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Chapter 15

The Operational Amplifier
Abstraction

15.1 Introduction

This chapter introduces a very powerful amplifier abstraction called the Operational
Amplifier or Op Amp. Much as the gate abstraction forms the foundation of most of
digital electronics, the operational amplifier forms the basis for much of electronic
circuit design.

The Op Amp is a multistage two-input differential amplifier that is designed to be
an almost ideal control device, specifically, a voltage controlled voltage source. An
abstract representation of the operational amplifier shown in Figure 15.1 suggests it is
a four-port device. The four ports are an input port, an output port and a pair of power
ports. A +Vs voltage (for example, 15 volts) is applied at the plus power port and
a —Vs voltage (for example, -15 volts) is applied at the minus power port. An input
voltage (the control) applied across the non-inverting and inverting input terminals of
the Op Amp is amplified by a large amount and appears at the output port. In the
operational amplifier abstraction, the input impedance across the input port is infinity,
and the output impedance is zero. The gain, or the factor by which the input voltage is
amplified, is also infinity.

This chapter uses the Op Amp to construct more complex circuits using its simple,
abstract model. Internally, the Op Amp itself is a moderately complicated circuit (see,
for example, Figure 15.2) and its design is beyond the scope of this book. Briefly, it
contains an input stage not unlike the differential amplifier discussed in Example 7.21
in Chapter 7, or Example 8.3 in Chapter 8. This differential input stage gives the Op
Amp its high input resistance, and a high gain. It also converts the differential input
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Figure 15.1: The Operational Amplifier Abstraction

Figure 15.2: A chip photograph of the MAX406 Op Amp from Maxim. The chip is
roughly 2mm on a side

voltage to a single-ended output." Typical Op Amps also have a second stage similar to
the second stage in Example 7.21 in Chapter 7, which provides additional amplification
and level shifts the output voltage to zero when both inputs are equal. Op Amps may
also have an output stage similar to the buffer illustrated in Figure 8.40 in Chapter 8,
which gives the Op Amp its low output impedance.

In this chapter, initially, our discussion will be in terms of circuits containing Op
Amps and resistors. After the basic ideas of Op Amps used as dependent sources and
negative feedback have become familiar, circuits with both capacitors and resistors will
be introduced.

!Op Amps with single-ended inputs are also useful. Example 15.1 discusses one such.
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15.1.1 Historical Perspective

The name “operational amplifier” originates from the bygone days of the analog com-
puter (1940-1960), in which the constants in differential equations were represented by
the gains of amplifiers. Thus these amplifiers, constructed from balanced pairs of spe-
cially manufactured vacuum tubes, had to have reliable, known, fixed gains. Because
transistors are inherently more temperature-dependent than vacuum tubes, it was at
first thought that satisfactory transistor Op Amps could not be built. But in 1964 it was
discovered that by fabricating balanced transistor pairs close together on a single sili-
con chip to minimize thermal gradients, the temperature problems could be overcome.
And thus were born in rapid succession the 703, the 709, and then the ubiquitous 741.
Op Amps are rarely used for analog computers any more, but instead have become
universal building blocks in all aspects of analog circuitry.

15.2 Device Properties of the Operational Amplifier

The symbol and standard labeling for the operational amplifier are shown in Fig-
ure 15.3a. The two required external power supplies have been explicitly shown in
the diagram, although showing them is not the usual practice. All five currents have
been labeled, in addition to appropriate node voltages, referred to the indicated com-
mon ground terminal. In this primitive circuit, the voltage v; is used to control the
output voltage v,. Let us examine this control function in detail to find out both the
extent of the control, and the cost of the control, that is, how much power must be
applied from source v; to control a given amount of power at the v, terminal. To ad-
dress the first problem, we set up the circuit exactly as in Figure 15.3, and measure
the output voltage v,, both as a function of time and as a function of v;, assuming v;
is some low frequency sinusoid. The results are shown in Figure 15.3b and c. Note
the difference in scale of the voltage axes, indicating that the output voltage is perhaps
300,000 times as large as the input voltage. The plot of u, versus v; shows a region
around the origin where v, is fairly linearly related to v;, but much beyond this range
the control becomes ineffective, and v, stays at a fixed voltage, or saturates, at roughly
either +12 volts or -12 volts, depending on the polarity of v;. The curves will also differ
for different samples of the same Op Amp type.

Separate measurements on the device, not illustrated in Figure 15.3, would indicate
that the maximum output current i, is about 10 mA for the 741, and that the input
currents i~ and it are extremely small, of the order of 10~7 amps. Thus it is obvious
without any formal calculation that the amount of input power required for the control
function is orders of magnitude smaller than the power which can be controlled at the
output.

The curve of output voltage versus input voltage, Figure 15.3c, is nonlinear. But
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Figure 15.3: Operational amplifier characteristic. As illustrated by the dashed lines
in (c), different devices of the same type might have different characteristics. The
characteristics might also depend on temperature
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Figure 15.4: Non-inverting Op Amp amplifier. The characteristic in (b) assumes
Ry/R; =11

we also observe that the device has very large voltage gain, defined as Av,/Av;. We
certainly would be willing to sacrifice substantial amounts of gain in return for a cor-
responding improvement in linearity. Fortunately, the addition of two resistors to the
circuit results in precisely this trade-off. Figure 15.4 shows one possible circuit config-
uration, and the resulting relation between v, and v;. We will have more to say about
this circuit in Section 15.3.1.

15.2.1 The Op Amp Model

To gain some insight about how the circuit in Figure 15.4 is working, we first need
a circuit model which approximates the Op Amp behavior illustrated in the data in
Figure 15.3. On the basis of the preceding chapters, we are led to assign node voltages
as in Figure 15.3a, and apply KCL to the circuit. The current law equation turns out
to be not very helpful, but it is important to understand why, so we proceed. From
Figure 15.3a,

.i++i*+ip]+ip2+i0=0 (151)

As noted above, it and i~ are about four orders of magnitude smaller than i, hence

ip & —ipy — g (15.2)

But i,; and iy, are both power supply currents, so Equation 15.2 merely states
that the output current comes from the power supplies. Important, but not very useful
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Figure 15.5: Linearized characteristic

(except possibly for the calculation of power dissipation).

Figure 15.3c offers more insight. We see that in the center of the characteristic, the
output voltage is approximately proportional to the input voltage, or, more precisely,
to the difference between v+ and v—. (Note that vt and v~ are labels for voltages, and
hence each can be positive or negative, depending on the circuit.) If we idealize this
relationship by making it linear, then the curve of Figure 15.5 results. The curve can
now be expressed mathematically as

v = Alvt —v7) (15.3)

This is the mathematical representation of a voltage-dependent voltage source, con-
trolled by (vt — v~). For this particular device the constant A, the voltage gain, is
300,000.

The model in Figure 15.6 represents Equation 15.3 in circuit terms. To clearly
distinguish the dependent source from an independent source, as before, all dependent
sources are represented by diamond-shaped symbols. The disembodied wires on the
left of the diagram are distressing at first sight, but merely indicate that the input current
to this ideal voltage-controlled voltage source is zero by definition; i.c., it =i~ = 0.

The dependent source of Figure 15.6 by itself is clearly an imperfect model of an
Op Amp. The saturation so clearly present in Figure 15.3c is missing from Figure 15.5
and from the model of Figure 15.6, as is the temperature dependence. To simplify
the initial discussion, we shall ignore saturation effects in Op Amps when discussing
linear circuits by assuming that we always operate in the central linear part of the
amplifier characteristic. We will specifically examine saturation behavior of Op Amps
in Section 15.7.
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Figure 15.6: Voltage-controlled voltage source

As a summary, the idealized Op Amp model shown in Figure 15.6 has the following
properties:

e The output voltage

v, = A(vt —v7)
where the gain A — oo. The output resistance is 0.
e The input currents i* = 0 and ¢~ = 0. Accordingly, the input resistance
is infinite.

15.3 Simple Op Amp Circuits

15.3.1 The Non-inverting Op Amp

Now we are in a position to find an analytical relation between v, and v; for the circuit
in Figure 15.4. We replace the Op Amp by the linear model in Figure 15.6, as shown in
Figure 15.7, then analyze this linear circuit by the methods of Chapter 3. The voltage
variables defined in the figure are in fact the node variables for the circuit, so we can use
the node method to derive three independent expressions relating the three unknown
voltages.

First, notice that
vt =, (15.4)
since v; is the branch voltage between v* and the ground node.

Next, recalling that the model specifically assumes no input current, that is, i~ =~ 0,
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Figure 15.7: Model of a non-inverting Op Amp amplifier

we write the node equation at the node with voltage v~ as

v U =,

S
I )
Or,
_ R,
=—"— 155
R+ R Vo (15.5)
The dependent-source relation yields our third equation
v, = A(vt —v7) (15.6)
Substituting and solving, we obtain
Av;
Vo= ———pF— (15.7)

Recall that A is very large, 300,000 in our case, so if the voltage divider does not
introduce too much attenuation,

AR, -
R+ R,
hence we can neglect the “1” term in the denominator of Equation 15.7 to obtain the
approximate result

1 (15.8)

R+ Ry
e e B ¢

Uy A 5 (15.9)
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This is an important result. It says that the relation between v, and v, is almost
independent of the somewhat unreliable gain constant A of the original Op Amp.

In other words, because resistor values are stable, reliable and very insensitive to
temperature, we expect v, in this circuit to be a stable reliable function of v;. But this
reliability has come at a price: the gain is now much less than for the Op Amp alone -
somewhere between 1 and 1,000 depending on the choice of R; and R (but not more
than 1000, or the inequality, Equation 15.8, will no longer be valid).

Several important conclusions can be drawn from this simple example.

e It is possible to construct from a high-gain Op Amp and a pair of resistors a
reliable amplifier with a known fixed gain. This particular configuration is called
the non-inverting connection.

o Negative feedback:

The basic structure of this circuit, in which some of the output signal is brought
back to the input of the circuit, and compared with the input signal, is called
negative feedback.

For the feedback to be negative in simple Op Amp circuits, the attenuated output
signal must be fed back to the »~ terminal. If the output signal is fed back only
to the v™* input, very different behavior results, as we shall see. The first-order
consequences of these connections will be explored in this chapter, but more
complex issues of stability and oscillations are dealt with in books on Signals
and Systems.

® We have chosen to model the Op Amp by the dependent source of Figure 15.6,
which is a voltage-controlled voltage source, for obvious reasons.

e Although the +12 volt and -12 volt DC power supplies are obviously necessary
for Op Amp operation, (they power the voltage-controlled voltage source), their
inclusion in the circuit model we use for analysis is not very helpful, because
the KCL calculation does not yield a useful relation. Calculating the current
through a voltage source rarely provides useful insight, because a voltage source
can support any current.

The use of feedback as a way of building stable reliable systems is so intertwined
with our daily lives that we are totally unaware of it. Familiar examples are household
furnace controls, and “cruise controls” and “anti-lock brakes” on automobiles.
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Figure 15.8: Inverting Op Amp

15.3.2 A Second Example: The Inverting Connection

Another very common Op Amp circuit, the “inverting connection”, is shown in Fig-
ure 15.8a. For negative feedback, the signal from the output must find its way to the
negative terminal of the Op Amp as shown.

If we use the Op Amp model in Figure 15.6, hereafter referred to as the ideal
Op Amp model, then the circuit model for the inverting amplifier is as shown in Fig-
ure 15.8b. Following the same analysis method as before, we will derive three indepen-
dent equations relating the three unknown node voltages v*, v~, and v,. Accordingly,
by inspection

Summing the currents at the v~ node, we find, assuming the v~ terminal of the Op
Amp draws no current

(=), (W=v7) _

0 15.10
R Rb ( )
Hence

= v; + R v
_R0+Rb= Rﬂ+Rbﬂ

v

The Op Amp output relation yields
vy = A(vt —v7) (15.11)

Substituting and solving, we obtain

B —ARy/(R. + Ry) .
1+ AR /(R + Ry) "

(15.12)

Vo
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As before, if we assume A is of the order of 10%, and the resistor ratio R, /(. + Rs)
is not less than 0.001, then

R,
——>>1 15:13
R, + R, ( )
and Equation 15.12 can be approximated as
Up ™ —%vi (15.14)

Again we have a relation between the input and the output voltage that is almost in-
dependent of the unreliable gain A, and dependent only on resistor ratios. But this time
the output signal is inverted compared to the input signal, as indicated by the minus
sign. Equation 15.14 for the inverting connection and the corresponding equation for
the non-inverting case, Equation 15.9, are encountered so frequently that they rapidly
become primitives in our circuit analysis repertoire, as with the voltage divider and
current divider relations.

One might be tempted to use superposition on v; and the dependent source A(v* —
v~) in Figure 15.8b to find v~, but as discussed in Section 3.5.1 this is a hazardous
approach. The problem is that the value of the dependent source is controlled by some
other variable in the circuit, so we are not free to simply set the source to zero.

The safest rule to follow is: do not set dependent sources to zero in superposition
calculations.

Example 15.1 Single Ended Amplifier

Circuits containing single-input amplifiers can be analyzed in much the same
way as circuits containing Op Amps, as this example shows. Consider the circuit
shown in Figure 15.9, which contains a single-input inverting amplifier having
gain —A. Except for its finite gain, the amplifier is assumed to be ideal. Thus,
its input current is zero, it drives voyr = —Avp, and its negative feedback
makes the circuit stable.

Following the node method,

Umip — VIN + UmMID — YouT

=0 R,

with
vour = —Aumrp
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Figure 15.9: A single ended amplifier in a feeback loop. Note that power supply and
ground connections to the Op Amp are not shown

Combining these two equations yields

e —A(Ry/Ry) ’
OUT T AN 1+ (Re/Rr) "
which is identical to the result obtained for the inverting amplifier constructed

with an Op Amp. For example, with R, = 1k, R, = 100 k2 and A = 10°,
Your = 99.9’01;\;.

Further, in the limit A — o0,
R

2
vour = _'R—T-’IN
1

15.3.3 Sensitivity

It is helpful at this point to be more precise about just how “independent” v, really is
to changes in the Op Amp gain A. Let G be the gain v, /v; of the Op Amp circuit. Then
for the non-inverting connection, for example, we find from Equation 15.7

v, A
I N 15.15
v 1+ A_z_le:-Rg ( )

Taking the differential, assuming small changes in A and constant 7} and Ii;, we
obtain

1

= R,
(1+ Ag75)?

dG dA (15.16)

The fractional change in circuit gain is then, from Equation 15.15,
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i

Figure 15.10: Follower

dG 1 dA
e e e (15.17)
G (1+An—ffn—=) G

Thus with negative feedback a given percentage change in the Op Amp gain A
results in a much smaller percentage change in the overall circuit gain G, smaller by
a factor 1 + ARy /(R + Ry). Note from Equation 15.7 that this is exactly the factor
by which the gain is reduced as a result of applying the feedback. By inspection of
Figure 15.7, the gain term AR,/(R; + R) represents the gain for a signal traveling
all the way around the feedback loop: through the Op Amp with its gain of A, then
through the feedback resistor network with a “gain” of Ry/(R; + Rz), (hence called
the loop gain). In general, for negative feedback, gain changes are suppressed by a
factor 1 + (loop gain), and the overall gain is reduced by this same factor.

15.3.4 A Special Case: The Voltage Follower

A useful circuit for isolating one electrical system from another is the volrage follower
shown in Figure 15.10. Comparison with Figure 15.4a indicates that this circuit is
a degenerate case of the non-inverting connection, in which B; = 0 and Rz = co.
Hence, from Equation 15.9, the input-output relation for the follower is

Yo (15.18)

That is, within a part of 10~ or so, the output voltage is equal to the input voltage.
An obvious question: why not just use a piece of copper wire to get the gain of one in
Equation 15.187 To answer, we need only look at the currents. The current that must
be supplied by the input source is i*, hence is a few nanoamps. The maximum current
that can be supplied to some load by the Op Amp output circuit is a few milliamperes.
Thus for a one-volt signal level, the circuit is drawing perhaps 10~% watts from the
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signal source, but can deliver 1073 watts to the load resistor Ry. A piece of wire
obviously produces no such power gain. Said in another way, the Op Amp is providing
isolation between the input and the output parts of the circuit, in the sense that the
output resistor 12, can be changed by many orders of magnitude, with a corresponding
orders of magnitude change in output current, but the output voltage and the input
current will be virtually unchanged. This isolation is referred to as buffering.

15.3.5 An Additional Constraint: vt — v~ ~ 0

In all preceding Op Amp calculations, we have made an approximation that because
the so-called loop gain in the denominator is much bigger than one, the “one” term
can be neglected. This approximation is almost always valid in Op Amp calculations.
It is the factor 1+ (loop gain) that determines how insensitive the circuit is to changes
in the Op Amp gain constant A (see Equation 15.17, for example), hence large loop
gain is clearly a desirable design goal. If the loop gain is almost always going to be
large, it seems a bit clumsy (although clearly correct) to make the circuit calculations
without taking this fact into account until the last line. One would hope that with some
hindsight, it might be possible to make the “large loop gain™ assumption at the start of
the circuit calculation, thereby simplifying the math. Let us re-examine the circuit of
Figure 15.8b with this in mind.

We know that for most Op Amps, A will be 100,000 or larger, and the maximum
allowed v, will be about 12 volts (see Figure 15.3c). Hence the largest value of (v —
v~ ) for linear operation will be around 120 microvolts, a voltage orders of magnitude
smaller than either the input or the output voltage. On this basis it is reasonable to
assume, as before, i+ ~ 0, and i~ ~ 0, but include an additional constraint

vt —v ~0 (15.19)

Not equal to zero, just small compared to other circuit voltages. When these three
constraints are applied to the circuit in Fig 15.8b, we find

< 4+ 2~p (15.20)
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(compare with Equation 15.10). Solving for v,, we find

R
i o i 15.21
o i ( )
as before, except this time the calculation is much simpler, because the combined con-
straints of approximately zero voltage and approximalely zero current are quite power-
ful. For the non-inverting circuit of Figure 15.7, for example, we can write, using the

voltage divider relation,

R, + R, =

(15.22)

vyy=vt~w

Hence
- Ry + RQU

o R2 1
as before. The voltage constraint of Equation 15.19 is also called the virtual ground
constraint?, and can be interpreted in physical terms by noting that the output of a
circuit with negative feedback must adjust itself to force (vt — v™) to be nearly zero,
because that nearly-zero voltage is in turn multiplied by 100,000 to become the output
voltage.

(15.23)

Note: The v' — v~ =~ 0 constraint can only be applied if the Op Amp is not
saturated and the feedback is negative, that is, the net feedback signal comes from the
output back to the negative input terminal.

15.4 Input and OQutput Resistances

15.4.1 Output Resistance, Inverting Op Amp

Negative feedback has a profound effect on the Thévenin-equivalent input and output
resistances of circuits. To illustrate, we calculate first the Thévenin output resistance
of the simple inverting Op Amp assumed to be operating in the active (non-saturated)
region, that is, the circuit in Figure 15.8b. Obviously if we model the Op Amp by
the ideal Op Amp model, the Thévenin output resistance is by definition zero, with
or without feedback. So to show any effect, we must use a more accurate device
model which includes some finite resistance in series with the dependent source, as in
Figure 15.11. One way of calculating the Thévenin output resistance is to apply a test
current 7, at the output terminals, as shown in the figure, and calculate the resulting
voltage v;, when all other independent sources, in this case v;, are set to zero.

20r more accurately, the virtual short constraint, since the inverting and non-inverting inputs need
not always be at ground potential.
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Figure 15.11: Calculation of output resistance

Note: In calculating the Thévenin resistance do not casually set dependent sources
to zero, as their value is dictated by some other variable in the circuit which may or
may not be zero.

The calculation of v, is straightforward. We use the node method with conduc-
tances in place of resistances for convenience. In other words, we use g; = 1/ry,
G, = 1/R,, Gy = 1/ Ry, and g, = 1/7,. Applying KCL at the nodes with unknown
node voltages, we get the following three independent equations

vt o= 0 (15.24)
vm o= Lu, (15.25)
Gy + G+ g;
i+ [AWT = v —wge + (v —w)Gy = 0 (15.26)
(15.27)

To simplify the mathematics, we now assume for this calculation that r; is infinite
(g: = 0), because it is always much larger than I?; or ;. Now, eliminating vt and v™
from Equation 15.26,

i AGsgy G_st

i 0 N 15.28
U Gf 4 Gs L Gj' + Gs ( )

Thus the output conductance is the sum of three conductances. The first term is the
effect of the feedback, the second term is the output conductance of the Op Amp alone,
and the third term in resistance notation is Ry + R, hence is the effect of the feedback
resistors in the absence of the Op Amp. For large A, this last term is not important, so
the Thévenin output conductance with feedback is
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A
— =G, >~ g [1 + -i] (15.29)

or, in more familiar terms

R
- - 30
Go at [1+AR3+RI] (15 )

Hence the Thévenin output resistance of the circuit is

Tt

Ry ——m——— (15.31)
1+ A—L—R,iﬂj
For large loop gain
Tt
R, =~ 1_E (15.32)
Tty

The Thévenin output resistance 1, for the Op Amp alone, without feedback is typ-
ically of the order of 1000 ohms, so for large A and reasonable R, and Iy, the overall
Thévenin output resistance R, for this topology circuit is a fraction of an ohm.

Equation 15.31 is in fact a general result. For any linear circuit in which the feed-
back resistor is sampling the output node voltage (rather than the output current), the
Thévenin equivalent output resistance with feedback is equal to the output resistance
without feedback, divided by a factor 1+ (loop gain), the same factor involved in gain
calculations and calculation of sensitivity to changes in the gain constant A.

15.4.2 Input Resistance, Inverting Connection

To calculate the Thévenin-equivalent input resistance of the inverting Op Amp circuit,
we apply a test source at the input, and measure the resulting response. (There are
no internal independent sources to be set to zero.) In Figure 15.12 we have chosen
to drive with a test voltage v;, and calculate the resulting current 7,. As before, it is
equally valid to apply a test current source, and calculate the resulting voltage. The
calculations are greatly simplified if the circuit topology is taken into account. The
input consists of two elements in series: the resistor R, and a complicated circuit
which will reduce to the Thévenin-equivalent input resistance of the rest of the Op
Amp circuit. Recognizing this, we can first calculate the resistance fo the right of the
R, (just set R, to zero in Figure 15.12) and then add R, to this calculated value to get
the complete answer. We will denote the resistance of the Op Amp circuit to the right
of R, as R;, and the complete input resistance, including resistor R, as I2;.
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5

Ty

At Vo

Figure 15.12: Input resistance calculation
Because we chose a test voltage, and R, is zero for now, the control variable is
directly constrained:
yt = 0 (15.33)
vT o= (15.34)
Now apply KCL at the input node

U U — A(vt —v7)

= 15:35
b T Rf —+ ( )
Whence ) i i 4
Lt
—=0Gi=—4+—-— 15.36
Ut i Rf + 7y ® Rf + 1 ( )

Again we have the sum of three conductances. So the corresponding resistance
expression, the Thévenin input resistance for the circuit, is the parallel combination of
three terms:

Ry+r
Re=re|l (B + 0l (F52) (15.37)

the Op Amp input resistance, the feedback resistor plus Op Amp output resistor, and
an effective resistance generated by the feedback. For large A,

; Rf + 1
R; ~ 1 (15.38)

that is, we expect the input resistance to be very low. For example, for a typical case of
Ry = 10k£2, r, = 1000 ohms, A = 105, the input resistance measured at the v~ terminal
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Figure 15.13: Output resistance calculation, non-inverting circuit

will be 0.1 ohm. Simple physical reasoning serves to support this result. If we imagine
applying a small voltage to the input, say 0.1 mV, then the Op Amp will immediately
drive v, to -A times 0.1 mV, or -10 volts. So resistor Ry has a large voltage across it,
hence a large current will flow. This large current must come from the input source,
and is 10° times as large as one might expect for such a small input voltage. Large
current for small voltage means the effective input resistance will be very small, in fact
roughly the feedback resistor Iy divided by A.

In accordance with our initial assumptions, the complete input resistance of the
inverting Op Amp, including resistor R, is

R,=Ri+R, (1539)

as can be verified by calculating the input resistance directly from Figure 15.12 includ-
ing R.. Because R; is so small,

R ~R, (15.40)

15.4.3 Input and Output R for Non-Inverting Op Amp

The active-region output resistance of the non-inverting Op Amp circuit can be cal-
culated in much the same way as for the inverting circuit. We set the independent
source to zero and apply a test current source to the output terminals, as shown in
Figure 15.13. Now calculate v;. As usual, we apply the node method to find three
independent equations. First find expressions for v and v~, and then write KCL at
the output node. Again we assume r; is much larger than 12, to simplify the math.
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vt = 0 (15.41)
v~ LtR—liz—Rz (15.42)
i :‘ - L A(:: —v) _ (15.43)
Hence
%:Go: R]iﬂz +%+ ARE/(iIJ’RQ) (15.44)
For large A and reasonable R; and 23,
R £ (15.45)

o= ARz/(Rl + Rs)

This is the Thévenin output resistance r; of the Op Amp alone, divided by the loop
gain, or, more accurately, from Equation 15.44, 1 + (loop gain). As before, the output
resistance is very low.

The input resistance for the active (nonsaturated) region can be found from the
circuit in Figure 15.14. As before, we need expressions for v+ and v~, and a KCL
equation involving .

vt = (15.46)
T o= U — 4Ty (15.47)
KCL at Node 1 yields
o At —-vT)—v w”
st gl 15.48
" ¥ R[ + 7 Rz ( )

Substituting and solving, assuming A is large, we find

R,‘:Utzf‘,‘[

iy

——@—] (15.49)
Rl + et R2

This expression shows that for the non-inverting connection, the effective input re-
sistance in the active region is very high, (roughly the Op Amp input resistance r; mul-
tiplied by the loop gain) in contrast to the result for the inverting case, Equation 15.38.
Reasoning physically, if we apply a voltage v, at the input, the output voltage adjusts
itself so that v~ is very nearly equal to v, so there is very little voltage across r;, hence
much less current flowing in it than we might expect. Hence the circuit input resistance
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Figure 15.14: Input resistance calculation, non-inverting Op Amp

is large. This property enables the non-inverting connection to be particularly useful
in buffering applications.

This point of view suggests an alternative approach to the calculation. If we assume
at the outset that v* — v~ = 0, then

R
e A('U+ == ﬂ_)m (]550)

But v* — v~, although small, must not be zero for finite 7;:

’U+

— U7 =Ty (1551)
When Equation 15.51 is substituted into Equation 15.50, we find R; as before
(Equation 15.49).

15.4.4 Generalization on Input Resistance *

It is obviously of some importance to the circuit designer to know whether feedback
is going to increase or decrease the effective input resistance of a circuit. We can gen-
eralize from the two circuits we have examined to state that the effect of feedback on
input resistance depends on the circuit topology. If the source current and the current
through the feedback resistor and the current through the Op Amp input resistor r; all
sum at a common node as in Figure 15.12, then the effective input resistance is very
low, as shown in Equations 15.36 and 15.38. (Remember, here we are referring to R?;,
the resistance of the Op Amp circuit to the right of R;.) Equation 15.36 is in fact a
general result: the input conductance for any feedback circuit with this input topology
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(neglecting r;) is the conductance without feedback, here 1/(Ry + r,), multiplied by
14 A.

If on the other hand, the source and the Op Amp input resistor are in series, forming
a loop with the feedback resistor, as in Figure 15.14, the effective input resistance of
the circuit will be very high. In a word, if at the Op Amp input we sum currents
at a node, the circuit input resistance is low, if we sum voltages in a loop, the input
resistance is high.

15.4.5 Example: Op Amp Current Source

We have shown that both the inverting and non-inverting Op Amp connections have
very low output resistance, that is, they approximate ideal voltage sources. But in some
circuit applications, we may want the Op Amp to look like a current source, that is,
we want a very high output resistance. It follows from the discussion at the end of
Section 15.4.1 that such a design can be realized by a change in the topology of the
output circuit.

In the two circuits already discussed, the feedback network sends a signal back to
the negative input terminal that is proportional to the output voltage v,. Thus the circuit
tends to stabilize this variable, thereby creating a voltage source. By analogy, to make a
current source, we must arrange to feed back a signal proportional to the output current
flowing in the circuit being driven by the Op Amp. One possible topology is shown
in Figure 15.15a. The circuit looks, at first glance, like the non-inverting connection
shown in Figure 15.15b, but there is an important difference. In the new topology, the
resistor Ry, we are trying to drive is now part of the voltage divider feedback network.
Thus in Figure 15.15a we are using the resistor R, to sample the current through Ry,
whereas in (b) R; and R, sample the voltage across Ry,. The distinction seems trivial
until we think in terms of R, varying in value, or even being nonlinear. Then it is clear
that there is a fundamental difference in the two topologies.

Once the topological issues are understood, the circuit analysis is trivial. Assuming
vt ~ v, we note from Figure 15.15a or ¢

vt = (15.52)
v- = iR, (15.53)
vt o~ g7 (15.54)
Thercfore
; Ui
~— 15.55
iL R. ( )
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Circuit being driven
5 by Op Amp, here

shown as resister Ry,

b) Standard non-inverting connection

c)

Figure 15.15: Op Amp current source
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]
Vl:=0

Figure 15.16: Output resistance of current source

independent of the value of Ry,

The fact that the current through R;, is independent of the value of 7, suggests
that the Op Amp circuit looks like a current source. It is a simple matter to verify this
more formally: replace I2;, by a test source, and find the Thévenin output resistance of
the circuit. In this case we choose a test current source i, as in Figure 15.16.

o= = =if, (15.56)
g* = 0 (15.57)
v, = AQT —vT ) +im, — v (15.58)

= (14 AR, +iero (15.59)
R, = ”—: = {1 AV E 7 (15.60)

For reasonable circuit parameters, R, could well be many megohms.

Again these results can be generalized to summarize the effect of negative feedback
on the effective output resistance of a circuit. If the Op Amp, the load resistor R, and
the feedback network appear to be connected in series, in a loop, hence sharing a
common current, then the output resistance will be high. If the Op Amp, R, and the
feedback circuit all appear to be in parallel, tied to a common node, sharing a common
voltage, then the output resistance will be low.

15.5 Additional Examples

This section contains a number of examples of Op Amp circuits. They are intended
both to illustrate the versatility of the Op Amp as a circuit design building block and
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Figure 15.17: Adder

to serve as a review and extension of analysis techniques introduced earlier in this
chapter.

15.5.1 Adder

An Op Amp circuit for adding two signals together is shown in Figure 15.17. If we
assume vt ~ v, then application of KCL to the v~ node yields

U1 V2 Vo
— 4+ =+ =0 15.61
TR R (126D
Therefore
R R
Vg =2 — (E‘:'ﬂl + szz) (1562)

which represents the weighted sum of the two input signals.® Note that within the
accuracy of the voltage constraint v* — v~ =~ 0, the two input signals do not cross-
couple, that is, no current from v, flows in Ry, and vice versa. Thus the circuit is an
ideal adder.

15.5.2 Subtracter

If we wish to take the difference between two signals, then the circuit of Figure 15.18
is appropriate. Direct application of superposition to the independent sources yields

3Because the Op Amp model is linear, the same result can be derived using superposition as well.
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the two subcircuits shown in Figure 15.18b and c. In (b), source v; has been set to
zero. On the assumption of ¢+ =~ 0, there will be no current through Rz and Iy, so
vt = 0, and the topology is seen to be that of an inverting amplifier. Hence

Voo = ——=U 15.63
I ( )
When source v is set to zero, and the circuit slightly rearranged, the non-inverting
topology emerges, with a voltage divider at the input, as indicated in Figure 15.18c.
Hence

Byl R ,
Veb = ( R ) (33 + RJ v2 (1564

The total output voltage is the sum of the two voltages v,, and vy. To make a
subtracter, the resistor ratios in Equations 15.63 and 15.64 should be equal. This can
be achieved by setting B3 = ?; and 12y = f3. Then

s == (g =0]) (15.65)

Now v, is proportional to the difference between the two input voltages.

15.6 Op Amp RC Circuits

15.6.1 Op Amp Integrator

The circuit in Figure 15.19 gives a much closer approximation to ideal integration than
the simple RC circuits discussed in Chapter 10. The analysis to show this is quite
straightforward. Assuming linear-region operation, we replace the Op Amp by the
dependent-source model, as in Figure 15.19b, and analyze the resulting linear circuit
using the node method. KCL at the v~ node yields

v;— v~ % Cd(v, —v7)
R dt

If we assume at the outset that the Op Amp gain A is large enough to ensure that

=0 (15.66)

vt~y (15.67)

then because v+ = 0, Equation 15.66 reduces to
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Figure 15.18: Subtracter
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a) Circuit

Lo Vo

Vi ' ’—< v Aty

b) Active region subcircuit

Figure 15.19: Op Amp Integrator
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v;  Cdu,
— ~0 15.68
R dt ( )
or,
1
Vg = _—_R_é Ut‘dt (1569)

That is, the circuit calculates the (negative) integral of the input voltage.

A more exact calculation involves substituting the Op Amp equation

v, = A(vt —v7) (15.70)

into Equation 15.66, again noting vt = 0

v Ul dv~ dv™
§—§~CA = 76‘?70 (15.71)
Hence
du~ _
RC(1+ A)W +vT = (15.72)

The effective time constant of the circuit (by analogy with Equation 10.150, for
example) is

7= (14 A)RC (15.73)

Thus the time constant associated with the passive elements alone is multiplied by
the gain of the Op Amp. This is often referred to as the Miller Effect, originally in
reference to the fact that a small input to output capacitance in early vacuum tubes
seriously limited the frequency response of amplifier circuits. The time constant can
be made very large for modest component values. For example, if the RC time constant
is I second, and A is 10° or greater, the effective circuit time constant in measured in
days. On this time scale almost any waveform lasting for less than a minute or so will
seem like a “short pulse”. Thus the analysis of Section 10.6.3 is applicable, and on the
time scale of minutes, the circuit acts like an Integrator.

The ultimate test of an Integrator is to apply a small voltage step, V, and see how
closely the Integrator output conforms to a ramp. From Equations 15.70 and 15.72,

1+ A)RC% = —AV (15.74)
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Figure 15.20: Waveforms of integrator

For v; a small fixed value V' after t=0, v, will follow the usual exponential charging
curve toward (—AV), (see Equation 10.101, for example). That is,

vy = —AV (1 — e/(HARC) (15.75)

This curve is plotted in Figure 15.20 on the basis that the RC time constant (without
the Op Amp) is roughly one second. Obviously on the time scale of minutes, the circuit
looks like an almost-perfect integrator, provided, of course, the Op Amp is always
operating in the active region.

15.6.2 Op Amp Differentiator

The Op Amp differentiator shown in Figure 15.21 complements the integrator. Be-
cause v~ ~ v+ and v+ = 0, we know that the current i; through the capacitor is given
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Figure 15.21: Differentiator circuit

by
dv;

|

T
Since virtually no current flows into the Op Amp, iy = i, and therefore

Up = —R’il
Eliminating 7, from the above two equations, we obtain

d’U,’
vo=—RC—= (15.76)

That is, this circuit calculates the (negative) time derivative of the input voltage.

Sample input and output waveforms for the differentiator arc shown in Fig-
ure 15.22. For the square pulse input shown, the outputs are a pair of spikes each
at the time instant the input makes a transition. As illustrated in the example, the
differentiator circuit is often used in detecting shape transitions in waveforms.

15.6.3 An RC Active Filter

An Op Amp embedded in a more complicated RC circuit is shown in Figure 15.23a.
This is an RC active filter, with all of the useful resonance properties of a capacitor-
inductor circuit. To show this, we calculate the output voltage v, in terms of v;. First
draw the linear-region circuit model with the dependent source, Figure 15.23b. Then
write Node equations, taking current entering the node as positive. We assume at the
outset vt — v~ ~ 0. because vt is zero in this circuit, the appropriate constraint is
v~ =~ (. For Node vy,

dv d(v, —
(vi — 1) —C;—j-l-Cz——*"—( ar v) =0 (15.77)
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vit)

vlt)

Figure 15.22: Differentiator waveforms

and for Node v~
dv ;
Cld—; + Uog2 =0 (15.78)
Hence
dv dv,
vigt = qu+ (G +Cz)d—; -~ (15.79)
dv
0 = C['Etl + Vs G2 (1580)

These equations can be solved by taking the derivative of both sides of both equa-
tions, and eliminating terms in v; and its derivative by substitution from Equation 15.80
and the derivative of Equation 15.80. By so doing we obtain a second order differential
equation for v,:

d2uo+ it Crdy, | 9192 __ Gidy
a2 oo d G ° Chdt

(15.81)

This equation is identical in form to that of an RLC resonator (see Equa-
tion 12.119), but this circuit contains no inductors. The effect of an inductor is created
by an active element, in this case the Op Amp, and the capacitors, hence the name
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Figure 15.23: Op Amp RC active filter
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RC active filter. The advantages of an RC active filter (this is only one realization;
there are many others) are that it can provide a power gain unlike an RLC network and
that it does not require inductors. Because inductors are difficult to fabricate in VLSI
technology, this is an important design advantage for integrated circuits. Furthermore,
inductors are not very ideal elements, especially for low-frequency applications (for
example, for frequencies below perhaps 100 kHz). Thus in this frequency range, reso-
nant circuits are often built out of Op Amps, resistors, and capacitors.

The properties of filter circuits were explored previously in Chapters 10 and 13.
As we did in Chapter 13, the circuit of Figure 15.23 can also be analyzed using the
impedance method by using impedance values 1/sCy and 1/sC for the capacitors
(sec Section 15.6.4). We will also see other examples of impedance based analysis for
Op Amps later in this chapter.

Since Equation 15.81 is identical in form to Equation 12.119 for the RLC circuit,
we can readily determine the behavior of our RC active filter. Notice that the output
response v, of the Op Amp RC active filter corresponds to the capacitor voltage ve
in Section 12.5. The equation corresponding to the series RLC circuit in Section 12.5
was

dvg Rdve 1~ 1
a2 L dt TLC T IC

with the damping factor o = £ and the undamped resonant frequency wy, = —=.

vIN (15.82)

Thus, the corresponding damping factor in our Op Amp circuit is

_ G+ Gy
@=nHea (15.83)

and the undamped resonant frequency is

_ | g2
Wy = {0102 (15.84)

15.6.4 The RC Active Filter — Impedance Analysis

Let us analyze the Op Amp active filter circuit of Section 15.6.3 for a sinusoidal drive.
Since the Op Amp is a linear device (namely, a VCVS) we can use the impedance
method for the analysis.

The circuit configuration is repeated in Figure 15.24a. The impedance model for
the circuit is shown in Figure 15.24b. The circuit is sufficiently complicated that node
analysis is advisable. At node 1, assuming vt ~ v~
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Figure 15.24: RC active filter analysis using the impedance method

Vi-W)a1+ (Vo —W)sCe —VisCy =0 (15.85)
where g; = 1/R;. At the V™ node,

VisCy + Viga = 0 (15.86)
where g3 = 1/Rs.

Now V/, can be found by Cramer’s Rule. First, rewrite with source terms on the left

Vi = Vilgi +3s(C1+ Cy)] — VosChy (15.87)
0 VisC1 + Voga (15.88)

Il
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(These equations should be compared to the corresponding differential equations,
Equations 15.79 and 15.80). Solving for the complex amplitude V5,

—g15C1V;
Ve = 15.89
[0+ 3 (C1 + Co)] g2 + 5°C1C, (15.89)

- —q18C1V;
= g9z + S (Cl + 02) g2 + SgC]CQ (15.90)

—5(01/C2) Vi

- Latls 15.91
2+ G g + B8 (15.91)

Equation 15.91 has exactly the form of Equation 14.19 (except for the minus sign),
hence the circuit is equivalent to a parallel RLC filter. By comparing corresponding
terms we find, as in Chapter 12,

Resonant frequency = w, = 1{(?{?2 (15.92)

. C,+Cy
Bandwidth 15.93
i, ( )

Il

92

With these scaling factors, the frequency response plot of Figure 14.12 directly
applies to this circuit (except for the additional 180° in the phase), along with all other
properties discussed in Section 14.1.

15.6.5 Sallen-Key Filter

This section introduces a lowpass filter called the Sallen-Key filter. Its circuit and
impedance model are shown in Figure 15.25.

Let us focus on sinusoidal inputs and use the impedance method to obtain its input-
output relationship. First, notice that the portion of the circuit within the dashed box is
a non-inverting connection of the Op Amp with gain

G=1+—" (15.94)

Thus, for the purpose of analysis, we can replace the circuit within the dashed box
with an amplifier whose gain is G. Therefore, we can write

V, =GV, (15.95)





