20.109 Synthetic Biology Module Lecture #3

Ron Weiss

Department of Biological Engineering

MIT

Commercial DNA Synthesis Foundries

Rob Carlson, University of Washington; Gerald Epstein and Anne Yu, CSIS

18 July 05. Method: Rough Google search. Thus not a thorough survey. No academic facilities.

Data Source: Rob Carlson, U of W, Seattle www.synthesis.cc, rob@synthesis.cc

DNA synthesis & genetic circuits

DNA synthesis & genetic circuits

A collection of reusable parts

SN74LS14

Schmitt Triggers Dual Gate/Hex Inverter

The SN74LS14 contains logic gates/inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. Additionally, they have greater noise margin than conventional inverters.

Each circuit contains a Schmitt rigger followed by a Darlington level shifter and a phase splitter driving a TTL totem pole output. The Schmitt rigger uses positive feedback to effectively speed-up slow input transitions, and provide different input threshold voltages for positive and negative-going mansitions. This hysteresis between the positive-going and negative-going input thresholds (typically 300 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations.

LOGIC AND CONNECTION DIAGRAMS

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit
Voc	Supply Voltage	4.75	5.0	5.25	٧
TA	Operating Ambient Temperature Range	0	25	70	°C
Іон	Output Current - High	\top		-0.4	mA
laL	Output Current - Low	1		8.0	mA

ON Semiconductor

Formerly a Division of Motor http://onsemi.com

> LOW POWER SCHOTTKY

N SUFFI

D SUFFIX

ORDERING INFORMATION

Device	Package	Shipping	
SN74LS14N	14 Pin DIP	2000 Units/Box	
SN74LS14D	14 Pin	2500/Tape & Reel	

Registry of Standard **Biological Parts**

Go Search

Log in / create account

The Registry of Standard Biological Parts has moved from parts mit.edu to partsregistry.org. References to the Registry at parts.mit.edu will be automatically redirected to the new site.

Browse Parts by Type

Featured Parts

Help & Documentation

Users & Groups

Apply here for a Registry account

Registry News

- We are considering releasing the Registry's DNA Repository and Library system to the Registry labs and IGEM teams. This is the system we use to keep track of parts in our freezer boxes and plates. Please check it out and let us know what you think. - June 2, 2008
- A bug that kept Internet Explorer users from seeing the Part menu on Part pages has been fixed. Now, if you go to a part, you will see menu choices for hard information and physical location. - June 2, 2008
- The sequence and features for all parts are available through DAS, the Distributed Annotation System. Learn more here - May 26, 2008
- Changes to the Registry software are underway. Check it out!
- We have a new tutorial for starting teams in the Help section
- We are starting an editorial board for promoting well-defined and useful parts to BioBrick™ part status. To join this effort check the BioBrick™ Part Program
- There is a problem with using primers VR and VF2 to PCR parts containing B0015 or B0010.
- News archive...

Report any bugs here | Request new features here | See new features here | See old bugs, requests, and features here

Registry Tools

Add a part

Measurement

& DNA Repositories

Sequence Analysis

Send Parts to the Registry

Parts From Groups

- 2008 iGEM Teams
- = 2007 iGEM Teams
- = 2006 iGEM Teams
- 2005 iGEM Teams
- Parts by Lab

Registry Community

Frequently Asked Questions

■ To discuss how to measure the functions of these parts visit Characterization of Parts

Recent part changes

Recent changes

What links here

Printable version

Related changes Upload file

Permanent link

Special pages Privacy policy My preferences
Disclaimers

System elements: Lambda repressor (cl)

Bacteriophage λ

Lysis/Lysogeny

P_R and P_{RM} Promoters

The Promoters

Table 2.3. Lambda promoter sequences compared with the consensus promoter. The differences are shown in red.

Consensus T T G A C A - 17bp - T A T A A T
$$\lambda P_{\rm RM}$$
 T A G A T A - 17bp - T A G A T T $\lambda P_{\rm R}$ T T G A C T - 17bp - G A T A A T

Repressor Positive and Negative Control

Cooperative Binding

