Cell viability in TE constructs; Cartilage structure/function

Module 3, Lecture 4

20.109 Spring 2008

Dr. Agi Stachowiak
Topics for Lecture 4

• Review of Module 3 so far
• Cell viability: influence and measurement
• Overview of Module 3 week 3
• A closer look at cartilage
 – background on collagens and proteoglycans
 – how cartilage structure influences function
Module progress: week 2

- **Day 3: viability/cytotoxicity testing**
- **Practical matters**
 - focusing takes practice
 - too low cell concentration
- **Most groups found**
 - low cell recovery, especially in 3D
 - mostly live cells in 2D samples
 - 3D samples more variable
- **How can we explain these results?**
- **How can we improve the assay?**
- **Day 3: morphology observations**
 - what did you see in brightfield?

W/F Green group
Factors affecting cell viability

• What factors affect viability in a TE construct?
• Cell level
 – density: competition for nutrients, O$_2$
 – interactions (+ or -) between different cell types
• Cytokine level
 – may promote viability and/or proliferation
 – may promote apoptosis
• Materials level
 – permeability of material (to nutrients, O$_2$)
 – pore size, percent porosity
 – toxicity of material or its degradation products
Nutrient use in 3D constructs

- Parameters affecting diffusion
 - size of construct (R)
 - cell density (ρ)
 - diffusivity (D)
 - bulk concentration $[O_2]_{\text{bulk}}$

- In simple cases, boundary conditions can be used to get analytical solution

- Characteristic diffusion limit (nutrients, O_2): $\sim 100 \, \mu m$
 - diffusion profiles tend to correspond with viability profiles

- Solution in vitro: dynamic/perfusion culture
- Solution in vivo: promote angiogenesis quickly
Modeling cell viability in TE constructs

- Porous PLGA scaffolds
- Seeded cells in every other (A) or in each (B) layer
- Observed after 10 days
- Model
 - diffusion, O₂ use, and cell growth
 - quasi-steady state
 - no depletion in fluid
- Results
 - A has improved cell uniformity
 - cell growth matches O₂ tension
 - claim for predictive capability

\[< 1 \text{M cells/cm}^3 \]
Modeling diffusion in a defined porosity

- Diffusion in colloidal crystal templated scaffolds
 - geometrically defined model
 - Brownian dynamics (time evolution)
 - Monte Carlo simulations (particle moves, Boltzmann weighting)

- Results
 - $D_{\text{eff}} = 0.3 \, D_o$ = upper-bound
 - decreases with size of inter-pores
 - with particle size (O_2 vs. protein)
 - with further confinement of particles by cells, or utilization by cells
Cell death: apoptosis and necrosis

• Apoptosis
 – programmed cell death
 – role in development and immunity
 – process: cell condensation and fragmentation
 – misregulated apoptosis implicated in disease

• Necrosis
 – response to trauma
 – process: cells burst and release contents
 – necrotic cells promote inflammation

• Morphology or biochemical assays can distinguish apoptotic and necrotic cells

S. Elmore *Toxicol Pathol* **35**:495 (2007)
Module overview: lab

Day 1: design
Day 2: seed cultures
Day 3: viability assay
Day 4: prep RNA+cDNA
Day 5: transcript assay
Day 6: protein assay
Day 7: remaining analysis
Day 8: your research ideas!
Module overview: week 4

1. Collect supernatant
 Test for collagen proteins (by ELISA)

2. Collect and lyse cells

Purify mRNA from cells Amplify collagen cDNAs

Compare collagen I and II transcript levels
Day 4: RNA isolation

1. Collect cells
 lyse cells in buffer
 homogenize over column

2. Isolate total RNA
 on silica-gel columns that bind RNA > 200bp
 using buffers, ethanol precipitation
 enriched for mRNA due to size exclusion

www.qiagen.com

Working with RNA requires extremely clean technique. Why?

RNases are pervasive, e.g., on your hands
Day 4: RT-PCR

- RT = reverse transcriptase
 - what does this enzyme do?

- Unique primer design needs
 - how to isolate transcript but not genomic DNA?

- RT and PCR can be done in one reaction or two
 - enzyme de/activation by temperature
 - which enzymes when?

- What kinds of controls are desired?
Revisiting cartilage tissue

Avascular, highly water-swollen, heterogeneous tissue.
Collagen structure

- Collagen primary structure:
 - Gly-X-Y repeats
 - high proline, hydroxyproline content

- Collagen tertiary structure: triple helix
 - Gly contributes flexibility
 - Hyp contributes hydrogen-bonding

- Collagen quaternary structure: fibrils
 - true for many types, including I and II
 - cross-links via lysine and hydroxylysine
 - periodic banding structure observed

Image made using *Protein Explorer* (PDB ID: 1bkv)

Collagen types in cartilage

• Collagen types vary with respect to
 – location: II in cartilage, vitreous humor; I in skin, bone, vitals, etc.
 – homo- (II) or hetero- (I) trimeric helices
 – supramolecular structure formation
 – glycosylation

• Collagen composition in cartilage
 – Type II (fibrils) covalently linked to IX and XI
 – exact roles of IX and XI unknown
 ▪ IX may form inter-fibrillar cross-links
 ▪ XI may modulate collagen II fibril diameter
 ▪ mutations to IX, XI, II cause disease
 – Types III, VI, X, XII, and XIV also present

• Little collagen turnover in adult cartilage

Proteoglycan structure

• Proteins with GAG side chains
 – many negatively charged groups COO⁻ SO₃⁻
• Most common PG in cartilage is aggrecan
 – aggrecans polymerize via hyaluronin (HA)
 – GAG is primarily chondroitin sulfate (CS)
 – monomer > 1M, aggregates > 100M Da

Aggrecan monomer

Aggrecan aggregate

Cartilage structure and function

• Composition of cartilage
 – CN is 50-75% and PG is 15-30% of dry weight
 – water: 60-80%
 – cells: 5-10% by volume
• Requirements of a joint
 – load transfer (bone/bone, bone/muscle)
 – flexibility, lubrication
• Role of PG
 – high compressive strength due to osmotic swelling: water is pumped out during compression
 – low permeability, friction coefficient reduces wear and tear
• Role of CN
 – high tensile strength (~GPa)
 – contain swelling forces of PG

Lecture 4: conclusions

- Cell viability in TE constructs is affected by factors at the cell, materials, and cytokine level.
- Modeling is one useful tool to study the effects of nutrient diffusion on cell viability.
- RT-PCR is a technique for studying gene expression, with special considerations beyond PCR.
- The structure of the cartilage extracellular matrix promotes its function in joints.

Next time: gene and protein assays, *in vitro* and *in vivo* models for cartilage TE