics of Met-enkephalin.
The study is carried out by inspecting Ramachandran maps for the various torsional
angles (®,%) of the peptide (Fig. 4.6a). The phi-psi map shown is similar to the one used
by Pappu et al (Pappu & Rose, 2002). The map is divided into eight basins as indicated
by the labels. Figure 4.6(b-g) displays the time-dependent dynamics for the central
glycine residue (Gly-3) of the peptide. The other residues in the peptide exhibit very
similar patterns of behavior as functions of the force field, so the Gly-3 serves to illustrate
the general trends. Figure 4.6 depicts the Ramachandran basin occupied by Gly-3 as a
function of time. Table 4.1 summarizes the same information by presenting the time-
averaged occupancy of the eight basins for Gly-3.

The figures and Table demonstrate that, apart from the CHARMM-19 force field
simulations, the Gly-3 residue executes many hops between basins for all the other force
fields. The CHARMM-27, AMBER —94 and CHARMM-19 trajectories show the peptide
spending maximal time in basin 2, though for CHARMM-27, basin 1 is almost equally
populated. The AMBER-94 and CHARMM-27 cases exhibit very similar basin
populations for all basins except for basins 1 and 6. The OPLS-UA dynamics behaves
very similar to CHARMM-27 apart from a much smaller presence in basin 2. The
dynamical pattern produced by the AMBER-94 trajectory is strikingly different from that
of AMBER —96, probably due to the different torsional parameters as discussed above.
The AMBER-96 trajectory, in sharp contrast to AMBER 94, shows very little preference
for any basins other than 1, 2 and 3. The Ramachandran populations from the OPLS-UA

and OPLS-AA force fields exhibit similar behaviors just as observed for the TCFs. The
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Figure 4.4. The peptide end-to-end [N(Tyr 1) — O(Met 5)] TCF
from different force-fields.

The dynamics are computed using the two united atom and four explicit
atom force fields. The end-to-end vector is depicted by an arrow in the
structural diagram for Met-enkephalin. The TCFs from the OPLS-UA
and OPLS-AA force fields are similar on this short time scale. The
CHARMM-UA force field TCF decays faster than that of any other
force field, the AMBER 96 force field TCF decays the slowest, whereas
the AMBER 94 and CHARMM-AA TCFs are again quite similar.
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OPLS-AA basin populations display a preference for basins 1, 5 and 7, and the central

Gly residue almost never samples basin 2, which is the predominant basin for both the
AMBER-94 and CHARMM-27 trajectories. Our conformational dynamics results for
AMBER 94 and AMBER 96 show good agreement with Sanbonmatsu et. al’s results
using explicit solvent replica-exchange MD simulations on Met-enkephalin using PARM
94 and PARM 96. The phi-psi basin populations indicate similar dynamics from the
AMBER-94, CHARMM-27 and OPLS-UA force fields, and sharp differences between
AMBER-96 and AMBER-94, in accord with our observations from the R,> and TCF
plots. The conformational dynamics exhibit common characteristics for the OPLS-UA
and OPLS-AA force fields as is also evident from TCF plots as well. Hence, our analysis
demonstrates that a careful study of the conformational dynamics of small, very flexible
peptides should provide additional information for improving the representation of
current force fields in certain areas of conformational space that are not well sampled by
folded protein structures. Further studies of additional dynamical properties that probe the
dynamics at different time scales should provide a better overall picture the regimes

where the force fields need further improvement.

Conclusion:

We present the first comparison of its kind for the dynamical properties of
peptides that are predicted by united atom and explicit atom force fields. Our study
considers six commonly used force fields and subjects them to rigorous tests for the

dynamics of a short and highly flexible peptide. The united atom and explicit atom
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This vector represents another slowly varying variable. The TCF form
the CHARMM-UA force field decays the fastest, the AMBER 94 and
CHARMM-AA force field TCFs again are very similar, while at
shorter times (~ 1200 ps) the OPLS-AA and OPLS-UA TCFs are close
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models exhibit different dynamical descriptions for the motion of the penta-peptide, Met-

enkephalin. The all atom CHARMM-27 and AMBER 94 force fields produce rather
similar results, whereas the OPLS explicit atom force field (OPLS-AA) produces slightly
different dynamics which are similar to those found when using the AMBER 96 force
field. There are however, significant differences in the results produced by AMBER-94

and AMBER-96.

The united atom CHARMM-19 force field suffers from limitations in not having
partial charges on certain united atom groups and in using ad hoc “wild card” parameters
for certain torsions, and these deficiencies are manifest in the simulations that constrict
the peptide to remain close to a given conformation. These problems are not experienced
by the explicit atom force fields whose simulations display a preference to one
conformation but indeed sample the whole range of conformations. The OPLS-UA case
is somewhat similar to that for the explicit atom force fields in this regard.

These comparisons are meant to identify problems and develop methods for
improving the current force fields for studying biological molecules since both the united
atom and explicit atom force fields have already shown great promise in treating alkanes
(Sides et al., 2002). The approach presented in this chapter represents a point of departure
for further comparisons between the use of united atom and explicit atom force fields for
describing the dynamics of biological molecules. With the increasing power of MD
simulations for biological systems, tests such as ours will be helpful in achieving a more
accurate representation of both the short and long scale dynamics of proteins. However,

further checks for larger and structurally different peptides will be extremely useful to aid
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Figure 4.6. Time Dependent Conformational Dynamics of the
central Gly-3 residue.

a) Phi-Psi plot of torsional angles is divided into eight basins
labeled from 1 through 8. The plot is similar to the one
reported by Pappu et al. and is reproduced with the author’s
permission. Basin occupations of Gly-3 are shown as functions
of time for b) CHARMM-27 (explicit atom), OPLS-UA,
CHARMM-19 (united atom), AMBER-94 , OPLS-AA and
AMBER-96.
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in overcoming the shortcomings of these force fields and thereby in developing faster,

more accurate and realistic potentials.



S. BACKBONE DYNAMICS, FLORY ISOLATED PAIR

HYPOTHESIS AND INTER-BASIN DYNAMICS OF AMINO ACIDS

Introduction

A fundamental descriptor of a polypeptide’s conformation is the set of its
backbone dihedral or torsional angles. For each residue, these angles specify a location in
the Ramachandran plot of @, ¥ angles (Ramachandran et al., 1963; Ramachandran &
Sasisekharan, 1968). The intrinsic preference for each peptide unit to be in one
Ramachandran basin or another and the inter-basin hopping rates directly affect
secondary structure preferences and residual structure in the denatured state, as well as
the overall thermodynamics and kinetics of protein folding. In spite of this significance,
only a few studies focus on the peptide backbone dynamics using atomic-level force
fields (FFs) in an aqueous environment (Bolhuis et al., 2000; Hu et al., 2003; Mu et al.,
(in press)). Furthermore, an analysis of these backbone dynamics and structure is useful
to reveal any dependence on context, including the conformation and chemical identity of
the nearest neighbor (NN) residues. In this study we present such a study for amino-
acetylated (Ace) and carboxy-amidated (Nme) versions of a mono-alanine “dipeptide”
(i.e. Ace-Ala-Nme) and for di-and tri-amino acids (Fig. 5.1) with one, two and three pairs
of ®,¥ dihedral angles, respectively.

Our analysis tests the applicability of the Flory isolated-pair hypothesis (IPH)
(Flory, 1969), which is implicitly invoked in many equilibrium and kinetic treatments of
protein folding, including helix-coil theories. According to the IPH, the Ramachandran

basin populations of one residue are independent of its neighbors’ conformations (except
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for proline, and residues preceding prolines): “ the interactions associated with rotations

of one such independent pair are quite independent of the angles assumed by neighboring
pairs” (Flory, 1969). When this pivotal isolated-pair assumption is valid, the backbone
entropy of the system can be expressed as the sum of individual residues’ entropies.
Within the IPH, a single helix-coil equilibrium constant can be assigned to each amino
acid species without qualification to either its neighbors configuration or identity, as is
done in nearly all analyses of helix-coil transitions.

Pappu et al.(Pappu et al., 2000) consider the reduction in sampling due to nearest
neighbor’s configuration in polyalanine. In contradiction to the IPH, they find that the
central residue, located between two residues with helical geometries, is sterically
hindered by these neighbors. However, when the dihedral angles in a polypeptide are
chosen according to their relative basin probabilities without restriction to the helical
basin, the number of overlapping conformations is minor, for example, only 16% for a
twelve residue chain (Zaman et al., 2002). Hence, steric hard-core type overlap provides
only a minor reduction in the total conformational entropy of the unfolded state (in the
absence of extensive helical configurations).

Molecular dynamic (MD) simulations have recently demonstrated that different
force fields (FFs) can produce rather large differences in basin populations (Garcia &
Sanbonmatsu, 2002; Hu et al., 2003; Mu et al., (in press)) and references therein]. Garcia
and coworkers find that the AMBER 96 FF must be altered so that a largely alanine-
containing peptide is predicted to undergo helix-coil transitions at the experimentally
observed temperatures (Garcia & Sanbonmatsu, 2002). Their alteration involves the

elimination of an additional, backbone dihedral, or torsional potential, which is present



Alal Ala 3

Ala2

Figure 5.1. Tri-alanine

Ace-(Ala);-Nme peptide with center of the three pairs of backbone
dihedral angles highlighted. The hydrogen atoms are shown in stick
representation (black), whereas oxygen (red), nitrogen (blue) and
carbon (grey) are depicted in ball-and-stick representation.
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with varying topographies in most commonly used FFs (Hu et al., 2003). Upon
elimination of this added potential, the basin preference in Garcia’s FF is entirely
determined by backbone, side-chain, electrostatic, and solvent interactions and
geometries. Similarly, explicit solvent MD simulations by Hu et al. and Mu et al. show
that the preference for the helical basin ranges from ~10-90% and that individual inter-
basin hopping rates can vary up to 10-fold when computed from different FFs for the
simple examples of alanine and glycine dipeptides (Hu et al., 2003) and tri-alanine (Mu et
al., (in press)).

Because of the considerable influence a FF can exert on predicted inter-basin
hopping frequencies, we test the reliability of our conclusions by performing independent
calculations employing seven commonly used FFs, namely AMBER 94 (Pearlman,
1995), AMBER 96 (Kollman, 1997), Garcia’s modified AMBER 96 (Garcia &
Sanbonmatsu, 2002) (referred to as G-A-96 in this paper), CHARMM-27 (MacKerell et
al., 1998), OPLS-united atom (Jorgensen, 1988), OPLS-AA-97, and the latest OPLS-AA-
01 (Kaminski et al., 2001). The comparison of predictions obtained from the different FFs
is also motivated by the knowledge that they have been optimized to reproduce
thermodynamic data (and, in some cases, ab initio quantum calculations) and are
generally validated by their ability to describe protein structures. Consequently, their
suitability for dynamical calculations is unclear because the dynamics is sensitive to the
heights of kinetic barriers, whereas thermodynamics and native structures are not.

Our Langevin dynamics (LD) simulations with a implicit solvent model (Shen & Freed,
2002b) produce nearly the same, strong FF dependence of basin populations and

dynamics obtained from MD calculations with explicit solvent (Mu et al., (in press)).
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Moreover, where the same FFs are used for explicit and implicit solvent simulations,
good agreement is found, thereby supporting the validity of our computationally far less
expensive approach.

In the present extensive study at 300 K, we examine the validity of the IPH using
molecular mechanics potentials to construct and analyze the conformational and
dynamical properties of peptides composed of many different amino acid combinations
(60 different species in all). For all seven FFs considered, the time course of the LD
trajectories reveals that a residue’s

basin population and dynamics may be strongly influenced by the nearest neighbor amino
acid’s conformation and chemical identity. We calculate the backbone conformational
entropy in the unfolded state for each residue according to its sampling of the phi-psi
plot. This calculation is conducted separately by assuming that the samplings for each
residue are independent (the IPH assumption) and by considering the correlated motions
in order to quantify the error in [PH. We also discuss the implications of the different
thermodynamics and dynamics produced by the various widely used FFs upon the ability
of all-atom simulations to describe the free energies, folding pathways and time-scales in

protein folding.

Results

The Ramachandran basin assignments are derived from the observed time course
of the population distributions (Fig 5.2; see methods section). A common definition is
suitable for all seven FFs. The most populated basins are the polyproline II (basin 1, B1),

extended B (basin 2, B2), and a-helical (basin 3, B3) conformations (see Table 5.1). The



Table 4.1. Basin populations and configurational entropy for
different force fields

Force Field PP-II extended B a-helical TAS !
(%) (%) (%) (kcal rlnol'l K

)

AMBER 94 1.08 (13) 1.5(3) 96.86 (80) 0
AMBER 96 14.15 (41) 76.27 (44) 5.02 (14) -0.187
Garcia-A96 30.24 17.8 4531 -0.358
CHARMM?27 | 24.20 (55)° 18.33 47.62(45) -0.365
OPLS-AA-97 82.97° (88)° 12.57 (12) -0.355
OPLS-AA-01 31.02 | 41.17 20.75 -0.372
OPLS-UA 59.31° 33.93 -0.427

Values given in the table are for Ala® in Ala'-Ala*-Ala® at T =300 K and values in
parenthesis are from an explicit solvent MD calculation for trialanine (Mu et al., (in

ress))

Calculated using Eq. 1 and referenced to value for AMBER 94.
? Combined values for PP-II and extended p.
*PP-II and extended B basins are not distinguished in this FF.
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polyproline II (PP-II) and extended P basins are separated by a free energy barrier for all
the FFs except the OPLS-UA and OPLS-AA-97 FFs where only a single basin is present
in this region of the Ramachandran plot. The existence of a distinct PP-II basin is well
established both experimentally (Shi et al., 2002a; Shi et al., 2002b; Woutersen et al.,
2002) and references therein) and in MD simulations (Mu et al., (in press); Pappu &
Rose, 2002)).

Figure 5.3 presents the time course of basin occupancies for the central Ala in the
Ala-Ala-Ala peptide as calculated with the three different FFs using the color code at the
top of the figure. The color variations between the trajectories from the different FFs
strikingly expose the qualitatively different dynamics predicted by the various FFs.
AMBER 94 predominantly populates the helical basin, whereas the distribution among
the three dominant wells is more uniform for G-A-96 and OPLS-AA-01, though G-A-96

yields significantly more helical population that OPLS-AA-01.

Sequence dependence of NN effects

Underlying the IPH is the assumption of a lack of correlations between the (®,¥)
dihedral angles of neighboring residues due to the rigidity of the peptide bond. Our first
investigation focuses on the importance of the flanking moieties. A series of simulations
is performed contrasting the behavior of a single alanine capped with acetyl and amide
groups (Fig. 5.4) with that of an alanine flanked on both sides with alanines (Fig. 5.5).
The presence of less bulky neighbors in the single alanine molecule increases the fraction

of time the alanine spends in the extended  and PPII conformations (basins 1 and 2). For
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Figure 5.2. Ramachandran plot of Ala’ in Ala'-Ala’-Ala’ .

Computed using the OPLS-AA-01 FF shows the presence of
three distinct basins.
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example, using the AMBER 94 FF, essentially the entire population is in the helical basin
3 for the (capped) tri-alanine molecule, whereas ~ 20% populates the other two basins in
the (capped) mono-alanine molecule. These results are similar to those of Hu et al. who
observe that mono-alanine populates the helical basin 84% of the time (Hu et al., 2003;
Mu et al., (in press); Zaman et al., 2003a). The difference between mono- and tri-alanine
already demonstrates that the rigidity of the peptide backbone does not prevent the
neighbor moieties from influencing the backbone configuration even of a small amino
acid such as alanine.

The implicit solvent LD simulations for the tri-alanine basin populations accord
reasonably with the explicit solvent MD simulations for the same system by Mu et al.
(Mu et al., (in press)).The LD simulations with the AMBER 94 FF differ for the a-helix
population by ~15 %. With the AMBER-96 and CHARMM 27 FFs, the LD simulations
under- and over-estimate the extended P population by 30 and 12% respectively, while
very close agreement with the MD simulations is found for the OPLS-AA-97 FF (within
6%). This general agreement provides additional strong justification for use of the
implicit solvent model in the more extensive study of NN neighbor effects that follow.
The three FFs (AMBER 94, OPLS-AA-01 and G-A-96) generate different basin
preferences for the tri-alanine molecule (Fig. 5.3 and first row in Table 5.2). The
AMBER 94 FF predicts a predominant helix basin population, while the G-A-96 and
OPLS-01 yield helix, extended, and PPII basin populations in the ratios roughly of 3:2:1
and 2:4:3, respectively. Table 5.2 also illustrates the NN effect on the central Ala residue
in the peptides Ala-Ala-X and X-Ala-Ala for seven different residues X (of varying

character), while Table 5.2 and Figs. 5.6 and 5.7 display the NN effect for X in the seven
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Figure 5.3. Backbone dynamics of different center residues in
Ala-X-Ala.

The 15 ns time course is presented for the basin populations, colored
according to the legend given at the top of the figure. Simulations for
three representative FFs are provided to demonstrate the wide
variation in populations between the FFs. Residues spend
considerably more time in basin 3 (helical) when the AMBER 94 FF
is used compared to the G-A-96 and OPLS-AA-01 FFs, where there
1s higher probability for extended B structures (basin 2) and PP-II
(basin 1).
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pairs of di-peptides Ala-X and X-Ala. The G-A-96 and OPLS-AA-01 FFs produce an

appreciable NN effect, with the alanine basin populations sometimes changing by a factor
of three as the neighboring side-chains are varied. For example, the helix basin
population from the G-A-96 FF ranges from the low of 16.4% when the C-terminal NN is
X3 = Gly to a high of 48.4% for X3=Trp. For N-terminal NN, the center alanine’s helix
populations are 40.5% with X' = Gly and 4.5% for X' = Trp. Similarly, large NN effects
are evident for the G-A-96 FF in Table 5.2.

The AMBER 94 FF only yields a marginal NN effect and only in the di-peptides (Fig
5.8). This difference arises because the AMBER 94 FF predicts that the alanine backbone
almost always remains in the helical basin, regardless of the NN, whereas the helical
basin population varies between 5 and 75% for the other two FFs. Hence, much of our
analysis focuses on the two more realistic FFs, G-A-96 and OPLS-AA-01.
The NN effects computed for the di-amino acids are of similar magnitude to those
obtained for the tri-amino acids (data not shown), which confirms that the observations
concerning NN effects are not artifacts of longer range I-1,I+1 side-chain interactions.
Backbone entropy

The influence of nearest neighboring residues can be quantified in terms of the

change in an alanine’s backbone entropy due to presence of different neighbors. Using
the basin populations on the phi-psi map, we calculate the backbone conformational

entropy according to the relation (see Methods),

120 120

S=-R> > P, InP, (5.1)

i=1 j=1
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where P;j is the normalized probability of being in the i,;/™ 3°x3° mesh element in the phi-

psi map, and R is the gas constant. Although this calculation of S depends on the mesh-
size (i.e., the volume per configuration in phase space), relative entropy differences
between residues, or between those calculated with different FFs, do not. The difference
in basin populations for the different FFs is manifest in residue dependent backbone
entropies (Table 5.1 and Fig. 5.9). For example, the entropy is the lowest with the
AMBER 94 FF where essentially all the population is in the helical basin. For the center

alanine in a tri-alanine peptide, the backbone entropy TAS calculated using AMBER 96 is

larger than TAS calculated using AMBER 94 by 0.18 kcal mol”, which reflects the
binary basin occupancy between the extended and PP-II basins for AMBER 94. Because
the simulations with the other five FFs yield a more uniform distribution of these three
basins, the backbone entropy of the center residue in tri-alanine for most FFs exceeds the
AMBER 94 entropy by TAS ~ 0.4 kcal mol™.

The change in an alanine’s backbone entropy with different neighbors is on the
same order of magnitude as the difference in backbone entropy between different
residues (Table 5.4). On average, the change in backbone entropy of Ala with different
neighbors is TAS ~ 0.1 kcal mol ™, which is approximately the average difference
between entropy of individual residues. This difference in entropy between individual
residues is illustrated in Fig. 5.7 where the backbone entropy is presented for each of the
three residues in Ala-X-Ala where X ranges over the 20 naturally occurring amino acids.
Although the backbone entropies for the G-A96 and OPLS-AA-01 FFs often differ for

individual amino acids, values for the flexible glycine and the highly restricted proline lie



110

Amber 94

G-A-96

OPLS-AA-2001]

Figure 5.4, Phi-Psj b
different force fields

asin populations for Ace-Ala-Nme for

Populations are obtained from 45 ns D trajectories.



Table 5.1. Alanine conformational preference as a function of its

NN chemical identity
X Ala-Ala-X
Basin 1 Basin 2 Basin 3
Ala 1.1/30.02/31.02 1.5/17.9/41.02 96.8/45.75/20.2
Trp 6.6/27.25/19.4 11.6 /17.83/31.2 80.26/48.41/43.6
Met 1.0/34.08/24.5 1.42 /20.22/23.25 97.13/39.91/45.0
Asp 0.4/23.25/12.2 0.4 /45.08/40.83 99.0/25.75/44.12
Asn 3.87/39.8/10.0 7.9 /22/14.5 87.0/32.58/17.81
Leu 0.6/51.51/23.65 0.1/25.7/21.81 99.4/14.33/46.33
Gly 6.8/44.75/35.12 12.33/28.25/41.91 79.13/16.41/15.41
X-Ala-Ala
X Basin 1 Basin 2 Basin 3
Ala 1.1/30.02/31.02 1.5/17.9/41.02 96.8/45.75/20.2
Trp 2.8/48.0/21.66 9.06/41.16/50.41 87.66/4.50/24.33
Met 2.0/19.33/23.16 4.2/13.58/27.13 93.26/63.68/41.46
Asp 0.2/26.25/28.6 1.04/18.25/23.16 98.53/48.41/41.7
Asn 3.16/31.41/36.16 5.00/22.5/35.17 91.20/41.16/20.53
Leu 3.34/22.3/27.83 4.51/28.3/34.25 92.34/39.1/28.50
Gly 4.80/32.0/38.68 4.00/21.75/36.58 90.2/40.48/18.25

The table gives values for the influence on the center alanine’s basin
populations. Values are given for the AMBER 94/G-A96/OPLS-AA-01 FFs,
respectively.
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Figure 5.5. Basin Populations of Tri-peptides.

Basin populations for Ala’ for the seven different FFs, calculated
from averages along the time trajectories such as those illustrated
in Fig. 1B. The most populated basins are PP-II (basin 1),
extended P (basin 2) and a-helical (basin 3).
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near the extrema in both FFs. The calculations also reproduce the known feature that

residues preceding trans-prolines are conformationally restricted. This effect is illustrated
in Fig 5.9 where both G-A-96 and OPLS-AA-01 depict alow entropy for Ala' when it
precedes proline.

Geometric Dependence of NN effect:

In addition to being sensitive to its NN side-chain identity, a residue’s
conformation is influenced by its NN’s conformation. The helical basin population of
residue X in Ala-X-Ala often changes by two-fold or more when both flanking alanines
are in the helical basin. Figure 5.10 illustrates the influence of the NN conformation by
presenting the difference in the backbone entropy (Snn free “SNN constrained) = TAS for each
of the 20 amino acids as computed when both the flanking alanines are free to occupy all
basins according to the equilibrium populations and when they are constrained to be in
the helical basin. This entropy difference nearly vanishes for 6-8 of the residues,
depending upon the force field. However, TAS lies in the range of -0.5 to 0.12 kcal mol™
for the majority of residues using either the G-A-96 and OPLS-AA-01 FFs. Thus, a
residue’s configuration can be significantly affected by its NN conformations.

Because a residue’s entropy depends upon its neighbors’ conformation, the backbone
entropy of the system is not the sum of the individual residues’ entropies. To estimate the
magnitude of the non-additivity, the entropy of pairs of residues in a tri-amino acid
molecule are calculated from the location of the pair’s configuration in a four
dimensional phi-psi plot ((®,¥)i-12). This behavior is illustrated for the peptides AAA,

LLL, VVV and a pseudo-random sequence Ala-Glu-Thr-Asn. The difference in the
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Figure 5.6. Sequence dependence of Nearest Neighbor effects
(AAX).

The population distribution for the center Ala is presented for
Ala-Ala-X. for the G-A-96 and OPLS-AA-01 FFs for X=[ala,
gly, leu, trp, met, asn, asp]. The fractional population of the Ala
varies significantly with the neighboring residue type and also
whether the other Ala is N- or C-terminal to the neighbor.
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Figure 5.7. Sequence dependence of Nearest Neighbor effects
(XAA).

The population distribution for the center Ala is presented for X-
Ala-Ala for the G-A-96 and OPLS-AA-01 FFs for X=[ala, gly, leu,
trp, met, asn, asp]. The fractional population of the Ala varies
significantly with the neighboring residue type and also whether
the other Ala is N- or C-terminal to the neighbor.
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correlated entropy and the sum of the entropies of the individual residues, calculated
assuming that they are independent of their NNs’ conformation, is in the range of TAS ~
0.3-0.7 kcal mol™ residue” depending upon the FF employed (Table 5.5). This range of
non-additive contributions is about half the estimated loss of backbone entropy per
residue upon unfolding based on experimental data ((D'Aquino et al., 1996; Thompson et
al., 2002) and references therein). Hence, the non-additive correction is quite significant,
and the IPH is inadequate to describe the backbone entropy of short peptides. Therefore,
an accurate calculation of the unfolded state entropy must include correlations due to the
neighboring residues.
Backbone dynamics:

The rates of transitions between basins (or basin escape rates) are studied for each
of the seven force fields using the basin auto-correlation function,

C.(t) =< B(t) » B,(0) > (52)
where Pi(t) is the probability of being in the i™ basin at time t. Pi(t) is defined as unity if
the residue is in basin i at time t and is zero otherwise. The long time limit of the
correlation function Ci(t) approaches a constant that equals the equilibrium population of

basin i for the FF. The correlation functions for the helical basin 3 are nearly exponential
for the different FFs (Fig. 5.11a), a behavior consistent with first order kinetics for the
escape from the basins. Poor fits to an exponential arise for transitions out of basins with
very low populations because of meager statistics in these cases. This trend of
exponential decay kinetics is also observed in the basin escape rates for basins 1 and 2
(data not shown). Inter-basin transition rates k; are obtained from fitting the correlation

functions with an exponential decay towards the constant long time limit as described in
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Bl B2 BS5 Other

AX

Amber 94

Gly
Leu
Asn
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Met
Trp
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Trp
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Figure 5.8. Backbone dynamics in di-peptides.

The left panel shows the backbone dynamics of Ala in Ala-X and
while the right column shows the backbone dynamics of Ala in X-Ala.
The 15ns time trajectory is presented for basin occupancies for three
FFs, namely AMBER 94, G-A-96 and OPLS-AA-01.
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Methods. While the AMBER 96 and OPLS-AA-97 FF produces the fastest rates due to
their negligible populations in the helical basin. The AMBER 96 and G-A-96 rates differ
by a factor of five, which arises solely from the flattening of the added torsional potential
for the G-A-96 FF (Fig. 5.12). The correlation functions for the other basins exhibit a
very similar dispersion in rates, as do those for the alanine in an Ala-Ala di-peptide. A
similar dispersion in rates appears in the explicit solvent calculations of Mu et a/ (Mu et
al., (in press)) for the tri-alanine peptide, where the authors suggest that the hopping rates
vary by almost an order of magnitude for different FFs. An interesting aspect of the
dynamics is the directional sampling of the basins in the phi-psi map i.e., the existence of
preferential transitions between certain basins. An analysis of the inter-conversions
among the three major basins indicates that transitions are predominantly between basin 2
and either basin 1 or basin 3 (Fig. 5.11 b) The time constant for escape from the helical
basin of an Ala residue exhibits an eight-fold dispersion as the FF is varied (Table 5.1
and Fig. 5.11). As expected, the AMBER 94 FF yields the slowest rate due to its
overwhelming population in basin 3, but not between basins 1 and 3. This behavior is
common for all FFs (except the OPLS-UA and OPLS-AA-97 FF where basins 1 and 2
coalesce into a single basin), indicating that directional basin sampling is general. The
origin of the directional sampling can be viewed, for example, as the requirement that the
left-handed PP-II conformation (basin 1) tends first to untwist (basin 2) before it can re-
twist into the right-handed a-helical conformation (basin 3). The basin hopping rates also

depend on the NN identity. The hopping rate of Ala® in AAX and XAA changes by
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Figure 5.9. Backbone entropy and sequence dependence of NN
effect.

Entropy for each residue in Ala'-X-Ala®, referenced to that of a
tri-alanine peptide as calculated for the OPLS-AA-01 (top plot)
and G-A-96 (bottom plot) FFs. The value depicted for residue
X represents the variation in backbone entropy with amino acid
type. Changes in the entropy of Ala' or Ala’ reflects their
dependence on residue X, while their difference is due to being
N- or C-terminal to the center residue, as well as being at either
end. The abscissa is the one-letter code for the amino acids.
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almost 50% between X=Ala and X=Gly. Similarly, X=Asn and X=Ala also display a
difference of about 50% in hopping rates.
Discussion

We have investigated the backbone dynamics of different peptides using
Langevin dynamics simulations with a validated implicit solvent model and employing a
variety of commonly used FFs. A residue’s conformation, as well as its location in the
peptide sequence, can significantly affect its neighbor’s Ramachandran basin populations
and basin inter-conversion rates (except with the AMBER 94 FF). For example, when the
two flanking residues in a tri-amino acid are restricted to the helical basin, the residue’s
backbone entropy may change by the same order of magnitude as the difference in
backbone entropy between different amino acids. These results are similar to the ones
reported by Pappu et al., though quantitative differences exist due to their use of hard-
sphere potentials. The influence of either neighboring residues' identity on the backbone
entropy of a residue is of the same magnitude. Additionally, the identity of the NN can
alter the rate at which an alanine leaves, for example, the helical basin by nearly 50%.
Decrease in Backbone entropy due to correlated motions.
The influence of the NN’s conformation on the torsional populations and kinetics of a
residue demonstrates the invalidity of the Flory IPH. A similar conclusion is reached by
Pappu et al., who also observe a reduction in available conformations for the terminal
alanine of a helical segment. We quantify the extent to which backbone conformations
are coupled by calculating the difference between the sum of the independent entropies of

each residue for a bonded pair of amino acids and that for the correlated pair. This



T(SNN free-SNN constrained) (kcal moI'1)

- I G-A-96

-g‘g "] Ala Asn Cys Val Lys Glu Tyr Trp Ser Asp lle Met Phe Thr His Pro Gln Arg Leu Gly
0.2 (I OPLS-AA-2001

-0.6 1 Ala Asn Cys Val Lys Glu Tyr Trp Ser Asp Ile Met Phe Thr His Pro GIn Arg Leu Gly

Figure 5.10. Backbone entropy and conformational dependence
of NN effect.

The difference in the backbone entropy for residue X in the
tripeptide Ala-X-Ala when the flanking alanines are free to be in any
basin versus when the flanking residues are in the helical basin (B3).
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Table 5.3. Reduction in backbone entropy due to NN

130

correlations
TS, T(S;+S,) TAS .+, TS, T(S,+S5) TAS;43
G-A-96 -3.66 -2.40 1.26 -3.69 -2.57 1.12
CHARMM -3.63 -2.30 1.33 -3.77 -2.68 1.09
OPLS-UA -3.61 -2.18 1.42 -3.63 -2.34 1.29
OPLS-AA-01 | -3.66 -2.47 1.19 -3.66 -2.45 1.21
Ala-Ala-Ala
TS, T(S;+8S;) TAS 42 TS3 T(S,+S;) TAS,.3
G-A-96 -3.77 -2.88 0.88 -3.85 -3.16 0.69
CHARMM -3.83 -3.13 0.70 -4.04 -3.41 0.63
OPLS-UA -4.01 -3.49 0.52 -3.88 -3.16 0.72
OPLS-AA-01 -4.00 -3.36 0.64 -4.01 -3.51 0.50
Val-Val-Val
TS, T(S,1S;) TAS 42 TS,; T(S,+8S;) TAS 43
G-A-96 -3.91 -3.34 0.55 -3.76 -2.97 0.78
CHARMM -3.84 -3.02 0.82 -4.21 -3.58 0.63
OPLS-UA -3.69 -2.57 1.12 -3.71 -2.68 1.02
OPLS-AA-01 -3.78 -2.95 0.83 -3.79 -2.96 0.92

Leu-Leu-Leu

Values in the table are given in kcal mol™. Reduction in backbone entropy due to
NN correlations is obtained according to AS;.; = (Entropy of Residue' + Entropy

of Residue'!

) — (The entropy of the system composed of Residue' and Residue

i+1
’

calculated using 4-dimensional phi-psi map) resolved in 10°x 10 ° grid elements.
As with all calculations of entropy, the value for S depends on the mesh-size, and
numbers listed are relative (see text). However, entropy differences (AS) do not

depend on mesh size, and
are in absolute terms.
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difference is sizable, TAS ~ 0.3-0.7 kcal mol™ residue™ (Table 5.4). Fortunately, most
experiments measure the entropy of the system as a whole and therefore automatically
include all contributions from the correlations. Future studies will investigate the
magnitude of the neighbor effects in an entire protein sequence and whether the entropy

of the system is strongly dependent upon sequence order, rather than just composition.

Differences and accuracy of FFs.

We have studied the equilibrium populations and inter-basin hopping kinetic with seven
widely used FFs to examine the robustness of our conclusions, as well as to address
questions concerning the consistency and reliability of the FFs for treating protein
dynamics. As noted by Hu et al. (Hu et al., 2003)and Mu et al.(Mu et al., (in press)), an
important difference among the force fields is the bias towards certain basins (as
exhibited in Figs. 5.5 and 5.12). The AMBER 94 FF describes alanine-like residues as
largely populating only the helical basin, while the AMBER 96 FF avoids this basin
completely. The remaining five FFs lead to the helical, extended and PP-II basins as
being populated more equally, although non-helical basins are not distinct in the OPLS-
UA and OPLS-AA-97 FF. Garcia and coworkers correct for the “helophobicity” of the
AMBER 96 FF by completely flattening the added AMBER 96 torsional potential, which
is 1.5 kcal mol™ unfavorable at the helical basin (Fig. 5.12). The OPLS-UA FF also has a
flat added torsional potential, while the added potential varies by 0.5 kcal mol" for
CHARMM and by as much as 2 kcal mol™ for the OPLS-AA-97 and OPLS-AA-01 FFs.
However, the added torsional potential only determines a portion of the backbone

distribution because other interactions, such as partial charges, side-chain dihedral
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Figure 5.11. Basin Hopping Rates and directional sampling.

a) Correlation function for the basin 3 population for the center
alanine in a tri-alanine peptide. The long time limit of the
correlation function is the equilibrium population of basin 3, which
strongly varies with the FF. Escape rates are obtained from single
exponential fits to the correlation functions (red lines). The finite
duration of the simulations is responsible for some of the noise in
the correlation functions. The poorer exponential fits for the
AMBER 96 and OPLS-AA-97 FFs probably arise because of the
small basin 3 populations and because a limited number of
transitions occur during a 15 ns trajectory for these two FFs. b)
Inter-basin hopping rates for tri-alanine as calculated with several
FFs. Rates for the AMBER 94 FF are not presented because
essentially only one basin is populated and there are very few
transitions. Similarly, the rates between basin 2 and basin 3 for
AMBER 96 are omitted because basin 3 is rarely occupied. For the
OPLS-UA and OPLS-AA-97 FF, the rates are between basin 3 and
the combined basins 1 and 2, which are not distinct in these FFs.
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potentials, and van der Waals interactions, contribute as well (Hu et al., 2003; Mu et al.,
(in press); Zaman et al., 2003a). Recent experimental studies have shown that alanine-
rich unfolded peptides predominately populate the PP-II basins (Dukor & Keiderling,
1991; Schweitzer-Stenner, 2002; Shi et al.,, 2002a; Woutersen & Hamm, 2001la;
Woutersen & Hamm, 2001b; Woutersen et al., 2001; Woutersen et al., 2002). Except for
the AMBER 94 FF and the OPLS-UA FF, all FFs predict significant sampling of PP-II
conformations. However, the PP-II basin still is not the most populated for any of the
force fields. Thus, there is a disparity between the predictions of the FFs and
experimental observations for very small peptides.

We suggest that this discrepancy may be a reflection of the fact that the FFs have
been designed based on thermodynamic data (perhaps with some ab initio computations
centered near potential minima). The protein FFs have generally been validated by the
degree to which they can reproduce the structures of folded proteins. However, folded
proteins tend to have much less PP-II structures than either helical or B-sheet structures,
so the under weighting of the PP-II basin by the FFs is, perhaps, not too surprising.
Additionally, the dynamics sensitively reflects the heights of the saddle-points connecting
the basins, while the thermodynamic and quantum data used to parameterize the FFs are

insensitive to these kinetic barriers.

Glycine flexibility and helical propensity.
Compared to alanine, the backbone of glycine is more flexible as it can traverse a larger
range of the phi-psi map (Fig. 5.13). However, glycine still exhibits strongly preferred

regions. This preference reduces the over-all sampling of configurations, and the



136

Figure S.12. Torsional Biases in the Force Fields.

The added backbone torsional potential of the different force
fields. The right column shows a contour plot of the surface in the
left column. The axes are labeled in radians.
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G-A96 and OPLS-UA

Fig. 5.12 (contd.)



Table 5.4. Sequence dependence of backbone entropy in Ala-X-
Ala with unconstrained neighbors

T(Sx—Sar)
X (kcal mol'l)
AMBER 94 | G-A-96 | OPLS-AA-0l | OPLS-UA

Ala 0 0 0 0
Asn 0.0045 -0.053 -0.008 -0.0515
Cys 0.06 0.0245 -0.017 -0.049
Val -0.076 0.067 -0.276 -0.1495
Lys -0.0815 0.033 -0.111 -0.0455
Glu -0.041 4E-4 -0.139 -0.1135
Tyr -0.06765 -0.125 -0.065 -0.02
Trp 0.1015 -0.0945 -0.32 -0.0095
Ser -0.024 0.025 -0.036 -0.0235
Asp -0.251 -0.1485 -0.852 -0.12495
Tle -0.0425 -0.181 -0.674 -0.1565
Met 0.0255 -0.09995 -0.033 -0.0515
Phe 0.3465 -0.2061 0.22 -0.0645
Thr -0.024 -0.022 -0.164 -0.1005
His 0.1795 0.0105 0.021 -0.0955
Pro -0.2675 -0.398 -0.473 -0.2505
Gln -0.02 -0.0385 -0.01 -0.0383
Arg -0.0415 0.006 0.011 -0.0635
Leu 0.09 -0.032 0.11 -0.04995
Gly 0.498 0.045 0.22 0.0455

139
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backbone entropy is only modestly increased (using realistic FFs), T(Sala-Gly-Ala — SAla-Ala-
i) < 0.11 keal mol” in an Ala-Gly-Ala tripeptide (Table 5.5). It is generally believed
that the difference in the helical propensities between Ala and Gly at a solvent exposed
position is entirely attributed to differences in backbone entropy of the unfolded state,
because the folded state has the same entropy and interactions (Creamer & Rose, 1994;
D'Aquino et al., 1996). The difference in helical propensity between glycine and alanine
in the folded state is greater than 0.7 kcal mol” (Creamer & Rose, 1994; D'Aquino et al.,
1996), far larger than their difference in backbone entropy for the unfolded state (~0.11
kcal mol™; Table 5.5). This discrepancy between the known helical propensity and our
calculation of backbone entropy implies either that 1) the assumption is incorrect and the
difference in backbone entropy in the unfolded state is the primary factor determining the
difference in helical propensity for these two residues, or 2) the FFs do not accurately
reproduce the sampling of the unfolded state for alanine and/or glycine.

Time Scales and Comparisons with Experiments.

Our results indicate that simulations employing different commonly used FFs can
produce basin hopping rates differing by ~5-fold as well as differentially populate the
major basins. These findings agree with recent tri-alanine simulations obtained by Hu et
al. (Hu et al., 2003)and Mu et al.(Mu et al., (in press)) using explicit solvent MD
simulations and several different FFs. Inter-basin hopping rates and basin sampling affect
the folding pathways, and, hence, the overall dynamics that are predicted by simulations.
Consequently, the folding rate determined from folding simulations may contain further

uncertainties. Given these issues, the uncertainties in FFs impart at least a factor of 2-3



Ala-Gly-Ala
OPLS-AA-01

Figure 5.13. Basin population for Gly in Ala-Gly-Ala using the
OPLS-AA-01 FF.

An unconventional view for the Ramachandran basins is used
to enable visualizing both the population (top) plot and the
contour (bottom) plot.
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uncertainty in simulated rates (Snow et al., 2002). Furthermore, the extreme bias towards
the helical basin from the AMBER 94 FF implies that any folding simulation using this
FF is unreliable for either dynamics or thermodynamics.

In addition, protein folding simulations with a variety of FFs often tend to exhibit
early collapse and the formation of structured intermediates (Alonso & Daggett, 1998;
Duan & Kollman, 1998; Linhananta et al., 2002; Shen & Freed, 2002a; Shimada &
Shakhnovich, 2002; Zagrovic et al., 2002). In contrast, the folding of small proteins is
experimentally observed to be two-state without the accumulation of early intermediates
((Krantz et al.,, 2002) and references therein). Potentially, the early intermediates
observed in the simulations arise due to inherent limitations of the FFs which are
primarily designed to describe folded structures and not the dynamics of the folding
process.

A possible source of the early collapse found in the simulations may lie in an
inadequate treatment of the backbone entropy of the unfolded state. Although the
backbone entropies are generally within TAS ~1/2 kcal mol™ of each other for the seven
FFs, these values are for a single residue. Even a 0.1 kcal mol” error for a small, 100
residue protein could produce a net error of 10 kcal mol™, or a factor of 107 in the
equilibrium constant for a fully collapsed species relative to the unfolded state. Thus,
small errors in parameters of FFs easily can lead to folding mechanisms that are not

observed experimentally.
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Conclusions
Our simulations demonstrate that the Flory IPH is invalid because of non-negligible
interactions between neighboring amino acids. The basin preference and backbone
entropy of a residue depends both on the conformation and the identity of the neighbor.
We estimate the magnitude of these effects to be TAS < 0.7 kcal mol™ residue’. Because
Zimm-Bragg (Zimm & Bragg, 1959) and Lifson-Roig (Lifson & Roig, 1961) helix-coil
theories do not include either a dependence on the sequence or on the conformation, there
is opportunity for improving these theories by correcting for the changes in the entropy of
the unfolded state due to NN effects.
Basin populations and inter-conversion rates strongly depend on the choice of force field.
This dependence is larger than differences between explicit and implicit solvent
calculations using the same force field, suggesting that explicit solvent calculations for
the dynamics of small peptides are unnecessary until the FFs are improved.
The information we obtain concerning the basin hopping rates can be used in coarse-
grained folding algorithms that are based solely on torsional dynamics (Colubri &
Fernandez, 2002). Moreover, the preference of peptides for certain conformations can
help characterize the structure and dynamics of the denatured state, and their influence on

the folding pathway.

Methods:
The long-time dynamics (15 —45 ns) of the di- and tri-amino acids have been

probed using the implicit solvent LD simulation method described by Shen and Freed
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(Shen & Freed, 2002b) using seven different FFs at 300 K. The peptides are amino-
acetylated and carboxy-amidated in order to model the dynamics of the two or three
residues within a larger polypeptide. Similar simulations with uncapped ends lead to very
different propensities for individual Ramachandran basins mainly because the charged
ends favor elongated configurations more than in capped systems. Average basin
populations and dynamics are accumulated after the first 3 ns of the equilibration
simulations.
The Langevin dynamics simulations take the total system energy

U

total

=U,+U,,,+U,,+U, +Up(e(r)+ U, g +Ugop (o) as the sum of the

tors tmp—tors
types of interaction potentials between the solute atoms (as explained in chapter 4), while
the solvent contributions are modeled using a distance dependent dielectric “constant” to

screen charge-charge interactions U_,(e(r)) and a solvation potential Ug,, (o). The
bonding interactions Uy, , bond-bond bending interactions Uyp,,,; , and improper torsional
energies Uy, _sors are modeled by harmonic potentials, the regular torsional potentials

U.ors by standard periodic functions, and the van der Waals interactions by Lennard-Jones

6-12 potentials. The Coulomb interactions Uch(s)zz%q ;1 &(ry)r, are expressed in

i>J
terms of atomic partial charges ¢; and a Ramstein-Lavery style (Ramstein & Lavery,

1988) distance dependent dielectric “constant” g#). The microscopic solvation potential

is modeled using the Ooi-Scheraga solvent—accessible surface area (SASA) potential

N
(Ooti et al., 1987), U, (0) = Z g;0; , where o; is the accessible surface area of a
i=1
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hypersurface bisecting the first solvent shell surrounding protein atom i, and the
empirical surface free energy parameters g; depend on the atom type. Because the g; are
free energy parameters, the U,,, generates a temperature dependent free energy that
contains contributions from solvent reorientation within a mean-field approximation.

The LD simulations employ the velocity Verlet algorithm (Allen, 1987) with a
time step of Ar=2 fsec for integrating the equations of motion for the protein atom
positions and velocities. The length of all X-H type bonds are constrained using the
RATTLE algorithm (Anderson, 1983). The computations are performed using a modified
version of the TINKER 3.9 molecular design package (Ponder, 1999) with a faster non-
bonding force evaluation algorithm FAST-LD (Shen, 2002). The frictional forces and
corresponding random forces acting on the protein atoms are computed using the Pastor-
Karplus accessible surface area model (Pastor & Karplus, 1988). The solvent accessible
surface areas o; for the friction coefficients are calculated from the exposed surface area
of solute atoms using a probe of zero radius. The smaller probe size for friction
coefficients is used to cancel effectively the results of (more expensive to calculate)
hydrodynamic interactions. The accessible surface areas, atomic friction coefficients, and
solvation potentials are updated every 100 dynamical steps (0.25 ps) since tests show that
this approximation incurs negligible error because significant conformational variations

occur on a much longer time scale (Shen & Freed, 2002b).

Identification of Basin locations:
The entropy calculations (Eq. 5.1) do not depend upon how each basin is defined,

as the probability is calculated for each of the 3°x3° grid elements. However, the
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populations shown in Tables 5.1 and 5.2 and the rates depicted in Fig. 5.10 depend upon
the definitions of individual basins. Basins 1, 2 and 3 are defined based upon the
population of central Ala in tri-alanine (Fig 5.2). Basin 3 is defined with a circle large
enough to encompass the population of that basin for all the FFs (Fig 5.3). This definition
is used to calculate the rate of escape from basin 3 shown in Fig 5.9. The distinction
between basins 1 and 2 is only applicable for G-A-96, OPLS-AA-01 and CHARMM, as
other FFs either do not have a clear separation between theses two basins (OPLS-UA and
OPLS-AA-97) or have all of its population only in a single basin (AMBER 94 and
AMBER 96). For basins 1 and 2, the G-A-96, OPLS-AA-01 and CHARMM FFs are used
to define non-overlapping ellipses that are large enough to accommodate >90% of the

populations in each of these basins.

Independence of initial conditions and length of simulation.

In order to test the robustness of the computed neighbor effects, simulations have
been performed for four different di-peptides with varying initial conditions and variable
durations of 45 and 15 ns. The overall difference in basin populations is less than 3%
(due to different initial conditions and longer trajectories), indicating that the basins are
adequately sampled within 15ns and that the results are not an artifact of the initial

conditions or the use of short trajectories.
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Calculation of kj; (inter-basin transition rates) from basin auto correlation function:

In order to calculate kj;, the rate of transition from basin i to basin j, the escape
rate from each basin is calculated. The population decay rate is obtained from an
exponential fit to the autocorrelation function Ci(t) for each basin (after having subtracted
the long time basin population). Because transitions from basins 1 and 3 overwhelmingly
proceed to basin 2, the decay rates of Ci(t) for the basin 1 and 3 correlation functions
equal k;» and k3, respectively. The decay rate of Cy(t) is the sum kj; + k3, which can be
separated using the equilibrium basin populations and the detailed balance condition for

equilibrium, e.g., [basin 1]/[basin 2]= ki2/kay).

Calculation of backbone entropies.

Equation 5.1 is only an approximate relation. The conformational entropy can
only be computed rigorously from conformational populations when the latter are
obtained from a constant energy simulation. However, both the friction coefficients and
the solvation potential are inherently temperature dependent quantities, so constant
energy implicit solvent simulations are not possible. A more rigorous approach would be
to follow the far more computationally costly simulation methods of Okamoto and
coworkers (Mitsutake et al., 2000; Sugita et al., 2000; Sugita & Okamoto, 1999), but this
would not be possible for the wide range of tri-peptide systems and FFs studied here.

Hence, the approximate for of Eq. 5.1 suffices for our broad study.



6. CONCLUSIONS AND FUTURE WORK

Summary

The work presented in this thesis addresses important and unanswered questions
related to protein folding and protein-dynamics. We have addressed the issue of entropic
benefit of cross-linking in protein-association with a method that is independent of the
shape and size of solute and solvent molecules. Our method has shown good agreement
with experimental methods. This method has wide applications in designing

macromolecular complexes with tethers and calculating the entropic benefit due to them.

Our work has also addressed the issue of heterogeneity of reaction pathways in
protein-folding and other macromolecular reactions. The analysis is conceptually simple
and is based on first principle statistical mechanics and the widely used transition state
theory. We believe that our theory will improve our understanding of multiple path
processes, and will provide as a starting point for more sophisticated calculations that will

take into account the density of states of initial and final states.

The computer simulation results discussed in the present thesis have shown some of
the inconsistencies of the commonly used force-fields when subjected to rigorous
dynamics tests. The results not only demonstrate the efficiency of our implicit solvent-
LD algorithm but also suggest that the results of computer simulations should be taken

with a grain of salt unless the differences among various force fields and experiments are
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resolved. The work done in this regard is not meant to prove which force field is better
but is aimed at improving the parameters of force fields in general. It is also aimed at
developing parameters which will be optimized for dynamics in addition to structure and

thermodynamics.

Finally, the LD simulations on small alanine peptides show that the Flory Isolated-
Pair-Hypothesis is invalid for small peptides and that the nearest neighbor amino-acids
interact with each other and their motion is correlated. This result has implications for the
understanding of protein dynamics at a residue level, and will improve the helix-coil

theories by taking into account the correlated motions between amino acids.

The next section discusses some of the avenues for future research that emerge

naturally out of the work presented in previous chapters.

Future work

Application of calculation of NN method to RNA:

In spite of its ability to calculate the entropic benefit of cross-linking independent of
the nature of the solvent or solute molecules, the NN method discussed in chapter 2 needs
more refinement before it can be applied to calculate the entropy costs associated with
closing RNA hairpin loops. This is due to sensitive dependence of RNA stability on its
sequence. The protein stability is also a function of sequence, however, the loop closure

entropy doesn’t depend very sensitively on the sequence and therefore our method shows
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good agreement with experiments. On the other hand, one base-pair difference in the
sequence of RNA hairpins can change the stability significantly. This sensitive
dependence requires a more refined NN method that has parameters optimized for the
RNA systems. In fact, one can imagine there being two sets of parameters for the NN
method, one for the protein loops and one for the RNA hairpins, however more literature
search and tests with different parameters are needed for the development of RNA NN
method.

As mentioned earlier in chapter 2, the NN method renders itself very well to calculate
the entropic benefit of cross-linking in higher order complexes with multiple binding sites
where the ligands are linked together. The application of the NN method to higher-order
systems will provide a rigorous test of our method and will open new doors for protein
engineering. It will also benefit organic chemists interested in designing self assembled

structures with tethers.

Application of density of states method to sequential pathways:

The method outlined in chapter 3 is applied to a macromolecular reactions with
parallel pathways. The method is optimized to study reactions with heterogeneous
pathways, however, a wide variety of biological processes (such as non-two state protein-
folding) go through sequential pathways. Our work, will hopefully, be useful in laying
the foundations of a method that describes macromolecular reactions proceeding through
sequential pathways. Some of the work on sequential pathways has already been done

(Despa & Berry, 2001a; Despa & Berry, 2001b; Despa et al., 2003)however, the method
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has not been compared to experimental results, and does not take into account the density
of states of the initial, intermediate and final states. We hope, that our work, will be
useful in fine tuning the present methods and will be helpful in getting better agreement
between experiments and theory.

In order to have a complete theoretical understanding of multiple pathway processes
in macromolecules it is imperative that a method is developed that takes into account the
possibility of a combination of sequential and parallel pathways. It is our hope that such a
picture will be useful in elucidating the various aspects of multiple path process and will
lay the ground work for determining the fingerprints of a multiple-path folding process

from the Arrhenius and other rate-temperature plots.

Improvements in the LD-Implicit solvent algorithm

The LD algorithm discussed in chapters 4 and 5 has shown very promising results.
Without compromising on the quality of results, the method has cut down computational
costs by a factor of more than 200. In spite of this remarkable achievement of the
algorithm, there are still many aspects of the program that need further improvements.
The areas that need improvement include a better treatment of the dielectric constant.
Another area of improvement is the need for a more accurate method to calculate the
solvent-solute hydrogen bonds. The solvation potential, though currently able to
reproduce the results of explicit solvent MD, can be further improved. Finally, so far the
molecular mechanics simulations have not been able to come up with any reasonable
treatment of denaturing solvent. This is important since the experimental unfolded protein

is usually in a denaturant and not in conditions similar to those of unfolding simulations
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(> 1000 K). A similar starting point for the in-silico and in-vivo folding reactions will
also be useful in comparing theoretical and experimental results. We hope that such
simulations will be able to describe the events on the folding pathway more accurately.
This will also highlight the origin of early collapse seen in simulations and not in
experiments, as it is unclear at the moment as to whether the origin of early collapse is

the unrealistic starting state or the force-fields.

Combining torsional dynamics and LD simulations

The Folding Machine (FM) based upon torsional dynamics of the residues has
proved to be fairly successful in predicting the three dimensional structure of proteins
from the amino acid sequence in computationally inexpensive manner. It is one of the
only few methods that relies on ab-initio methods (as compared to knowledge based
methods) to predict the final structure of the protein from the amino acid sequence. There
are, however, many areas of FM that need further improvement. Among these areas are
the definition of basins, the basin hopping rates and the directional hopping of residues
between different basins. Our work, as outlined in chapter 5, can help in solving these
problems by using all atom simulations. The parameters of basin depths and heights,
basin hopping rates, and directional hopping of residues between specific basins can be
determined by the methods outlined in chapter 5 and sample programs presented in the
appendix section. These values, though based upon the unfolded state, will be more
accurate than the ad-hoc potential currently used by the FM. The FM currently utilizes

the protein database for its many parameters, and therefore lacks information about the
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unfolded state. The results from LD simulations will overcome this problem and will give
the FM the ability to mimic the protein in the unfolded state.

The combination of coarse grained simulations (FM) and fine grained calculations
(LD/ MD) is being carried out at other levels also. It is our hope, that in future, we will be
able to combine the two methods, in such a way that the initial stages of the folding event
will be simulated by the FM which will identify some of the potential structures and the
minima on the potential energy landscape. After this identification has been done, fine
tuning of structures, and the determination of the lowest energy minima will be carried
out by fine-grained simulations such as LD. Though this seems rather simple and
straight-forward, there are practical considerations that must be taken into account. First
of all, the potential function for the LD and FM are very different, and as outlined in
previous chapters, small perturbations in the potential function can lead to entirely
different results. Therefore, a consistent potential function needs to be developed. In
addition, the identification of a point, where one can switch from FM to LD is not clear,
and requires a lot of tests with different starting points. It is also possible that this “switch
point” will lie at different points in the trajectory for different systems, therefore making
the transition from FM to LD more complicated. Also, it must be kept in mind that these
results will only be valid for structure prediction, and due to the nature of the FM (MC
type algorithm) no detailed information about the overall dynamics of the folding
pathway can be obtained at the moment.

In spite of all the above mentioned issues, it will be interesting to see whether or

not there is any improvement in the results of the FM with the new parameters as
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obtained by fine-grained LD simulations. These results, will hopefully, open up new
areas of research of combining the two methods, and will enhance our ability to predict

3D structures of proteins from the amino-acid sequence.

Testing FF's for folding

The current thesis presents our analysis of the FFs when they are subjected to
rigorous dynamics tests. Since the FFs are optimized for structure and thermodynamics, it
is only natural, that we see problems with the FFs when they are tested for dynamics. We
plan to further study the problems in the FFs by subjecting them to tests that analyze both
the dynamics and the structure prediction simultaneously. This can be done by testing for
a given sequence, which FFs fold the protein into a known native structure. The
preliminary work for this kind of tests has already been done. We have run simulations (4
simulations with seven different FFs, each of 100 ns) of a 13mer partially helical protein
(Glu Asn Glu Val Ala Arg Leu Lys Lys Leu Leu Gly Tyr) and a synthetic 13mer beta-
hairpin protein (Ser Trp Thr Trp Glu Gly Asn Lys Trp Thr Trp Lys). The preliminary
results show that only two out of the seven (AMBER 94 and OPLS-AA-1997) FFs form a
stable helix for the 13mer. The experimental results show about 35-45% helix in 0%
TFE, as measured by CD experiments. It will be interesting to see whether the more
realistic FFs (G-A-96 and OPLS-AA-2001) are able to predict similar helical content or
not. The folding pathway, the dynamics and the loss of entropy upon folding will also
provide useful parameters in testing the FFs. Finally, to reach any broad-based
conclusion, it will be important to see whether the FFs which produce agreement with

experiments for the helical 13mer, are able to provide good results for the beta-hairpin or
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not. Our results discussed in previous chapters suggest that the force fields show a strong

bias for particular conformations when applied to small peptides (3-5 residues) but it is

not clear as to whether these biases play as important role in relatively longer (13mer)

peptides as they do in small tri-mers and penta-mers.

Long range effects on Dynamics:

One aspect of dynamics still not clearly understood is its relation with the longer-

range effects. As discussed in previous chapters, we have the tools to study the dynamics

of short peptides, and it would be only a natural extension to apply our methods to study

the basin hopping dynamics of longer peptides. The following strategies are proposed to

study the long-range effects and their correlation with dynamics of individual residues:

1.

LD simulations of relatively larger peptides. In this regard, we have long (>100
ns) trajectory of different versions of cross-linked GCN4 (72 and 84 residues),
villin headpiece (33 residues), helical 13mer and a synthetic 13mer that forms a
beta-hairpin (13 residues) and Met-Enkephalin (5 residues). We can study the
dynamics of these systems on a residue by residue level and study the basin
hopping rates, overall tumbling and other dynamic properties as a function of
length of the system.

This study will be complemented by LD simulations where all the long-range
interactions are turned off, and only i+1 or i+2 interactions are allowed. In other
words, only nearest neighbors or next-nearest neighbors can interact, but all the
other interactions are turned off. This first of its kind simulation will require

significant changes in the algorithm computing the trajectories of individual
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atoms, and will also have to include a routine to address the excluded volume
issue. Nonetheless, the results from this simulation will complement the ones
discussed in point # 1. These results will give us information about how much of
the overall dynamics are due to the long-range interactions. In addition, this study
will also provide a good model for the unfolded state of proteins, and can be used
to compare results with experiments such as small angle x-ray scattering (SAXS)
experiments that measure the radius of gyration.

3. Finally, the above mentioned simulations can help us answer the question about
the dependence of position in oveall dynamics, i.e. whether the residue at the end
of the protein is more dynamic than the residues in the center or not. This question
will benefit from trajectories obtained by both using long range interactions and
trajectories that ignore long range interactions. Such information will also be
useful in fine-tuning programs that are not based on atomistic dynamics such as
the FM.

These results will highlight the nature of long-range interactions in protein folding

and protein-protein interactions and will help in developing a better model for protein

folding.

FF optimization for dynamics

Most the above mentioned goals for future research will utilize the state of the art
algorithm to compute the atom trajectories using implicit solvent and a fast LD algorithm.
These results, however, will only be meaningful if there is a consistent force field

available, since running a simulation with all force fields to see consistency among them
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is time consuming, and often not practical. Therefore, there is a need for a consistent FF
that is optimized for dynamics. This a multidimensional project that requires
collaboration with different groups such as ab-initio quantum theorists, experimentalists
carrying out NMR experiments to determine dynamics in solution and many other
researchers. Some of this work has already started where the hydrogen exchange rates of
a small 18 residue peptide E6ap will be measured experimentally and compared with
long time simulations. However, this will only give a part of the picture, as more
experiments on proteins with different native structure (and random coils) need to be
conducted to determine some of the relevant dynamics quantities. In addition, quantum
mechanical calculations on small peptides will be useful in determining the parameters
needed for a better force field. Above all, there need to be more tests on dynamics using
these FFs (such as the ones outlined in chapters 4 and 5) that will point out the regions
where there is a need for improvement.

It is my hope that one day, some graduate student, or a group of graduate students
will create or improve one of the current FFs so that it is optimized for dynamics and thus

will decrease the gap that exists between theory and experiment today.



APPENDIX 1. PLOTTING RAMA MAPS

(*Load the appropriate packagex)
<< Graphics 'MiltiplelistPlot " ; << Graphics Graphics™;
<< Statistics DataManipulation” << Graphics Graphics3D";

(+*Import the Ramachandran files from the command "property” in TINKER ;
Here the Rama files happen to be in the directory c:\cap *)

a1 = Import["c:/cap/rama-ala-amber"”, "Table"];
ap = Import["c:/cap/rama-ala-96", "Table"];

as = Import["c:/cap/rama-ala-garcia"”, "Table"];
ay = Import["c:/cap/rama-ala-ch", "Table"];

a5 = Import["c:/cap/rama-ala-opls", "Table"];

ag = Import[ "c:/cap/rama-ala-oplsaa”, "Table"];
a7 = Import["c:/cap/rama-ala-oplsaal"”, "Table"];

(xFor locp going through all the imported Rama coordinatessx)

Foria=1, a< 8, a++, {
i=1;

(*For loocp starting at 2 since we are locking at the populations of
the center residue; for 15ns for each residue, we have 4500 points in allx)

For[i=2, 1< 4501, i++,
{

(*The list index d extracts the phi and psix)
di = {ax[[i, 311, al[i, J+11]1};

117
t=Table[d;, {i, 2, 4500}] ;
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(»use the command "bincounts" to bin the data,
here the binsize is 12 degrees each,
therefore the whole plot will be 30 x 30 binsx)
y = BinCounts(t, (-180, 180, 12}, {-180, 180, 12}];

(*The cammand listshadowplot3D gives a 3D Rama plot and the viewpoint
can be altered for the angle of view one is interested ins)

ListShadowPlot3D[y, ViewPoint- {-.2, -1.5, .39}, Boxed- False];}!

(*The plot is plotted using G-A-96«)



APPENDIX 2. PLOTTING LTM PLOTS

(»importing the rama files for the 20 amino acid cambinationss)
a; = Import["c:/axag/rama-a-ala-ag", "Table"];
az = Import|["c:/axag/rama-a-asn-ag", "Table"];
a3z = Import["c:/axag/rama-a-cys-ag", "Table"];
a4 = Import["c:/axag/rama-a-val-ag", "Table"];
as = Import|["c:/axag/rama-a-lys-ag", "Table"];
ag = Import["c:/axag/rama-a-glu-ag”, "Table"];
ay = Import["c: /axag/rama-a-tyr-ag”", "Table"];
ag = Import["c:/axag/rama-a-trp-ag”, "Table"];
ag = Import|["c:/axag/rama-a-ser-ag'', "Table"];
ayg = Import["c:/axag/rama-a-asp-ag", "Table"];
a;; = Import["c:/axag/rama-a-ile-ag", "Table"];
a2 = Import["c:/axag/rama-a-met-ag", "Table"];
a3 = Import["c:/axag/rama-a-phe-ag", "Table"];
ay4 = Import["c:/axag/rama-a-thr-ag", "Table"];
a5 = Import["c:/axag/rama-a-his-ag", "Table"];
a6 = Import|"c:/axag/rama-a-pro-ag", "Table"];
ay7 = Import["c:/axag/rama-a~-gln-ag", "Table"];
ajg = Import['c:/axag/rama-a-arg-ag", "Table"];
ajg = Import|["c:/axag/rama-a-leu-ag", "Table"];
ap = Tmport| "c:/axag/rama-a-gly-ag", "Table"];
(+loading the graphics packages+)

<< Graphics MultipleListPlot’ ; << Graphics Graphics";
(»for loop to run through all 20 amino acidsx)
Foria=1, a<2l, a++, {

(»the index j is used to tell the processor where to lock for the phi
(J=1) or psi (j=1+1) value )
ij=1;
(xFor loop to look at the center resdiue, i.e. residue # 2,
residue 1 corresponds to line 1, residue 2 to line 2, residue 3 to line 3,
and residue 1 to line 4 etc). The loop runs fram line 2 to line
4500 in multiples of 3, since there are 1500 data points
per residuex)
For[{i=2,1< 4501, s; =0;
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(»which loop to define basins;
s; is used to say which basin it corresponds to. the value of s; is
between 0 and 1, since the command raster for LM
can only recognize a value between 0 and 1. The different basins
correspond to different values,
thus different colors. The first is helical basin with value 0.3 and
has green color, the second is PP-II with value 0.7 and has a blue color,
the third is extended basin with value 1 and has a red color,
and rest everything is "other basins" with a vlue of 0.1 and a dark yellow colors)

{Which[

(-130 s a,[[i, §+1]] s 406&-180< a [[i, j]] < -30), 83 = 0.3,

(-104 < a,[[i, j]1 < -30&870 sa,[[i, j+1]] < 180) v
(-104 <a,[[i, 311 < -30&&-180< a,[[i, j+1]] s-160), s; = .7,

(-180 s &g [[i, §11 s -1166&6 70 s ag [[i, j+1]] s 180) v
(-180 <a,[[i, §11 < -11666-180 < a,[[i, j+1]] <-160),
si=1l

(-180 < &, [[i, J1] < -1206&-140 5 a,[[i, j+1]] sO) Vv
(150 < a,[[i, §1] 180 &&-140< a,[[i, j+1]] s -10), s; = .1,

(05 a,[[i, §1] <100 &&-180 < a,[[i, j+1]] s -140) v
(05 ag[[i, 311 <100 &&140 < ag[[i, j+1]] <180), s; = 0.1,

(35.0< a,[[1, J]] <100&&-50<a,[[1, J+1]]1<145) Vv
(0sa[[i, J11 £35.0&80< a,[[i, j+1]] <55), s;=0.1,

(100< a,[[i, j]1 <150&&-180<a,[[1i, §J+1]]1<10) Vv
(100s a,[[i, §]]1 <s150&&30< a,{[i, j+1]1] <180), s; =0.1,

(40 < a,[[i, J]1 <100 &&-140< a,[[1, j+11] <-50) Vv
(0<sa,[[i, j]] <40&&-140<a,[[i, j+1]]} s -105)V
(35.0<a,[[1, j]1] <45.0&&-140<a,[[i, J+1]] <-50) Vv
(15.0<a,[[i, j]1]1 <40&&-110<3a,[[i, jJ+1]] <-40), s;=0.1];
i=i+3;

Y17
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(»putting everything in a table formsx)
d, = Table[s;, {j, 2, 4500, 3}]1;

317

(»using raster to display an LT plot; and colors defined by
mathematica system huex)

x1 = Table[d,, {a, 1, 20}];

Show [Graphics[Raster[x1l, ColorFunction- Hue]]];



APPENDIX 3. CALCULATION OF CORRELATED ENTROPY

(#Load the packagesx)
<< Graphics 'MultiplelistPlot’; << Graphics Graphics;
<< Statistics DataManipulation” << Graphics Graphics3D" ;

(*Import the all the files with Rama coordinatess)
a; = Import["c:/aetn/rama-aetn-garcia”, "Table"];
as = Import|['c:/aetn/rama-aetn-charmm", "Table"];
as = Import["c:/aetn/rama-aetn-op", "Table"];

a4 = Import["c:/aetn/rama-aetn-oplsaal"”, "Table"] ;

(*ALGORITHM FOR CALCULATION OF CORRELATED ENTROPY*)
(»The for loop goes over all the 4 FF files importeds)
Forfa=1, a<5, a++, {

j=1;

(*The total points for each residue are 22ns and since there are
four residues, the total number of points is 8800x)
For[i=1,1<8800,i=1+4,
{
di={(a.[[1+2, J]1], al[i+2, J+1]1], @a[[i+3, 1], a[[i+3, J+1]11};
I3

tl = Table[d;, {i, 1, 8800, 4}];

(*2 Dimensional bin counting to make a 4D Rama plot ;
each axis has 30 bins, therefore the total size is 30 x 30 x 30 x 30«)

y= BinCounts([t1, {-180, 180, 12}, {-180, 180, 12}, {-180, 180, 12},
{-180, 180, 123}];

Forii=1, i< 31, i++,
{For[j=1, j< 31, j++,
{For(k=1, k<31, k++,
{For[l=1, 1<31, 1++,

163



164

(+»If the bin in the 4D plot has no member, the entropy is
zero, otherwise entropy is calculated by the formula
below with nommalization due to the mmber of bins
and the total nunber of points collected by ID simulations)

{mJ.Ch[Y[[l, jr kr l]] == or trop21= ol Y[[ll jl kr 1]] # 0,
trop2; = N[-2* (((Y[[L, J, k, 1]]) / (2200)) =
Log[ (810000 y[[i, J, k, 111) / (2200)])11;

(»incrementing the valuessx)
trop2, = 0;
trop2) = trop2; + trop2; 1 ;
trop3y = trop2; ;
I3
trop3p =0;
trop3y = trop3y + trop3x.1;
tropd; = trop3k;
i3
trop4y =0;
tropd; = tropd; + tropds.y ;
trop5; = tropd;;
317315

(»total entropy over all the bins in the 4D rama plots)
Sq = Sum[trop5;, {i, 1, 30}];

(*Printing the correlated entropy valuesx)

Print[s,];

1



APPENDIX 4. CALCULATION OF BACKBONE ENTROPY

(*ALGORITHM TO CALCUIATE THE ENTROPY OF A SINGLE RESIDUE;

SAME ALGORITHM TO CALCULATE ENTROPY OF RESIDUE 1, 2,

3 OR N IN THE PEPTIDEx)

(*a goes fram 1 to 5 to calculate for all the four force fields
mentioned above in the import commands)

For[a=1, a< 5, a++, {
j=1;
(»calculating the entropy of the fourth residue in the peptidex)

Forfi=4,1<8801,i=1i+4,
{
di ={a.[[1, J1], axl[i, J+111};
i
t= Table[d;, {i, 4, 8800, 4}];
y = BinCounts[t, {-180, 180, 12}, {-180, 180, 12}];
(*For loops for summation over 2D Rama map, only phi and psix)
For[k=1, k<31, k++,

{For[m=1, m< 31, m++,
{
(*Which command to calculate entropy; if the bin has no menber,
entropy is zero, otherwise its given by the formuilax)

Which[y[[k, m]] == 0, enty =0, y[[k, m]] # O,
ent, = N[-2x (((y[[k, m]]) / (2200)) * Log[ (900*y[[k, m]]) / (2200)1)11;
ento=0;
enty =enty + enty.;;
tropx =entn 11/

7

(»sumning the entropy fram each binx)
Sy = Sum[tropk, {k, 1, 30}}1;

(*Printing the value of the entropyx)
Print[(s,) ]’

1;
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APPENDIX S. CALCULATION OF CORRELATION FUNCTION

(» Loading the appropriate packages and importing the filess)

<< Graphics 'MultipleListPlot’ ; << Graphics Graphics';
<< Statistics DataManipulation’ << Graphics Graphics3D";
aj; = Import["c:/aaa/rama-a-ala-a-amber-long", "Table"];
az = Import|["c:/aaa/rama-a-ala-a-96-long", "Table"];
as = Import["c:/aaa/rama-a-ala-a-garcia-long", "Table"];
a4 = Inmport["c:/aaa/rama-a-ala-a-ch-long", "Table"];
as = Import['c:/aaa/rama-a-ala-a-opls-long", "Table"];
as = Import["c:/aaa/rama-a-ala-a-oplsaa-long", "Table"];
ay = Import["c:/aaa/rama-a-ala-a-oplsaal-long”, "Table"];
For[a=1, a<8, a++, {

j =1;

For[i=2,1< 13501, s; =0,
{Which|
(-130<a,[[i, j+1]1] <40&&-180<a,[[i, jJ]11=<-30),s;=1,

(-104 <a,[[1i, J]1]1 <-30&&70<a,[[1, J+1]]1<180) vV
(104 <a,[[1i, jJ]1]1 < -30&&-180s a,[[1, J+1]] <-160), s; = O,

(-180 s a,[[i, §]1] < -1166670 s a,[[i, j+1]] < 180) v
(-180 sa,[[i, §]]1 < -1166&-180< a,[[i, j+1]] < -160),

Si=0,

(-180 sa,[[i, §1]1 < -1208&-140< a,[[i, j+1]1 sO0) Vv
(150 < a,[[i, j]] <180 &&-140< a,[[i, j+1]] s -10), s; =0,

(0<a,[[1, j1] <100&&-180<a,[[1, j+1]] <-140) Vv

(0s a,[[i, j1] s100&&140< a,[[i, j+1]] <180), s;=0,
(35.0<a,[[1, J]] s100&&-50< a,[[i, J+1]] s145) Vv
(Osa,[[1, J]]) s35.0&&0<a,[[1, J+1]] <55),s:=0,
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(100 < aq[[i, j1] 5150 &&-180s a,[[i, j+1]]1 s 10) V

(100 < aq[[i, 1] <150 8830 < a,[[i, j+1]] <180), s;=0,

(40< a,[[1, j]] <100&&-140< a,[[i, J+1]1] <-50)V
(Osa,[[i, jJ]]1 s40&&-140<a,[[i, j+1]] <-105) Vv
(35.0<a,[[1, J1] <45.06&-140<a,[[1, jJ+1]]1<-50) Vv
(15.0< a,[[1, j1] <40&&-110<3a,[[1i, J+1]]1 <-40), s;=0.];

i=1i+3;
1

d, = Table[s;, {j, 902, 13500, 3}];
m = Count[d,, 1]; y. = N[m/4500];

For[q= 500, q< 4000, g++,
{
For [t=q, t< (q+85.0), t++,
{
corry = N[ (d« [[t]]) * (d:[[q]]) ]/
3
ttq = Table[corre, {t, q, q+84.0}];
3
Cta =N[Sum[tfq, {ql 500, 3999}]] ;

s
(» exporting the files in .dat format to be used in other graphical software
such as originw)
Export[ "corr-5nb-garcia.dat", cts] ; Export["corr-5nb-anber.dat", cty];
Export["corr-5nb-96.dat", ctz] ; Export["corr-5nb-opls.dat"”, cts] ;
Export["corr-5nb-charmm.dat", cty] ; Export["corr-5nb-opaa.dat", ctg] ;
Export["corr-5nb-opal.dat", cty] ;



APPENDIX 6. CALCULATION OF HOPPING RATES

(*SUBROUTINE TO CALCULATE THE NUMBER OF HOPS PER nsx)

(»see the appendices above to calculate the basin occupations;
s;=1 for pp-II, s;=2 for extended, s;=3 for helix and s;=4 for other basins;x)

(» d puts the values of s in a table, for residue 2 in a dipeptide;
the total trajectory is 15ns therefore the index goes upto 3000 points
i.e. 1500 points for each residuex)

d=Table[s;, {j, 2, 3000, 2}];
(*index p represents each ns, while q counts the mumber of hops in that nsx)

For[p=1, p< 1501, p=p+100, {
For[q= p, 9< (p+100), q++, {
d[[o11=0;

bp1=0;
(»defines a hop, i.e. if the value of d in the instance before

is not egaul to the value of d now, it is a hop, if its the same,
there is no hopw)

If[(A[[gl] ==d[[(g-1)]]), by=0, by=1];
by=by+ by

hopy = by;

}

1;
17
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(*x gives the table for all the hop values;
one can use a barchart to see the hopping per ns»)

x = Table[hop,, {p, 1, 1500, 100}] ;
BarChart[x, Ticks- {{1, 5, 10, 15, 20}, {0, 10, 20, 30, 40, 50, 60}}1;
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