Characterization of a Novel Nanoporous Organosilicate Material for its Potential Use in Biosensor Platforms

Jasenka Memisevic¹, Venumadhav Korampally², Shubhra Gangopadhyay², Sheila Grant¹

¹-Department of Biological Engineering, University of Missouri
²- Department of Electrical and Computer Engineering, University of Missouri
Outline

• Background

• Experimental methods

• Results

• Conclusions and future work
Biosensor Background

- Antibody-based bacterial detection
- Fluorescent tag signals presence of analyte
- LCW - low refractive index channels
- Large surface area
 - increased immobilization → lower detection limit
Background

• Nanoporous Organosilicate
 – Proprietary formulation
 – Ultra low RI dielectric
 – Nanopores (20nm), low RI, methyl groups on surface

• Possible biosensor platform
 – Surface modification necessary
Experimental Methods

• Surface modifications performed:
 – Silanization
 • MTS (3-mercaptopropyltrimethoxysilane)
 – Crosslinking
 • GMBS (N-succinimidyld 4-maleimidobutyrate)
 – Protein immobilization
 • Protein A/AF546
Experimental Methods

- Surface characterization performed:
 - Fluorescence \(\{ \) Control: Si wafer without NPO
 - ATR FT-IR
 - Ellipsometry \(\} \) Control: unmodified NPO
 - SEM

Mizzou Engineering | Engineering.Missouri.edu
Results: Fluorescence

Effect of NPO on Fluorescence

Wavelength (nm)

Intensity (cps)

Fluorescence without NPO

with NPO

without NPO
Results: ATR FT-IR

Si peaks

Absorbance

Wavenumber (1/cm)

NPO
modified NPO
Results: ATR FT-IR

![Graph showing ATR FT-IR results with wavenumber (1/cm) on the x-axis and absorbance on the y-axis. The graph compares NPO and modified NPO samples.]

- Absorbance range: 0.000 to 0.020
- Wavenumber range: 4000 to 2500
- NPO
- Modified NPO
Results: Ellipsometry

• NPO refractive index
 \[= 1.17\]

• Modified NPO refractive index
 \[= 1.19\]
Results: SEM

Before

After
Results: SEM

Before

After
Conclusions

• NPO as a biosensor platform
 – RI remains low
 • LCW biosensors
 – Fluorescence enhancement
 – Modification preserves pore structure
 – Chemical structure unchanged

• Future work - antibody based LCW biosensor for detection of bacteria and viruses
Acknowledgements

• National Honor Society, Graduate Research Fellowship Program

• Department of the Army, Award Number: 0012436

• Biosensors and Biomaterias Lab, Department of Biological Engineering, University of Missouri