Overview of Module 3, Part I

Module 3, Lecture 6

20.109 Spring 2008

Dr. Agi Stachowiak
Topics for Lecture 6

• First, a presentation from Atissa Banuazizi
• Review of big picture:
 – brief module 3 overview
 – cartilage tissue engineering concepts
• What does each day of module 3 contribute?
 (start today, finish next time)
Overall goals of Module 3

• Design experiment to study effects of local environment on cell de-differentiation
 – cell: primary chondrocytes, \textit{in vitro} culture
 – local environment: material properties, cell density, culture medium composition
 – effects: viability, morphology, collagen II:I ratio

• Grander purpose: discovering factors that maintain chondrocyte phenotype has utility for cartilage tissue engineering
 – conditions for \textit{ex vivo} cell expansion
 – conditions for bulk cartilage production
Therapies for damaged tissue

• All tissues have limited regeneration
 – e.g., skin: shallow vs. deep cuts

• Replace with tissue graft
 – donor tissue: limited supply, immune response
 – autologous tissue: donor site damage

• Replace with permanent synthetic substitute (not strictly speaking TE)
 – inflammatory response (chronic)
 – mis-match with natural tissue properties
 – multiple replacements/surgeries

• A new strategy: promote regeneration of ~native tissue = tissue engineering
Potential components for cartilage TE

scaffold/matrix
- usually degradable, porous
- hydrogel (e.g., alginate)

soluble factors
- TGF, BMP, others

cells
- stem cells, or
- chondrocytes

integrated implantable
or injectable device
Roles of components in cartilage TE

• Cells
 – contribute to tissue reconstruction (secrete matrix)

• Cytokines
 – stimulate chondrocyte production of fresh matrix
 – simulate stem cell differentiation to chondrocytes
 – attract stem cells to wound site (chemokines)

• Scaffold
 – retain cells and cytokines in needed location
 – provide mechanical support and structure for new tissue

• Any component may be engineered!
 – cells: genetically engineered to express a needed protein
 – cytokine proteins: engineered to have longer half-lives
 – scaffold: engineered to have specific chemical, mechanical, and biological properties that mimic cartilage
 e.g., cell-adhesive peptide sequences
Cartilage structure and growth

• Cartilage structure
 – chondrocytes make collagen (CN), proteoglycans (PG)
 – CN forms covalently cross-linked fibers
 – PG promote influx of water/ions

• Natural cartilage growth
 – very slow turnover of collagen in absence of damage
 – even if damaged, little new extracellular matrix forms
 – atypical wound healing partly because avascular
Cartilage replacement

• Specific requirements for replacement
 – sustain compressive loads (done by PG, water)
 – lubricate joint (done by PG, synovial fluid)
 – sustain tensile stresses (done by collagen)

• Ideal replacement has collagen/proteoglycan balance of native tissue
 – option 1: promote native tissue regeneration *in vivo*
 – option 2: grow native tissue-like construct *in vitro*, implant it
 – either option may involve cells and/or scaffold and/or cytokines

What can we learn from culture models?

- What cell/cytokine/scaffold/culture combinations stimulate or sustain the chondrocyte phenotype?
- Knowledge can feed into multiple kinds of therapies:

Cell transplantation therapy

1. Biopsy: a few chondrocytes
2. Inject many cells into patient
3. Grow fresh tissue *in vivo*

Cartilage replacement therapy

1. Put together cells, scaffold, cytokines
2. Grow cartilage-like tissue *in vitro*
3. Directly implant into patient

... and many other potential alternatives!