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Since things in motion sooner catch the eye
Than what not stirs.

William Shakespeare, Troilus and Cressida

Mechanics is the branch of physics that is concerned with the action of forces
on matter. Tissue engineers can encounter mechanics in various settings. Often,
the mechanical properties of replacement biological materials must replicate
the normal tissue: for example, there is limited use for a tissue-engineered bone
that cannot support the load encountered by its natural counterpart. In addi-
won, the mechanical properties of cells and cell-cell adhesions can determine
the architecture of a tissue during development. This phenomenon can some-
umes be exploited, since the final form of engineered tissues depends on the
Farces encountered during assembly and maturation. Finally, the mechanics of
“adividual cells—and the molecular interactions that restrain cells—are impor-
t2nt determinants of cell growth, movement, and function within an organism.
This chapter introduces the basic elements of mechanics applied to bio-
Jogical systems. Some examples of biomechanical principles that appear to be
portant for tissue engineering are also provided. For further reading, com-
-hensive treatments of various aspects of biomechanics are also available
3].

5.1 Elementary Solid Mechanics

% 1.1 Elastic Deformation and Young’s Modulus

»nsider an elongated object—for example, a segment of a biological tissue or
synthetic biomaterial—that is fixed at one end and suddenly exposed to a
stant applied load (Figure 5.1). The material will change or deform in
snonse to the load. For some materials, the deformation is instantaneous .
under conditions of low loading, deformation varies linearly with the
snitude of the applied force:

a[—_—— %] = Ee (5-1)
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Stress, O

Strain, €

Figure 5.1. Typical characteristics of an elastic material. (a) A uniform material is
subjected to an applied load. (b) Typical response of the material to tensile loads of
increasing magnitude.

where o is the applied stress and ¢ is the resulting strain. This relationship is
called Hooke’s law, after the British physicist Robert Hooke, and it describes
the behavior of many elastic materials, such as springs, which deform linearly
upon loading and recover their original shape upon removal of the load. The
Young’s modulus or tensile elastic modulus, E, is a property of the material;
some typical values are provided in Table 5.1. Not all elastic materials obey
Hooke’s law (for example, rubber does not); some materials will recover their
original shape, but strain is not linearly related to stress. Fortunately, many
interesting materials do follow Equation 5-1, particularly if the deformations
are small.

Materials become irreversibly altered if they are deformed beyond a critical
yield strain, or elastic limit, &,. (Many materials obey Hooke’s law for all
strains less than the elastic limit; other materials obey Hooke’s law over a
more limited range, called the proportional limit, and continue to deform
elastically, but not linearly, up to the yield stress.) This state occurs at a
characteristic yield stress o,. Further strain of the material results in plastic
(rather than elastic) deformation; an irreversible change in the material
prevents it from recovering its original state after removal of the applied
load. The largest stress that a material can endure without failing (that is,
breaking or fracturing) is called the ultimate or failure stress, of.

It is convenient to analyze deformations with respect to excursions on the
stress—strain plane (Figure 5.2). If an elastic material is subjected to a load
producing strain &4, which is less than the yield strain g, it will return to its
original shape (after removal of the load) by following the same locus of stress—
strain coordinates that characterized its deformation. If, however, the material
is deformed beyond the elastic limit, to strain ep for example, the material will
not recover completely. Generally, the relaxation of the material occurs along a

Table 5.1
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Mechanical Properties of Commonly Encountered Biological Materials
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Materials

E
(MPa)

Strength,
Ultimate Stress
(MPa)

Poisson’s Ratio

Biological Materials
Bone—long bone

Bone—cancellous
Bone—vertebrae
Bone—skull
Cartilage
Articular cartilage

Human knee menisci
Brain

Brain tissue—gray matter
Brain tissue—white matter
Tendon

Tendon—Tendo achillis
Ligament

Aorta

Human small artery
Elastin

Isolated collagen fibers
Formalin-fixed myocardium
Skin

Fibroblast-populated matrix
Collagen sponge

Polymers

Polyimides

Polyester

Polystyrene

Poly(methyl methacrylate)
Polyethylene—high density
Polytetrafluoroethylene
Polyethylene—low density

Metals

Stainless steel (316)
Titanium
Aluminum

Others

Silicon

Aluminum oxide (Al,03)
Magnesium oxide (MgO)
Fused silica (Si0,)
Concrete

Wood

15,000 to 30,000

90 to 500
100 to 300
6,500

1 to 10 in tension
1 in compression
70 to 150

0.067

0.005

0.014

1,000 to 2,000
375

0.1to4

0.6

1,000

101

0.1to2
(phase I)

0.08 to 0.8
0.017 to 0.028

3,000 to 5,000
1,000 to 5,000
2,300 to 3,300
2,000 to 3,000
1,100

400 to 600
200 to 500

210,000
107,000
69,000

150,000
393,000
225,000
73,000
2,800
140

130 to 220 in
compression
80 to 150 in
tension

70 in shear
2to 5

5
9 to 40

50 to 100

50 to 100
0.3t00.8

50

1 to 20

450 in tension

4.5 in compression
3.6

0.22

0.48

Compiled from [21, 24, 29).
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P
¥ e compliant

Figure 5.2. Typical characteristics of an clastic material. (a) Deformation in
response to applied load for an clastic and a non-clastic material. (b) The energy
stored in a material during deformation can be determined by integrating under the
stress-strain curve.

line that is parallel to the initial deformation (that is, with slope equal to E, if it
is a linear elastic solid).

Energy is added to a material when it is stressed; this mechanical energy,
called strain energy, is stored in the material. For an elastic material, the strain
energy Uy, is determined from

1
UO = 508 (5-2)

which can be determined graphically from the area under the stress—strain
curve. Elastic elongation and relaxation has no net energy cost; all of the
energy stored in the material during elongation is returned during relaxation.
But energy is lost when deformation goes beyond the elastic limit. The net
loss of energy can be calculated from the difference between the strain energy
required to accomplish the elongation and the energy recovered after
removal of the load (net energy loss can be determined graphically, as
well). The ability to store energy can be an important material property.
The potential of a material for energy storage can be represented by the
strain energy at failure. Brittle materials have a low U, at fracture, whereas
compliant materials, which deform readily, can store substantial amounts of

strain energy.

5.1.2 Poisson’s Ratio

In the examples developed in the previous section, a stress was applied in a
single direction and the response (or strain) in that same direction was observed
and analyzed. Most materials will elongate when stress is applied in the axial
direction, but the cross-sectional area will also decrease (Figure 5.3). The rela-
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Figure 5.3. Deformation of materials under stress. (a) The extent of deformation of
a material in directions other than the direction of force application is determined by
Poisson’s ratio. (b) Materials also deform when exposed to a shearing stress. (c)
Bending deformation occurs for elongated or slender bodies. (d) Materials can
deform when subjected to torsional forces.

tive magnitude of strains experienced in two dimensions is given by Poisson’s
ratio, v,,, which is also a property of the material:

Vyy = —8— (5-3)

In the simple example shown in Figure 5.1, the cross-sectional area decreases
continuously with loading. Stresses are usually defined on the basis of the
unstressed area and therefore underestimate the actual stress in the material.
This discrepancy between “‘stress” (which is defined for convenience) and the
true stress in the material accounts for the decrease in “stress” near the fracture
point. The true stress is increasing up to the point of fracture but the rapid
decrease in cross-sectional area that precedes failure leads to the apparent
decrease in “stress”.

5.1.3 Quantifying Deformations in Other Geometries

Stress that is applied to a material tangentially causes shear deformation
(Figure 5.3). Shear stress, 7, is defined per area of the surface on which it is
applied. Since the deformation in shear is a function of distance from the plane
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on which the shear is applied, shear strain (g,) is measured by the angular
deformation of the material:

3
g =—=tany (5-4)
h
For small deformations, that is, y near 0 so that tan y =~ y, a shear modulus (G)
can be defined:

=Gy (5-5)

Bending deformations also are important, particularly in elongated objects that
bear tangential loads (Figure 5.3). If a force F is applied at the end of a
symmetrical beam of length L, and the material is isotropic and linearly elastic,
the deflection due to bending is
FL’
§=—— 5-6
3EI (5-6)
where E is Young’s modulus and / is moment of inertia for the cross-sectional
-area. The stress within the material depends on the distance from the central
axis, y:
My
o=+ | 57
1
where M is the bending moment (equal to FL at the end of the beam in Figure
5.3). If M > 0, the negative sign indicates that the stress is compressive for y >
0 and tensile for y < 0. Torsional forces also produce stress within materials.
The shear stress due to torsion is

T=—7 (5-8)

where J is the radial moment of inertia and T is the torque.

5.2 Elementary Fluid Mechanics

5.2.1 Basics and Definitions

A fluid deforms continuously under the action of a shearing stress. Two classes
of fluids can be defined: incompressible fluids, in which the density is constant;
and compressible fluids, in which the density (p) is a function of pressure. Most
liquids are incompressible at pressures near atmospheric; pure water has a
density of 999 kg/m® at 15°C and 993 kg/m* at 37°C; blood has a density of
1,060 kg/m®. Gases are much less dense than liquids and cannot always be
assumed incompressible; air has a density of 1.22 kg/m® at 15°C and 1atm.
When a fluid is at rest—that is, in the absence of shearing stresses—the
fluid is said to be in hydrostatic equilibrium. A force balance on an element ofa
stationary incompressible fluid (Figure 5.4) yields the following relationship:
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Figure 5.4. Force balance on a volume element in a fluid at rest. Forces acting in
the z-direction (parallel to gravitational force) are shown.

dp
L= (5-9)

where g is the acceleration due to gravity (9.80665m/s?). This differential
equation can be used to calculate the difference in pressure between any two
spatial locations in a stationary fluid. If the fluid is incompressible, the
expression must be integrated with density as a function of position.

Viscosity is a material property related to the resistance to “flow” or
deformation of a fluid. Consider a fluid entrapped between two parallel plates
(Figure 5.5). If the bottom plate is held stationary and the top plate is moved to
the right with a constant velocity v, by application of a tangential force F, the
fluid within the gap will be subjected to a shearing stress that produces fluid
motion. The force applied to the plate is uniformly transmitted over the entire
area of plate/fluid contact; therefore, the tangential shear stress is equal to
F/A, where A is the cross-sectional area of the plate. Experimentally, the
shear stress is proportional to the velocity of the upper plate v, and the gap
distance A:

Vo i
Toc (5-10)

More precisely, the shear stress is equal to a constant multipled by the first
derivative of the velocity with respect to distance normal to the moving plate:

Tay = N (5-11)

where t,, is the viscous shear stress in the x-direction exerted on a fluid surface
of constant y. This quantity, t,,, is also the viscous flux of x-momentum (pv,)
in the y-direction. The negative sign must be included because viscosity has a
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Figure 5.5. Viscosity in a fluid between two parallel plates in relative motion. (a)
Schematic diagram showing movement of the upper plate and velocity profile within
the fluid. (b) Variation of shear rate with applied force.

positive value (n > 0) and the momentum flux is positive in the direction of
decreasing velocity.

The shear stress and the velocity gradient (also called the shear rate) are
proportional, with the constant of proportionality —n, where 7 is the viscosity
of the fluid. For some fluids, Equation 5-11 holds over a wide range of shear
rates with constant 7 (as in Figure 5.5b); these are called Newtonian fluids. The
value of the viscosity 1 is a property of the fluid being a function of fluid
phase composition, temperature, and pressure. Water is a Newtonian fluid;
at body temperature (37°C) the viscosity of water is 0.75¢cp (centipoise;
lcp = 0.01 g/em-s) and that of plasma is 1.2¢cp. Whole blood has a viscosity
of 3.0¢p, provided that the shear rate is sufficiently high so that red cell aggre-
gates do not form (see discussion on blood cell aggregation in Chapter 8). At
lower shear rates, the viscosity of blood is a function of shear rate and blood
composition.

5.2.2 Kinematics of Fluid Flow

One is often interested in knowing the velocity of flow within a fluid subjected
to shearing stresses. Fluid motion can be described through the use of math-
ematical expressions of the basic principles of conservation of mass, momen-
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tum, and energy. These conservation equations can be derived for a particular
system of interest or, alternately, can be developed generally and then applied
to a particular system. The latter approach requires consideration of a char-
acteristic infinitesimal volume element; Figure 5.6 illustrates the conservation
of total mass in a rectangular coordinate system.

The rate of change in mass of the volume element is equal to the net rate of
mass addition to the volume element, which can only occur by fluid flow
through one of the six boundaries:

9
g(p)AxAyAz = PUx|xAyAZ — pvyl iy axAVAZ + pv, |, AxAz
(5-12)
- pUy!y+AyAXAZ T+ pUzIzAXAy - pvzlz+AzAXAy

Dividing each term by the volume yields

a_p = p'Ux'xAyAZ " pvx'x+AxAyAZ + pvylyAXAZ - pvyly+AyAxAZ
ot AxAyAz AxAyAz

+ p'Uz'zAXAy . pvz|z+AzAxAy
AxAyAz
(5-13)

In the limit, as the volume element becomes infinitesimal, the three terms on
the right-hand-side become partial derivatives:

dp _ [d(pvy) a(pvy) apv,)
a5 %] &1

which can be written in more compact notation as

z

vy |
y

X

Figure 5.6. Balance of total mass on a volume element within a fluid in motion,
illustrated for a rectangular coordinate system. The rate of mass flow through each
boundary of the volume element is determined from the local density and velocity
perpendicular to the boundary.
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ap =
A . -1
Py (pv) (5-15)
or expanded to allow inclusion of the substantial derivative of density:
Dp ap _ _
== = —pV. -16
D1 [ Tl ”] pYer (5-16)

In the special case of an incompressible fluid, the density is not a function of
time or position and the mass balance equation can be simplified:

0=V (5-17)

The conservation equation for momentum is somewhat more difficult to
obtain, but can be derived by a similar procedure (for more details, see [4, 5]):

Mpvy)  (pvyvy) Apv,vy) | Apv-vy) A Ty | 0T\ 0P
a % Ay ¢ & % ey e, ax B
(5-18)

Equation 5-18 gives the expression for conservation of momentum in the x-
direction: similar expressions are obtained in the y- and z-directions [4,5].
These three component expressions can be written as a single, more compact
vector expression:

a—(g’t—m:—Vp+pg—v-f~v.paﬁ (5-19)
To use this differential equation, we need a constitutive equation that relates
the individual elements of the stress tensor (?) to gradients in the velocity field.
This constitutive equation relates local rates of movement in the fluid (that is,
velocity) to local stress and therefore depends on the physical properties of the
fluid of interest. For a Newtonian fluid, the constitutive equation is

v, 2 [dv, dv, v
Txx=—277—5;+—77 v

37 0x 3y 0z
guy 2 [ov, dv, dv.

By = Ty 3"[ax By T 32]
D O . L
== TN Ty e

(5-20)
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For a Newtonian fluid, the equation for conservation of momentum
(Equations 5-19 and 5-20) reduces to

p%: —Vp 4+ Vi + pg (5-21)
The velocity field can be determined by solution of Equations 5-17 through
5-21 in certain situations. In the simple system illustrated in Figure 5.5, velocity
varies with position in the fluid, but velocity only occurs in the tangential
direction, v,, and is only a function of distance normal to the moving plate
y. Therefore, the conservation of mass equation (Equation 5-14) provides no
useful information in this system. Conservation of momentum does provide
interesting information; the equation for conservation of x-momentum (that is
the x-component of Equation 5-21) reduces to

dp dzvx
D= g ] e + g (5-22)

In most cases of interest for tissue engineering, the effect of gravity is small
relative to the pressure drop (alternately, depending on the orientation of the
parallel plates with respect to the gravitational field, the x-component of the
gravitational vector may be equal to zero); the third term on the right-hand
side of Equation 5-22 can therefore be neglected. Dropping the third term in -
Equation 5-22 requires that the other two terms exactly balance:

dp B dzvx
dx g2
But there is no hydrostatic pressure drop in the x-direction in this situation,
which leads to a simple solution for the functional form of the velocity profile:
vy =Ay+ B (5-24)

The values for the velocity in the x-direction are known at the boundaries vg at
y=0,v,=0and at y = H, v, = v,. Therefore, the constants 4 and B can be
evaluated:

(5-23)

vy = vy (%) (5-25)

This linear profile for velocity as a function of distance from the stationary
plate is shown in Figure 5.5.

5.2.3 Example: Flow Through a Cylindrical Tube

Consider an additional example of relevance to tissue engineering (Figure 5.7).
The formation of functional blood vessels within tissues is one of the funda-
mental problems of tissue engineering; blood flow through tissues is essential
for oxygen transport to cells within the tissue mass. Mechanically, blood ves-
sels in tissue serve as conduits for the flow of blood. Blood moves at varying
velocity through individual tissues within the body via an interconnected and
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Figure 5.7. Fluid flow through a blood vessel. (a) The development of vasculature example, if the prs
within a growing tissue is a key problem in tissue engineering. Adapted from a
drawing on the Carnegie Mellon University Bone Tissue Engineering Initiative P=p
website (http://www-2.cs.cmu.edu/People/tissue/tutorial.html). (b) The flow of blood h ]
through a capillary, vein, or artery can be modeled as an incompressible fluid then the solution 1
flowing through a cylindrical tube.
highly branched network of cylindrical vessels. Therefore, the flow of an Therefore, the val
incompressible fluid within a cylindrical vessel is of central importance to the Equation 5-28 can
biophysics of the circulatory system and to our understanding of vascular 4 on velocity:
tissue engineering.

Well-behaved flow through a cylindrical tube (Figure 5.7) occurs only v, <
in the axial direction (o = v.(r)k), where v. is a function of radial distance r )
from the tube centerline. The z-component of the conservation of momentum to yield
equation, Equation 5-21, in cylindrical coordinates, is

v, N . n Vg OV G .
it TP A W -2 Shie
Pl W% T e T ez
: e s [P 2 (5-26) This parabolic dep
V. O v, st
_ __P+ o r—') FRh FRA ] EY chargcterl-stlc. of H
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This equation can be simplified by the following assumptions, which apply measurements of p)
reasonably well to blood flows in most vessels in humans: and 1840.
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e steady flow (dv,/dt = 0);
e flow only in axial direction (v, = vy = 0);
e gravitational forces are negligible (g, = 0).

These assumptions can be used to simplify Equation 5-26:

op_ 10 (rav:

2= Tror '59 (520

The term on the left-hand side of Equation 5-27 (that is, the pressure gradient)
is only a function of z, whereas the term on the right-hand side (that is, the
second derivative of the velocity component in the z-direction with respect to r)
is only a function of r. These two terms can be equal only if they are both equal
to a constant, which we will temporarily call K. Therefore, Equation 5-27 can
be separated into two ordinary differential equations:

dp

dz

1d /[ dv,
7JQEJ-K
If the pressure drop over the length of the vessel is known, the value of the

constant K corresponding to this physical situation can be determined. For
example, if the pressures at the inlet and outlet of the vessel are known,

(5-28)

P =Do at z=0; P=rL at z=FL (5-29)
then the solution to the first part of Equation 5-28 is
P, — P
p=po+ ( - 0)2 (5-30)

Therefore, the value of K in this case is (P, — Py)/L. The second part of
Equation 5-28 can be solved, subject to the following boundary conditions
on velocity:

v,=0 at r=R; i9&: at  r=0 (5-31)
or
to yield
_(P-PPR (P
v, = T3 1 z (5-32)

This parabolic dependence of local velocity on radial position (Figure 5.8) is
characteristic of Hagen—Poiseuille flow (named in honor of Jean Leonard
Marie Poiseuille and Gotthilf Heinrich Ludwig Hagen). Poiseuille (a physiol-
ogist) and Hagen (an engineer) independently published the first systematic
measurements of pressure drop within flowing fluids in simple tubes in 1839
and 1840.
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Figure 5.8. Velocity profile through a cylindrical vessel. (a) The velocity varies with
the radial distance from the vessel centerline, as in Equation 5-37. (b) The overall
resistance of the vessel to flow is a strong function of the vessel radius.

Equation 5-32 can be integrated over the vessel cross-section to obtain an
overall rate of blood flow:

27 pR o 4
0= /o fo v.(r)rdrdd = @_8—5#— (5-33)

which provides—by analogy to the resistance of electrical circuits (AV = iQ2)—
the overall resistance of a cylindrical vessel to flow:

Ap 8nL

Q= T (5-34)
The resistance to flow is a strong function of vessel radius: € R™*. As blood
vessels become smaller the resistance to flow increases dramatically (Figure
5.8). One consequence of the branching pattern of blood vessels is that the
majority of the overall resistance to blood flow resides in the smallest vessels; in
the human circulatory system, the majority of the pressure drop (~80%)
oceurs in arterioles and capillaries. This natural consequence of the physics
of fluid flows is exploited in regulation of blood flow to organs of the body.
Local blood flow to a tissue is controlled by constriction and dilation of the
arterioles delivering blood to that tissue. Since the greatest overall resistance is
provided by arterioles, and because individual arterioles have muscular walls
which permit them to adjust their diameter, and therefore their resistance
(Equation 5-34), the proportion of blood flow arriving at the tissue served
by an arteriole can be regulated with precision.

5.3 Mechanical Properties of Biological Fluids and Gels

The preceding two sections describe the mechanical behavior of idealized
elastic materials and incompressible fluids, respectively. Real materials some-
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times behave like one of these idealized models. On the other hand, bio-
logical materials, which are frequently complex in composition, can exhibit
complex behaviors that resemble aspects of both the elastic material and
an incompressible fluid, but are also unlike either of these idealized
models. Materials that exhibit both viscous and elastic natures are called
viscoelastic.

5.3.1 Models of Viscoelastic Materials

Consider, first, the behavior of biological tissues such as skin and muscle.
Although these materials are rich in water, which is a fluid at body tempera-
ture, they also have characteristics of an elastic solid: for example, they retain
their shape without a containing vessel. Ideal elastic materials—that is, materi-
als that are deformed to less than the elastic limit—deform instantaneously.
Although they may deform very rapidly after loading, biological materials
often continue to deform slowly after the initial period, exhibiting a behavior
called creep (Figure 5.9). When this same material is rapidly deformed, the
force required to maintain this deformation decreases gradually; this process is
called stress relaxation.

Ideal elastic materials are modeled as springs; their behavior can be pre-
dicted by Hooke’s law (Equation 5-1). Another element—one that slowly
elongates upon application of a force—must be added to model the changes
that occur during creep and stress relaxation. Continuous deformation after

N SO b ANNARNNNRNNN
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oy > > >
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Figure 5.9. Comparison of elastic and viscoelastic behavior. Typical responses of
elastic and viscolelastic materials to (a) application of a constant load and (b)
application of a constant elongation.




loading is a characteristic of fluids: the rate of deformation is determined by the
viscosity of the fluid, as in Equation 5-11. A dashpot, or piston within a
cylinder is the mechanical analog for viscosity; the piston slowly moves
through the cylinder at a rate that is determined by friction between the sur-
faces, in response to an applied load. By combining elastic (that is, spring) and
viscous (that is, dashpot) elements, models that predict aspects of the behavior
of real viscoelastic materials can be developed (Figure 5.10).

Deformation of viscoelastic materials depends on the total history of
applied force. If F(¢) is a function describing the history of applied force on
a material, then, over a small time interval dz, the change in applied force is
given by (dF/d1)|,dr. The change in deformation at time ¢, dU(¢), can be
expressed in terms of a history, or creep, function, ¢(f — 1):

dU(t) = c(t — r)%f- dr (5-35)

This expression can be integrated to obtain the total deformation as a function
of time t:

Q
//%//
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-

//%/ vl
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0 t 0 t

Figure 5.10. Behavior of spring-dashpot models. The elongation after application of
a constant load to (a) spring, (b) dashpot, (c) spring and dashpot in series (Maxwell
solid), and (d) spring and dashpot in parallel (Voigt solid).
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dr (5-36)

T

U@t = fc(t— r)i—f
0

The relaxation function k(z — 7), the inverse of the creep function, can be
defined in a similar way:

dF(t) = k(1 — r)c(lj—(t/

dr (5-37)
T

The relaxation function k(-) can be interpreted as the force which must be
applied to produce a unit step increase in deformation; the creep function
c(-) can be interpreted as the elongation which results from a unit step increase
in applied force. In general, the state of the material at the present time
depends only on the previous history, so that one may assume ¢(0) = 0 and
k(0) = 0. The challenge is to find the creep or relaxation function that describes
a viscoelastic material of interest.

It is often useful to compare the behavior of real materials with that of
idealized models. A simple elastic material, for example, can be compared to a
perfectly elastic spring, as shown in Figure 5.10a. The behavior of the perfectly
elastic material is provided by Equation 5-1, which can also be written in the
form

F=uU (5-38)

where F is the total force applied to the material and U is the instantaneous
displacement of the material, as defined in Equations 5-35 through 5-37. All of
the behavior of the perfectly elastic material is contained in Equation 5-38,
which is identical to the equation describing a spring (where F is the force
applied to the spring, U is the displacement, and u is the spring constant).
When a force is applied to a spring, the spring instantaneously deforms to the
length prescribed by Equation 5-38 (this deformation is illustrated in Figure
5.10a). Similarly, a viscous liquid can be compared to another idealized
mechanical object, the dashpot (Figure 5.10b). The dashpot behaves like a
simple viscous liquid:
dU

F=n T (5-39)
which is similar to Equation 5-11. When a force is applied to a material that
behaves like a viscous liquid, it deforms continuously; the deformation of the
material will continue for as long as the force is applied.

5.3.2 Example: Creep Function for a Maxwell Solid

Many materials do not behave like perfect springs or dashpots. When a fixed
load is applied, the material might deform with time (like a dashpot), reaching
some ultimate deformation that is not exceeded (like a spring). Models of
materials can be constructed by combining springs and dashpots in different
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combinations; the Maxwell model and the Voigt model are illustrated in
Figures 5.10c and 5.10d respectively. A Maxwell solid behaves like a spring
and a dashpot in series; it will deform instantaneously, like a spring, but the
deformation will continue at some steady rate, like a dashpot. The total rate of
deformation at any time, therefore, depends on the characteristics of both the
spring and the dashpot:

dUu 1dF 1

dt_udt+r]F (5-40)
where the initial elongation depends only on the force applied at time 0:
U(0) = F(0)/n. Recall that the creep function can be interpreted as the defor-
mation that results from a step change in force; the unit step change can be
described mathematically as

when >0

5-41
when t<0 ( )

F(t) = H(), where  H(1) = {(l)
The total deformation at time ¢ can be obtained by integration of Equation
5-40, giving

1

1dF F
U@ = /(ﬁa+;)d1 (5-42)

which, in the case where the force is a unit step change, becomes

1
1 1
U = / (— 8(1) + M)dz LI (5-43)
© n won
—00
where the delta function, §(¢), is the first derivative of the step function:
1 when =0
80 = { 0 elsewhere (=)

The creep function is defined by Equation 5-35. When the applied force is a
unit step change, so that the first derivative of F is equal to the delta function,
Equation 5-35 reduces to
!
U = /c(t —)8(r)dt = (1) (5-45)
g i

Comparison of Equations 5-43 and 5-45 yields a functional form for the creep
function of a Maxwell model:

=t (5-46)
moon

or, more generally, given that the value of the creep function ¢(0) is known at
t=0:
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A

)H(t — 1) (5-47)
n

c(t—1)= (ﬁ+

Similar approaches can be used to find the relaxation function for a Maxwell
model or the creep/relaxation functions for other model materials (see
Exercises 5.3 and 5.4).

5.3.3 Rheological Properties of Biological Fluids and Gels

The deformation character of a biological fluid is often a critical determinant of
its function. In blood, for example, the viscosity determines the overall resis-
tance to flow through a vessel (Equation 5-34) and, therefore, the amount of
work that must be supplied by the heart to move blood through the circulatory
system. A number of methods for determining rheological properties of a fluid
(that is, the deformation response of a fluid to applied stresses) have been
developed. One common method is capillary viscometry, in which the fluid is
forced by pressure through a capillary of known dimensions; the viscosity of
the fluid is then calculated from Equation 5-34.

g™ Another common method is cone-and-plate viscometry, in which the fluid
is confined between two surfaces as shown in Figure 5.11. In this apparatus the
plate is rotated with a constant angular velocity Q and the cone held stationary.
The torque required to hold the cone, 7, is measured; this torque is related to
the viscosity of the fluid that fills the gap between the surfaces. If the fluid is
Newtonian, the shear rate imposed on the fluid is given by

Q

tana

y= (5-48)
where « is the angle between the cone and the plate and y is the shear rate. The
shear stress t is calculated from the torque 7

3T

= 2R3

(5-49)
where R is the radius of the cone.

This steady flow approach works for measuring the rheological properties
of many fluids, even fluids that are structurally complex, such as blood. When
blood is placed between the cone and the plate, the viscosity can be measured
as a function of shear rate (Figure 5.11b). The viscosity of blood decreases with
increasing shear rate. At low shear rates, y < 0.1 s~', red blood cells within the
blood form aggregates called rouleaux (see Figure 8.2) that resist flow. As the
shear rate increases, the flow breaks the aggregates into individual cells, caus-
ing a decrease in the bulk viscosity. The complex rheological behavior of blood
appears to be due to the aggregation of red cells as well as the deformability of
individual cells, which is also a function of shear rate.

In some biological materials, however, the structure of the material is
irreversibly altered by the simple shear flow process illustrated above; we
might be interested, however, in the material’s behavior with small deforma-
tions. Consider, for example, a polymer solution in which the concentration of
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Figure 5.11. Cone-and-plate viscometry. The viscometer (a) can be used to measure
the rheological behavior of blood (b) and of gels or tissues (c). Panel ¢ was redrawn
from [28].

polymer is above the gel point; that is, the concentration of polymer is high
enough that polymer chains within the solution are connected (either chemi-
cally by crosslinks or physically by entanglements) into a large unit that spans
the entire sample. A continuous shear flow, such as the one created by rotating
the plate at a constant angular speed, would alter the structure of the gel phase
by disrupting connections between the polymer chains. In biological gels, such
as those formed from collagen, it is these polymer—polymer interactions that
create the biologically important behavior of the material; therefore, measure-
ments of viscosity in simple shear flow would not be relevant to the biological
function. In these cases, the cone-and-plate rheometer can be operated in an
oscillatory shear mode by oscillating the plate over small angles; the material
between the plates is therefore exposed to a limited range of strains. The shear
dependence of the response of the material can be measured by oscillating the
plate at different frequencies. For example, a collagen gel sample might be
subjected to oscillatory shear by rotating the plate at 2% strain with a fre-
quency ranging from 0.1 to 100 rad/s [6].
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In oscillatory shear measurements, a sinusoidally varying shear field of
frequency w is imposed on the material by oscillating the plate; the amplitude
of the resulting torque and the phase angle between the imposed shear and
resulting torque on the cone are then measured. The stress response (7) is also
oscillatory but shifted from the imposed shear by an angle ¢:

T = Tyyax COS(wt — ¢h) (5-50)

where 7., is the maximum value of the shear response. This stress can be
decomposed into in-phase and out-of-phase terms:

T = —0Vmax® cos(wr) — n,/ymaxw sin(wt) = _G//Vmax cos(wt) — Glymax sin(wt)
(5-51)

where ¥y, is maximum strain, n’ and n” are the two dynamic viscosity co-
efficients, and G” and G” are the storage and loss moduli, respectively. The
value of G’, related to the stress in phase with strain, provides information
about the elasticity of the gel. The loss modulus, G”, related to the stress out-"
of-phase with the strain, is a measure of the dissipated energy in the system [7].
As an example of results obtained by this method, the response, measured from
a model material (silicone) and brain tissue, is shown in Figure 5.11c.

5.4 Mechanical Properties of Cells

5.4.1 Mechanical Behavior of Blood Cells

Cells are complex, deformable objects. Red blood cells are slightly larger than
the smallest capillaries and therefore must deform in order to move through the
circulation (Table 5.2). White cells are substantially larger and less deformable
than red cells; therefore, they can have a larger impact on blood flow properties
than one would predict from their abundance. As will be discussed in Chapter

Table 5.2
Characteristics of Blood Cells
Characteristic Cortical
dimensions Volume Cell tension
Cell type Shape (um) (um®)  fraction (mN/m)
Red cell (erythrocyte)  Biconcave 7.7 x (1.4 to 96 0.997
disc 2.8)
Platelet Biconcave 2x0.2 5to 10 0.007
disc
Neutrophil Spherical 82to0 8.4 300 to <0.002 0.024 to 0.035
310
Lymphocyte Spherical 1.5 220 <0.001 0.06
Monocyte Spherical 9.1 400 <0.0005 0.035

Data obtained from [8].



140 Tissue Engineering Fundamentals

10, the mechanical properties of white cells have a profound influence on their
fate in the circulation after infusion. A reduction in the deformability of white
cells may also play a role in certain diseases, such as leukemia and diabetes, in
which the microcirculation can be impaired. The mechanical properties of red
and white blood cells have been well studied and are reviewed in [8].

The mechanical properties of many cells—including blood cells—have been
directly measured by aspiration into a micropipette (Figure 5.12). The properties
of the cell are deduced from the deformations observed as the cell is pulled into
the pipette under gentle pressure [9, 10]. For example, in one method, the suction
pressure is gradually increased to a critical pressure, Apeitical» at Which a small
hemispherical section of the cell is pulled into the pipette. Laplace’s law permits
calculation of cell cortical tension, T, from the critical pressure:

om ApcriticalRpRc (5_52)
2(R.— Ry

where R, is the radius of the micropipette and R is the radius of the cell [11].

Similarly, the overall viscosity of a cell can be measured by aspirating the whole

cell into a larger micropipette (~ 4 um radius for neutrophils) and comparing

the time course for cell movement through the pipette lumen to numerical

models of individual cell deformation [11].

Other techniques have been used to measure the mechanical properties of
individual cells, by deforming them between parallel plates, for example, or by
applying smaller mechanical probes such as microneedles [12] and atomic force
microscopes [13].

5.4.2 Mechanical Properties of the Cytoskeleton

The intracellular fluid, or cytoplasm, is a much more complicated fluid than
plasma. Plasma, or the acellular fraction of blood, is a concentrated protein
solution that behaves as a Newtonian fluid with a viscosity of 1.2¢P (or
1.2mPa-s) at 37°C. The simplest cytoplasm is probably found in red blood
cells, which have no nucleus or internal organelles. Red cell cytoplasm is a

Ap

Figure 5.12. Micropipette aspiration to determine cellular mechanics. Gentle suction
can be used to deform cells under controlled conditions for evaluation of mechanical

properties.
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concentrated hemoglobin solution; individual cells contain between 290 and
390 g/L of hemoglobin, which has a viscosity of between 4.2 to 17.2 cP [8].

The basic elements of the cytoskeleton were introduced in Section 3.3.1,in
which the shape of a cell was associated with protein filaments in the cyto-
plasm. The three most important protein filaments are illustrated in Figure
3.12: actin microfilaments, microtubules, and intermediate filaments. These
filaments have intrinsic mechanical properties. They can be characterized by
a persistence length, which is related to the stiffness of the filament (Table 5.3).
In some cases, the mechanical properties of individual filaments have been
measured directly, although the measurements are difficult and a clear picture
of filament mechanics is not yet available. But it is clear that the three main
filaments differ greatly in mechanical properties: actin microfilaments are
flexible but unable to withstand tensile forces; microtubules are stiffer than
actin filaments but still have poor tensile strength; intermediate filaments are
more flexible than actin and stronger under tension [14].

Within the cytoplasm, individual filaments aggregate into bundles; bund-
ling greatly enhances the mechanical strength of the system. In addition, once
the ability to bundle and unbundle filaments is regulated, the local mechanical
properties of the cytoplasm can be controlled via assembly and disassembly of
filaments. Many cytoplasmic constituents participate in the filament assembly
process; actin filaments, for example, are crosslinked by at least four different
agents (a-actinin, spectrin, fimbrin, and villin), providing the cell with a variety
of tools for dynamically regulating filament assembly. Complex mechanical
behavior is observed in simple systems of filaments and filament-binding pro-
teins; in the case of actin filaments and «-actinin, complex rheological behavior
is observed in reconstituted samples of purified cytoskeletal elements [15]. In
general, solutions of cytoskeletal filaments are viscoelastic and have been
characterized using the rheological methods described in in Section 5.3.3.

New methods, such as laser tracking microrheometry [16], offer the poten-
tial to study the mechanical behavior of cytoplasm within living cells.

5.4.3 Influence of Mechanical Forces on Cell Structure and Function

Cells respond to forces by deformation, as described above. It has also long
been known that cell behavior (such as growth control) is dependent on cell

Table 5.3

Characteristics of Cytoskeletal
Filaments

Filament L,(pm)
Actin microfilament 18
Intermediate filament 2
Microtubule 6,000

Data obtained from [14].
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shape [17], which suggests that the mechanical forces that act to deform cells ly distribu
(and therefore alter cell shape) can also influence the biochemical function of erty of the
cells. in Chapte
Cells of the vascular system are constantly exposed to the forces provided by connectivi
blood flow and, therefore, it has been logical to study these cells for the impact of Soft §
fluid shear forces on cell function. It is now well established that shear stress can material i
1) influence the morphology and orientation of cultured vascular cells; 2) induce (often col
changes in signal transduction systems and secondary messengers; 3) influence [22]. Figw
metabolite secretion; and 4) regulate gene expression (see review [18]). Similarly, that cons
mechanical forces that are provided through mechanisms other than from fluid parallel t
flow—such as stretching of a deformable substrate on which cells are attached— Figure 5.1
can also influence cell function. Molecular mechanisms for mechanotransduc- fibers witl
tion—that is, conversion of the mechanical force into a biological signal—are large chai
not clearly established, but it is likely that multiple mechanisms are involved, become d¢
since cells encounter mechanical forces from many different sources. stiffness o
Mechanical forces can influence cellular function within tissues, as well; for than the 1
example, the expression of genes in cells within brain slices is differentially ally aligne
regulated by controlled mechanical strains [19]. demonstr:
forces, tis!
architectu
5.5 Mechanical Properties of Tissues also influg
The mechanical properties of engineered tissues are often critical for their 5.5.3 Tisd
function (recall Figure 2.1 and related discussion). This section briefly reviews
the mechnical behavior of tissues by focusing on the mechanical properties of Many tiss
bone, soft tissues, and tissue-engineered materials. The role of biomechanics in into a thre

the evaluation of tissue-engineered materials has been reviewed [20].

5.5.1 Bone

Bone is a hard (that is, mechanically strong) tissue that is composed of a
mineral phase (60%), a collagen-rich matrix (30%), and water (10%) [21].
The mineral phase appears to provide the stiffness to bone, while the matrix
phase provides other properties that are still not well defined [21]. Bone has two
typical architectures, cortical (or compact) bone and cancellous (or trabecular)
bone, which differ in microscopic structure and mechanical properties (Table
5.1). The dense, rigid cortical architecture is found in long bones whereas the
cancellous architecture, which is more porous and oriented, is found in the ribs,
spine, and epiphysis. A comprehensive review of those biomechanical proper-
ties of bone that are relevant for tissue engineering is available [21].

5.5.2 Soft Connective Tissues
o . . " Figure 5.1.
Soft connective tissues surround our organs, provide structural integrity, and tissues is il

protect them from damage. In most soft connective tissues—such as articular to the skin
cartilage, tendons, ligaments, dermis of skin, and blood vessels—cells are sparse- and deforn
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ly distributed within an extracellular matrix that provides the mechanical prop-
erty of the tissue. The molecular constituents of extracellular matrix are reviewed

in Chapter 6 (see Section 6.4). In contrast to bone, which is a rigid material, soft

connective tissues are typically flexible and deformable (Table 5.1).

Soft tissues are often viscoelastic, behaving like a reinforced composite
material in which the structure and orientation of the fiber-reinforcing phase
(often collagen and elastin fibers) determines the bulk mechanical behavior
[22]. Figure 5.13 shows schematically the behavior of skin—a typical soft tissue
that consists predominantly of connective tissue and shows an orientation
parallel to the skin surface. With small tensile deformations (phase I in
Figure 5.13), the tissue behaves as an elastic material; microscopically, collagen
fibers within the tissue are deforming without stretching or bringing about
large changes in structure. As the strain increases (phase II), collagen fibers
become deformed, straightening in the direction of the strain and increasing the
stiffness of the skin. With increased loads, in deformations that are just less
than the ultimate tensile strength (phase I1I), the collagen fibers are individu-
ally aligned in the direction of the applied load, and stretched. This illustration
demonstrates some of the complexity of the interplay between mechanical

orces, tissue structure, and tissue function. Figure 5.13 shows that molecular
architecture is influenced by strain; the functional properties of the tissues are
also influenced by these changes.

5.5.3 Tissue-Engineered Materials

Many tissue-engineered materials consist of a population of cells embedded
into a three-dimensional extracellular matrix. Chapter 1 illustrated this concept

Stress
— R

Phase Il Phase Il

Strain

Figure 5.13. Mechanical behavior of soft tissues. The mechanical behavior of soft
tissues is illustrated schematically for skin, in which fibers that are oriented parallel
to the skin surface provide a nonlinear relationship between stress in the material

and deformation. Redrawn from [22].
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as a natural extension of conventional cell culture, in which cells are main-
tained in a three-dimensional environment that permits interaction of cells with
the matrix material and with other cells (Figure 1.1).

In Chapter 2, the use of hybrid materials—containing both cells and
matrix components, which might be natural or synthetic polymers—for tissue
repair was also introduced (Figure 2.3). When cells are embedded into a matrix
material, they can interact with the matrix. This interaction may change the
functional state of the cells, but they may also alter the physical properties of
the matrix by changing the amount or orientation of the matrix materials or by

~ exerting forces on components of the matrix that serve to orient or disrupt the
overall architecture.

This phenomenon has been studied in model cell culture systems, some-
times called tissue equivalents [23] or reconstituted model tissues [24], in
which cells are suspended within a tissue-like extracellular matrix. When
fibroblasts are cultured within a collagen matrix, for example, the cells will
attach to and then deform collagen fibers; this action can be observed macro-
scopically because the mechanical action of the cells causes the gel material to
change shape and, in the particular case of fibroblasts in collagen, become
more compact. The dynamics of the compaction process reveal the action of
cells within the bulk material (Figure 5.14). Usually a lag period is observed
first, in which the matrix is forming around the cells. During the early phase
of compaction, which usually lasts for the first 24 hours of culture, the cells
form attachments to the matrix material and begin to contract it slowly;
strains during this phase are typically small, ~10% [25]. Over the first
week or two in culture, the cells will steadily compact the matrix materials
by a process of adhesion to fibers and mechanical contraction by the cells;

wi

Formation
compaction

Large-strain
Remodelling

Size of Tissue Equivalent

Small-strain compaction

hrs 1 day 7-14 days
Time

Figure 5.14. Dynamic compaction of a tissue equivalent.Cells can be suspended
within a matrix material to produce a three-dimensional tissue equivalent, which will
undergo mechanical and geometric changes during maintenance in culture.
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strains during this phase can be 50 to 90% [26]. In the final phase, there is no
further compaction of the material, but it can become substantially stiffer due
to the action of the cells, which may secrete additional matrix proteins or
cause crosslinking of existing matrix materials. The extent and the time
course of compaction depend on the density of cells in the material, the
type of cells that are suspended, and the nature of the material and extra-
cellular environment. In all stages of this process, the cells may be modifying
the matrix (by stiffening it, for example) and, at the same time, the matrix
may be inducing changes in the structure and function of the entrapped cells
(as described in Section 5.4.3).

5.5.4 Example: Compression of Cellular Aggregates

Some of these mechanical principles can be illustrated with a practical
example of importance to tissue engineering. (The importance of cellular
aggregates in tissue engineering will be elaborated in Chapter 8.) As
described in Chapter 3, cellular aggregates and tissue fragments have been
powerful models for developmental biology. Force relaxation experiments on
embryonic tissue fragments, which are allowed to round-up into spherical
aggregates in culture, show a characteristic behavior (Figure 5.15a); in
response to a fixed deformation, the aggregate exerts a resisting force
which declines with a rapid initial rate, followed by a slow, more persistant
relaxation [27]. This relaxation is similar to the behaviors illustrated in the
spring and dashpot models of Figure 5.10—especially the behavior in panel
¢ (rapid initial response and persistent continuing response) and panel d
(slow approach to some limiting response). But the behavior here is more
complicated in that two rates of relaxation, or characteristic time constants,
are observed.

The simplest model that can incorporate all of the behaviors observed in
the dynamics response of living tissue segments to compression is the Kelvin
model (Figure 5.15b). In this model, a third element—the slide wire, indicated
in the figure with its parameter o—is used to indicate the equilibrium shape of
the aggregate under the compressive force. A force balance on the elements
shown in Figure 5.15b yields

m . m\dF mn &°F
F+(—+——)—+ Rl 5.53
wi pa) At g, de i =55

which can be solved to obtain
F=(o+ Mleﬂml/’h + lee—ﬂzf/'lz)UO (5-54)
This model was compared to force relaxation behavior observed in tissues

taken from different regions of the embryo; the mechanical behavior of the
living tissue depends on composition (Table 5.4).
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Figure 5.15. Compression of cellular aggregates formed from embryonic tissues.
Stress relaxation during compression of the cellular aggregate: experimental data (a)
and mechanical model (b). Adapted from [27].
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Summary
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e For small strains, many solid materials deform elastically; the
mechanical properties of these are similar to those of an ideal spring
and can be described by an elastic modulus E.

o Fluids deform continuously under the action of a shearing force; for
Newtonian fluids, the viscosity, or ratio of shear force to shear rate, is
a constant.

o The physics of fluid flow can be quantified for certain geometries. In
the case of steady laminar flow through a cylindrical tube—which is an
important flow in biological systems—the behavior of the flow is well
described and predictable.

e Many biological materials exhibit both elastic and viscous properties;
these materials are called viscoelastic. Mechanical models that combine
purely elastic and purely viscous components can sometimes be used to
predict their deformation behavior.

e Rheology, or the study of deformations in materials, can be used to
analyze the mechanical behavior of biological fluids and gels.
Examination of the rheological properties often gives insight into the
molecular properties of the material.

e Cells exhibit complex mechanical behaviors and respond in complicated
ways to mechanical forces.

e The mechanical properties of many tissues are important for their
biological function; the development of methods for biomechanical
analysis is an important part of tissue engineering.

Exercises

Exercise 5.1

In a radial flow detachment assay (a device for measuring cell adhesion to a
surface, which is discussed in more detail in Chapter 6), cells attached to a
planar, cylindrical surface are exposed to a steady fluid flow which originates at
the center of the surface (r = 0) and flows toward the outer edge (r = R).
Assuming laminar flow through the gap between two stationary surfaces,
one containing the adherent cells and the other a uniform height (#) above
it, show that the shear stress at the surface depends on radial position from the
center: S = 3Qu,/7rrhz, where Q is the volumetric flow rate and p is the fluid
viscosity.

Exercise 5.2 (provided by Song Li)
Consider the optimum design of vascular network.

a) Read Fung, Y. C. Biodynamics: Circulation, Sections 3.1-3.4 [3].
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Figure 5.16. Kelvin model of viscoelastic materials.
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