Towards a High-Level Programming Language for Standardizing and Automating Biology Protocols

Vaishnavi Ananatharayanan and William Thies
Microsoft Research India

IWBDA
July 27, 2009
Genetic Control of Surface Curvature

Utpal Nath, Brian C. W. Crawford, Rosemary Carpenter, Enrico Coen*
Material and Methods

In situ Hybridization. The methods used for tissue preparation, digoxigenin-labelling of RNA probes, and in situ hybridisation were as described previously (S13). The probe used
Problems with Existing Descriptions of Protocols

- **Incomplete**
 - Cascading references several levels deep
 - Some information missing completely

- **Ambiguous**
 - One word can refer to many things
 - E.g., “inoculate” a culture

- **Non-uniform**
 - Different words can refer to the same thing
 - E.g., “harvest”, “pellet down”, “centrifuge” are equivalent

- **Not suitable for automation or for programming standard biological parts**
Towards a High-Level Programming Language for Biology Protocols

Goal: in scientific publications, replace textual description of methods used with code

1. Enable automation via microfluidic chips
2. Improve reproducibility of manual experiments
Contributions to Date

• **Microfluidics**: first manipulation of discrete samples using soft-lithography [LabChip’06]

• **Programming**: first mapping of single ISA across different chips [DNA’06, NatCo’07]

• **Optimization**: first efficient algorithm for complex mixing on chip [DNA’06, NatCo’07]

• **Computer Aided Design**: first tool that routes channels, generates GUI [MIT’09]

• **Work in Progress**: programming language for expressing and automating broad class of experiments
The BioStream Language

- **BioStream** is a protocol language for reuse & automation
 - Portable
 - Volume-independent

- **Initial focus:** molecular biology
 - Mixing
 - Cell culture
 - Electrophoresis
 - Heating / cooling
 - Centrifugation
 - Timing constraints

- **Implemented as a C library**
 - Used to express 15 protocols
 - Initial backend: emit readable instructions for human

- **Validation in progress**
 - Intern at Indian Institute of Science
 - Would represent first biology experiment grounded in architecture-independent programmed description
Language Primitives

- **Declaration / measurement / disposal**
 - declare_fluid
 - declare_column
 - measure_sample
 - measure_fluid
 - volume
 - discard
 - transfer
 - transfer_column
 - declare_tissue

- **Combination / mixing**
 - combine
 - mix
 - combine_and_mix
 - addto_column
 - mixing_table

- **Centrifugation**
 - centrifuge_pellet
 - centrifuge_phases
 - centrifuge_column

- **Temperature**
 - set_temp
 - use_or_store
 - autoclave

- **Timing**
 - wait
 - time_constraint
 - store_until
 - inoculation
 - invert_dry

- **Detection**
 - ce_detect
 - gas_chromatography
 - nanodrop
 - electrophoresis
 - mount_observe_slide
 - sequencing
Example: Plasmid DNA Extraction

I. Original protocol (Source: Klavins Lab)

Add 100 ul of 7X Lysis Buffer (Blue) and mix by inverting the tube 4-6 times. _Proceed to step 3 within 2 minutes._

II. BioStream code

FluidSample f1 = measure_and_add(&f0, &lysis_buffer, 100*uL);
FluidSample f2 = mix(&f1, INVERT, 4, 6);
time_constraint(&f1, 2*MINUTES, next_step);

III. Auto-generated text output

Add 100 ul of 7X Lysis Buffer (Blue).
Invert the tube 4-6 times.
NOTE: Proceed to the next step within _2 mins._
Example: Plasmid DNA Extraction

DNA Miniprep Protocol

Solutions/reagents:
- bacterial culture grown in LB medium
- 7X Lysis Buffer (Blue)
- Neutralization Buffer (Yellow)
- Endo-Wash Buffer
- Zippy™ Wash Buffer
- Zippy™ Elution Buffer
- Zymo-Spin™ II Column

Equipment:
- Centrifuge
- Microfuge

Steps:
1. Measure out 600 µl of bacterial culture grown in LB medium into a 1.5ml- reaction tube.
2. Add 100 µl of 7X Lysis Buffer (Blue).
 Invert the tube 4-6 times.
 NOTE: Proceed to the next step within 2 mins.
3. Add 350 µl of Neutralization Buffer (Yellow).
 Vortex the mixture for a few secs.
1. Standardizing Ad-Hoc Language

- Need to convert qualitative words to quantitative scale

- Example: a common scale for mixing
 - When a protocol says “mix”, it could mean many things
 - Level 1: tap
 - Level 2: stir
 - Level 3: invert
 - Level 4: vortex / resuspend / dissolve
2. Separating Instructions from Hints

- How to translate abstract directions?
 - “Remove the medium by aspiration, *leaving the bacterial pellet as dry as possible.*”

 \[
 \text{Centrifuge}(&\text{medium}, \ldots); \quad \text{Aspirate and remove medium.}
 \quad \text{hint(\text{pellet_dry})} \quad \text{Leave the pellet as dry as possible.}
 \]

- Separating instructions and hints keeps language tractable
 - Small number of precise instructions
 - Extensible set of hints
3. Generating Readable Instructions

- In typical programming languages - minimal set of orthogonal primitives
- But can detract from readability

 Original: “Mix the sample with 1uL restriction enzyme.”

 BioStream with orthogonal primitives:

```plaintext
FluidSample s1 = measure(&restriction_enzyme, 1*uL);
FluidSample s2 = combine(&sample, &s1);
mix(s2, tap);
```

Measure out 1ul of restriction enzyme.
Combine the sample with the restriction enzyme.
Mix the combined sample by tapping the tube.
3. Generating Readable Instructions

- In typical programming languages- minimal set of orthogonal primitives
- But can detract from readability
 - **Original:** “Mix the sample with 1uL restriction enzyme.”
 - **BioStream with compound primitives:**

```c
combine_and_mix(&restriction_enzyme, 1*uL, &sample, tap);
```

Add 1uL restriction enzyme and mix by tapping the tube.

Define a standard library that combines primitive operations
3. Generating Readable Instructions

```python
mixing_table_pcr(7, 20, array_pcr, initial_conc, final_conc, vol);
```

1. Set up a reaction as follows on ice:

<table>
<thead>
<tr>
<th></th>
<th>Initial concentration</th>
<th>Final concentration</th>
<th>Final volume per 20 µl reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taq buffer</td>
<td>10X</td>
<td>1X</td>
<td>2 µl</td>
</tr>
<tr>
<td>dNTPs</td>
<td>10 mM</td>
<td>0.5 mM</td>
<td>1 µl</td>
</tr>
<tr>
<td>Primers</td>
<td>10 µM</td>
<td>1 µM</td>
<td>2 µl</td>
</tr>
<tr>
<td>Taq polymerase</td>
<td>5 U µl⁻¹</td>
<td>2 U</td>
<td>8 µl</td>
</tr>
<tr>
<td>Genomic DNA</td>
<td>--</td>
<td>100 ng</td>
<td>X</td>
</tr>
<tr>
<td>sterile distilled water</td>
<td>--</td>
<td>--</td>
<td>Make up volume to 20 µl</td>
</tr>
</tbody>
</table>
Benchmark Suite

<table>
<thead>
<tr>
<th>Name</th>
<th>Source</th>
<th>Lines of Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline DNA Miniprep (Animal)</td>
<td>Textbook</td>
<td>114</td>
</tr>
<tr>
<td>AllPrep RNA/Protein (Animal)</td>
<td>Qiagen kit</td>
<td>180</td>
</tr>
<tr>
<td>Immunolocalization</td>
<td>Lab notes</td>
<td>127</td>
</tr>
<tr>
<td>DNA Sequencing</td>
<td>Published paper</td>
<td>162</td>
</tr>
<tr>
<td>Molecular barcodes methods</td>
<td>Published paper</td>
<td>267</td>
</tr>
<tr>
<td>SIRT1 Redistribution</td>
<td>Published paper</td>
<td>220</td>
</tr>
<tr>
<td>Splinkerette PCR</td>
<td>Published paper</td>
<td>248</td>
</tr>
<tr>
<td>Touchdown PCR</td>
<td>Published paper</td>
<td>65</td>
</tr>
<tr>
<td>Transcriptional instability</td>
<td>Published paper</td>
<td>187</td>
</tr>
<tr>
<td>DNA Miniprep (Bacterial)</td>
<td>Class notes</td>
<td>102</td>
</tr>
<tr>
<td>Restriction enzyme digestion</td>
<td>Class notes</td>
<td>55</td>
</tr>
<tr>
<td>Restriction enzyme ligation</td>
<td>Class notes</td>
<td>67</td>
</tr>
<tr>
<td>DNA Extraction (Plant)</td>
<td>Lab notes</td>
<td>481</td>
</tr>
<tr>
<td>Plant RNA isolation</td>
<td>Lab notes</td>
<td>137</td>
</tr>
<tr>
<td>Plasmid purification</td>
<td>Qiagen kit</td>
<td>158</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>2570</td>
</tr>
</tbody>
</table>
Example: PCR

repeat thermocycling
Example: Molecular Barcodes

Preparation

+ PCR (2)
Example: DNA Sequencing

Preparation

PCR

PCR

PCR

PCR

Analysis
3. Add 1.5 vol. CTAB to each MCT and vortex. Incubate at 65°C for 10-30 mins

5. Centrifuge at 13000g at room temperature for 5 mins

6. Transfer aqueous (upper) layer to clean MCT and repeat the extraction using chloroform: Isoamylalcohol: 96:4

Coding protocols in precise language removes ambiguity and enables consistency checking
Validating the Language

- Eventual validation: automatic execution
 - But BioStream more capable than most chips today
 - Need to decouple language research from microfluidics research
 - Also validate in a synthetic biology context

- Initial validation: human execution
 - In collaboration with Prof. Utpal Nath’s lab at IISc
 - Target Plant DNA Isolation, common task for summer intern

Biologist is never exposed to original lab notes

- To the best of our knowledge, first execution of a real biology protocol from a portable programming language
Future Work

• Adapt the language to biologists
 – Currently looking for collaborators to use the language!
 – Focus on ‘natural language’ authoring rather than programming
 – Share language and protocols on a public wiki

• Backends for BioStream
 – Generate graphical protocol
 – Program a part of/ complete synthetic biological system to perform a given protocol/function

• Automatic scheduling
 – Schedule separate protocols onto shared hardware, maximizing utilization of shared resource (e.g., thermocycler)
Related Work

- **EXACT**: EXPERimental ACTions ontology as a formal representation for biology protocols [Soldatova et al., 2009]
- **Aquacore**: ISA and architecture for programmable microfluidics, builds on our prior work [Amin et al., 2007]
- **Robot Scientist**: functional genomics driven by macroscopic laboratory automation [King et al., 2004]
- **PoBol**: RDF-based data exchange standard for BioBricks
Conclusions

• A high-level programming language for biology protocols is tractable and useful
 – Improves readability
 – Enables automation

• Vision: a defacto language for experimental science
 – Replace ad-hoc language with precise, reusable description
 – Download a colleague’s code, automatically map to your microfluidic chip or lab setup

• Seeking users and collaborators!
 1. Send us your protocols
 2. We code them in BioStream
 3. You inspect standardized protocol, optionally validate it in lab
Acknowledgements

• Dr. Utpal Nath, Indian Institute of Science
• Mansi Gupta, Subhashini Muralidharan, Sushmita Swaminathan, Indian Institute of Science
• Dr. Eric Klavins, University of Washington
Microfluidic Chips

• **Idea:** a whole biology lab on a single chip
 – Input/output
 – **Sensors:** pH, glucose, temperature, etc.
 – **Actuators:** mixing, PCR, electrophoresis, cell lysis, etc.

• **Benefits:**
 – Small sample volumes
 – High throughput
 – Low-cost

• **Applications:**
 – Biochemistry - Cell biology
 – Biological computing - Synthetic biology
Current Practice: Expose Gate-Level Details to Users

- Manually map protocol to the valves of the device
 - Using Labview or custom C interface
 - Given a new device, start over and do mapping again
Our Approach: “Write Once, Run Anywhere”

• **Example: Gradient generation**

```java
Fluid yellow = input(0);
Fluid blue = input(1);
for (int i=0; i<=4; i++) {
    mix(yellow, 1-i/4, blue, i/4);
}
```

• **Hidden from programmer:**
 - Location of fluids
 - Details of mixing, I/O
 - Logic of valve control
 - Timing of chip operations

450 Valve Operations
Our Approach: “Write Once, Run Anywhere”

• Example: Gradient generation

```java
Fluid yellow = input (0);
Fluid blue = input (1);
for (int i=0; i<=4; i++) {
    mix(yellow, 1-i/4, blue, i/4);
}
```

• Hidden from programmer:
 – Location of fluids
 – Details of mixing, I/O
 – Logic of valve control
 – Timing of chip operations

```java
wait(2000);
setValve(14, HIGH); setValve(2, LOW);
wait(1000);
setValve(4, HIGH); setValve(12, LOW);
setValve(16, HIGH); setValve(18, HIGH);
setValve(19, LOW);
wait(2000);
setValve(0, LOW);  setValve(1, LOW);
setValve(2, LOW);  setValve(3, HIGH);
setValve(4, LOW);  setValve(5, HIGH);
setValve(6, HIGH); setValve(7, LOW);
setValve(8, LOW);  setValve(9, HIGH);
setValve(10, HIGH); setValve(11, LOW);
setValve(12, LOW); setValve(13, LOW);
setValve(14, LOW); setValve(15, HIGH);
setValve(16, HIGH); setValve(17, LOW);
setValve(18, HIGH); setValve(19, LOW);
```
Example: Plasmid DNA Extraction

- Goal: extract DNA from bacterial cells for later analysis

```
BioStream Code (102 lines)
...
next_step(""');
t1 = measure_fluid(&bacterial_culture,600,ul,rxn_tube);
end_step();

next_step(""');
t2=measure_and_add(&t1,&lysis_buffer,100,ul);
t1=mix(&t2,invert,4,6,NA,NA);
time_constraint(&t1,2,mins, nextstep);
end_step();

next_step(""');
t2=measure_and_add(&t1,&neut_buffer,350,ul);
t1=mix(&t2,vortex,NA,NA,NA,NA);
...
```
Genetic Control of Surface Curvature

Utpal Nath, Brian C. W. Crawford, Rosemary Carpenter, Enrico Coen*

Material and Methods

In situ Hybridization. The methods used for tissue preparation, digoxigenin-labelling of RNA probes, and *in situ* hybridisation were as described previously (S13).

Material and Methods

In situ Hybridization. The methods used for tissue preparation, digoxigenin-labelling of RNA probes, and *in situ* hybridisation were as described previously (S13). The probe used to detect the *CIN* transcript was a 1048 bp fragment from the cDNA clone, covering the entire ORF. For *H4*, the probe consisted of the entire cDNA (S14).

Genetic Control of Surface Curvature

Utpal Nath, Brian C. W. Crawford, Rosemary Carpenter, Enrico Coen*

Material and Methods

In situ Hybridization. The methods used for tissue preparation, digoxigenin-labelling of RNA probes, and *in situ* hybridisation were as described previously (*S13*). The probe used to detect the *CIN* transcript was a 1048 bp fragment from the cDNA clone, covering the entire ORF. For *H4*, the probe consisted of the entire cDNA (*S14*).

Genetic Control of Surface Curvature

Utpal Nath, Brian C. W. Crawford, Rosemary Carpenter, Enrico Coen*

Material and Methods

In situ Hybridization. The methods used for tissue preparation, digoxigenin-labelling of RNA probes, and *in situ* hybridisation were as described previously (S13). The probe used to detect the *CIN* transcript was a 1048 bp fragment from the cDNA clone, covering the entire ORF. For *H4*, the probe consisted of the entire cDNA (S14). For *CYCLIN D3b*, a 3’-terminal fragment of the cDNA lacking the poly-A tail was used (S15).

Material and Methods

In situ Hybridization. The methods used for tissue preparation, digoxigenin-labelling of RNA probes, and in situ hybridisation were as described previously (S13). The probe used to detect the CIN transcript was a 1048 bp fragment from the cDNA clone, covering the entire ORF. For H4, the probe consisted of the entire cDNA (S14). For CYCLIN D3b, a 3’-terminal fragment of the cDNA lacking the poly-A tail was used (S15).

