Cell, Volume 138

Supplemental Data

Androgen Receptor Regulates

a Distinct Transcription Program

in Androgen-Independent Prostate Cancer

Qianben Wang, Wei Li, Yong Zhang, Xin Yuan, Kexin Xu, Jindan Yu, Zhong Chen, Rameen Beroukhim, Hongyun Wang, Mathieu Lupien, Tao Wu, Meredith M. Regan, Clifford A. Meyer, Jason S. Carroll, Arjun Kumar Manrai, Olli A. Jänne, Steven P. Balk, Rohit Mehra, Bo Han, Arul M. Chinnaiyan, Mark A. Rubin, Lawrence True, Michelangelo Fiorentino, Christopher Fiore, Massimo Loda, Philip W. Kantoff, X. Shirley Liu, and Myles Brown

Figure S1. Molecular basis for androgen-independent faster growth of AIPC. (A) abl cells grow faster than LNCaP cells in the absence of androgen. The cell proliferation was measured using the WST- 1 assay on day 0 , day 2 and day 4 in the absence or presence of DHT from 0.01 nM to 100 nM . (B) Summary of differentially expressed genes ($\mathrm{q}<0.05$) from abl/LNCaP gene expression profile and two clinical AIPC/ADPC datasets. Red segments represents up-regulated genes, and green segments represents down-regulated genes.

A

B
abl (no DHT)/LNCaP (no DHT)

Total 14,868 genes
abl (no DHT)/LNCaP (DHT 4 hr)

Total 15,782 genes

Varambally AI/AD prostate cancer

Total 5,248 genes

Stanbrough AI/AD prostate cancer

Total 7,488 genes

Figure S2. Independent AR siRNAs have same effects on decreasing abl basal AR upregulated genes. abl cells were transfected with two independent AR siRNAs as described in Figure 1A. Seventy-two hr after siRNA transfection, real-time RT-PCR was performed using transcript-specific primers (Table S1).

Figure S3. Map of whole genome AR binding in LNCaP and abl cells. Red and dark color represents AR binding in LNCaP and abl cells, respectively.

```
    #山|||山|П|
```



```
    |\mp@code{|m||||||||||||||||||}|
    _ |||M||||||||N||III|
```



```
    HN|||||||||||||||||, ||||||||\||||||||||||||
```



```
    |||||||||||||||m|||||| M||||||||
```



```
    |m||||||||||||||||||||||||||||||||||||||||||||||||||||||
```

 LNCaP (8708 sites, FDR 5\%)
 abl (6353 sites, FDR 5\%)
 Figure S4. Quality controls for ChIP-on-chip binding data. Bar files were generated after MAT analysis of AR whole genome ChIP-on-chip raw data from LNCaP and abl cells. AR binding peaks at the KLK3 (PSA) enhancer (Schuur et al., 1996), the KLK2 promoter and enhancer (Sun et al., 1997; Yu et al., 1999), and the TMPRSS2 enhancer (Wang et al., 2007) were indicated by arrows.

Figure S5. Comparison of AR binding in LNCaP and abl cells. The pseudo fold-change of the same AR binding site between two cell lines were determined from the scoring formula, Fold_Change $=($ MS1 - MS2 $) /$ maximum $($ MS_cutoff, minimum $($ MS1, MS2 $)$). Where MS1 and MS2 are MAT scores of the same AR binding site in two cell lines, MS_cutoff is the corresponding MAT score (around 3.7) for the $1 \times 10^{-4} \mathrm{p}$ value cutoff. The differential AR binding sites (3,716 sites in abl cells and 6,592 sites in LNCaP cells) have fold change ≤ 0.5 or ≥ 2. The other AR bindings have same binding affinity in two cell lines (5,424 sites).

Figure S6. Effects of distance on AR binding enrichment near differentially expressed genes. The percentages for each category of genes that have a AR binding site were calculated with distance from 10 kb to 100 kb (10 kb as interval), and then the percentages were divided by the corresponding percentages for control category to derive the enrichment folds in LNCaP cells (A) and abl cells (B).

A

LNCaP

B
abl

Figure S7. AR binding sites in abl cells relative to the UBE2C gene shown using the UCSC genome browser format.

Figure S8. KDM1 over-expression decreases H3K4me2 and FoxA1 levels at the UBE2C enhancers in LNCaP and abl cells. LNCaP and abl cells were transfected with pCMX-FLAG-KDM1 or pCMX-FLAG vector. Three days after transfection, cells treated with ${ }^{(+)}$or without (-) DHT for 4 hr . H3K4me2 and FoxA1ChIP were then performed.

Fold over input

| $0-1$ | $1-2$ | $2-4$ | $4-6$ | $6-8$ | $8-10,10-20$ | >20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure S9. FoxA1 silencing does not affect differential H3K4me2 level on the UBE2C enhancers. LNCaP and abl cells were transfected with siFoxA1 or siControl. Three days after transfection, cells treated with (+) or without (-) DHT for 4 hr . H3K4me2 ChIP was then performed.

Fold over input					
$0-1$	$1-2$	$2-4$	$4-6 \quad 6-8 \quad 8-10 \quad 10-20>20$		

Figure S10. H3K4me1, H3K4me2 and FoxA1 are specifically present on AR binding regions near cell cycle genes. Levels of H3K4me1 and H3K4me2 (A), and FoxA1 (B) on UBE2C enhancer 2 (positive control), CDK1 enhancer, CDC20 enhancer, ANAPC10 enhancer and 7 randomly selected AREs that do not have AR binding were determined by ChIP assays in the absence $(-)$ and presence $(+)$ of DHT. (mean ($n=2) \pm$ s.e.).

A

B

Figure S11. Over-expression of KDM1 (A) and silencing of FoxA1 (B) significantly decrease AR binding at the CDK1 and CDC20 enhancers. The experiments were performed as in Figure 5 except that AR ChIPs were performed on the CDK1 and CDC20 enhancer.

A
B

Fold over input

$0-1$	$1-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-20$	>20

Figure S12. Over-expression of UBE2C does not increase AR binding at the M-phase gene enhancers in LNCaP cells. LNCaP cells were transfected with UBE2C or a UBE2C mutant (C114S). Three days later cells were treated with DHT or vehicle for 4 hr and AR ChIP assays were performed on the CDC20, CDK1 and ANAPC10 enhancers. abl cells without transfection was used as controls.

A

B

Figure S13. AR-regulated high UBE2C protein expression level in androgenindependent cell line C4-2B. Western blots were performed using the antibodies indicated ninety-six hrs after siRNA transfection.

Figure S14. Greater H3K4 methylation, FoxA1 recruitment and AR binding on the UBE2C enhancers in a clinical case of AIPC than in an ADPC case. ChIP was performed using tissues from one ADPC and one AIPC (mean ($\mathrm{n}=2$) \pm s.e.). Tissue ChIP was performed using standard ChIP protocols as previously described (Yu et al., 2007) with the following modifications. Primary tissues were chopped into small pieces with a razor blade and transferred into 5-10 ml of PBS for crosslinking in 1% formaldehyde for 15 minutes. The crosslinking was stopped by $1 / 20 \mathrm{~V}$ of 2.5 M Glycine and the cells were washed with 1xPBS and harvested in 1xPBS with protease inhibitors. The tissue pellets were further disaggregated using a tissue homogenizer. The cells were then pelleted and resuspended in cell lysis buffer containing protease inhibitors for 10 min . The samples were then resuspended in nuclei lysis buffer for $10-20 \mathrm{~min}$. Prior to sonication 0.1 g of glass beads were added to the lysate and DNA were sonicated to an average size of 400bp.

ADPC and AIPC Tissue ChIP

\square ADPC case \quad AIPC case

Figure S15. Over-expression of UBE2C in LNCaP cells cannot accelerate their proliferation in the absence of androgen. LNCaP cells were grown in phenol-red free RPMI 1640 supplemented with 10% FBS. Cells were transfected with a wild-type UBE2C construct or a catalytically dead active-site mutant (C114S) (Reddy et al., 2007) using Lipofectamine 2000. Western blot (A) was performed to confirm over-expression of UBE2C proteins. The cell proliferation was measured on day 2 and day 4 after transfection using the WST-1 assay (mean ($n=3$) \pm s.e.).

A

B

Figure S16. UBE2C protein has same half-life in LNCaP and abl cells. LNCaP and abl cells were treated with $0.1 \mathrm{mg} / \mathrm{ml}$ cycloheximide (CHX). Cells were collected at indicated time points, and subjected to immunoblotting. The band intensities in LNCaP and abl cells were quantified using FluorChem5500 and normalized to their own time 0 .

A

B

C

Figure S17. The effects of CDK1 and CDC20 silencing on LNCaP and abl cell proliferation. siRNA-WST1 experiments were performed as in Figure 7A.

Table S1

ChIP and 3C primers	Sequences
CDC20 enhancer+	GGAGTTGTGAGAACACCCGG
CDC20 enhancer-	AACACCCAGGTACACCCTCG
CDK1 enhancer+	GGGAAAGAGAAGCCCTACACTTG
CDK1 enhancer-	GGGCTGTGCTACTTCTCTGGG
UBE2C enhancer 1+	TGCCTCTGAGTAGGAACAGGTAAGT
UBE2C enhancer 1-	TGCTTTTTCCATCATGGCAG
UBE2C enhancer 2+	CСACAAACTCTTCTCAGCTGGG
UBE2C enhancer 2-	TТСТТТССТТСССТGTTAСССС
UBE2C promoter+	TGCCCGAGGGAAATTGG
UBE2C promoter-	CTTACTCCGCGTGGGAACA
ANAPC10 enhancer+	CCAAAGGTATCAAACTGACATCTTTC
ANAPC10 enhancer-	CAAAAATTTCCTGTCCTTCTTTGC
SGOL2 enhancer+	GGGAGACGCTGGAATCTGAG
SGOL2 enhancer-	TGGACGGTTCAGCCTTGAG
$\begin{aligned} & \text { PSA promoter+ (Jia et al., } \\ & \text { 2003) } \end{aligned}$	CCTAGATGAAGTCTCCATGAGCTACA
$\begin{aligned} & \text { PSA promoter-(Jia et al., } \\ & 2003 \text {) } \end{aligned}$	GGGAGGGAGAGCTAGCACTTG
PSA enhancer + (Wang et al., 2005)	TGGGACAACTTGCAAACCTG
PSA enhancer- (Wang et al., 2005)	CCAGAGTAGGTCTGTTTTCAATCCA
CCNA2 enhancer+	TTAGTGAGCTGTCCAGTGACTCAAT
CCNA2 enhancer-	CCCATGTATTAAAGTAGCTTCTGTAAACA
BUB3 enhancer+	AGAAATTCGGGTCAAAATATGTTGT
BUB3 enhancer-	TGCAGTTGGTATTGCCAACAG
PRDM4 enhancer +	CAGCATGAAGCTTGCAGAATTAA
PRDM4 enhancer-	CACCTTGAGTTTTGCTGGTATGG
GNL3 enhancer+	GAGGTGTTGGATGCCAGAGATC
GNL3 enhancer-	CACTCTGGACAATGGCCTCTTC
BTG3 enhancer+	GCCAATTTTTGGCAAATTTACAT
BTG3 enhancer-	CTGCTACTTTGCTTTCATCTTATTAATCTT
BCCIP enhancer+	TGCAGTTTTCССTTCСTTCTTC
BCCIP enhancer-	CAAAGATTTACCCACGACTTGGT
CDKN3 enhancer+	AGCTACTCACGTGCCAAATGG
CDKN3 enhancer-	GTTCGCGGCCTTCTGCTA
ID1 enhancer +	GCGCCGTCTCCATCCTAA
ID1 enhancer -	GCAGGGTGACGTGACAGTTG
DBF4 enhancer+	TGACGCGTTTTCAAATCTTCA
DBF4 enhancer-	GGAGGAAGGCGCAAAGC
UBE2C enhancer 2+ (tissue ChIP)	ACAAAATGAAGGGGGAAACC
UBE2C enhancer 2- (tissue ChIP)	CTGTTACCCCCAGAGCAGAT
Control ARE region1+	CACAGAATCAGTCTAGGGTGCTCTT

Control ARE region1Control ARE region2+ Control ARE region2Control ARE region3+ Control ARE region3Control ARE region4+ Control ARE region4Control ARE region5+ Control ARE region5Control ARE region6+ Control ARE region6Control ARE region7+ Control ARE region73C Taqman probe
3C anchor (A)
3C control 1 (C1)
3C control 2 (C2)
3C control 3 (C3)
3C enhancer 1 (E1)
3C enhancer 2 (E2)
3C GADPH loading control+(Hagege et al., 2007)
3C GADPH loading control- GCCTGCTTCACCACCTTCTTG (Hagege et al., 2007)
3C GADPH Bgl II control+ 3C GADPH Bgl II control-

CTGCATGCTCAAGGAGTGTGTT
GCTGATTCAATTACCTCCCAGAA
AGTTTGGGACAGACGGGAAA CCCATGCCAGCAGTAGCTAGA
GCACTCACAGAATGCACAGAAAA
AAGAGGGACCATCTCATTTTGG
GCTGTCTCCCCGACCTTTC
CCCTGAAAGAAAAGAGCTGTCAGT
TTTGCAGTGAGTGCTATGAGAAACT
GCCTGGCTGAGTCGGTCAT
GGAGTAAAGCTGCTCAGGGAGAA
GGTTACACACGTTAGGTATTCATCATG
TTGCTGTGCCCGTGTAGCT
6FAMCAGGAGGTGGCGGCMGBNFQ
TAGGCATTGGTACCCAGAGCA
GGCTCTCTGACCGACTCCTTCT
ATTGCCAGCCAGCCCAG
AGGCGTCAGCCACTGTGC
TGGCTTGCATGGCAGATTT
AGCCATGTTCGTGCCACTG
ACAGTCCATGCCATCACTGCC

ССТTСТССССАТTCCGTCTT
TGTGCGGTGTGGGATTGTC

RT-PCR primers
AR mRNA+ (Bieche et al., CCTGGCTTCCGCAACTTACAC 2001)

AR mRNA-(Bieche et al., GGACTTGTGCATGCGGTACTCA 2001)

CDC20 mRNA + (Yuan et CCTCTGGTCTCCCCATTAC al., 2006)
CDC20 mRNA- (Yuan et al., ATGTGTGACCTTTGAGTTCAG 2006)

UBE2C mRNA+ (Okamoto TGGTCTGCCCTGTATGATGT
et al., 2003)
UBE2C mRNA- (Okamoto AAAAGCTGTGGGGTTTTTCC
et al., 2003)
CDK1mRNA+
CCTAGTACTGCAATTCGGGAAATT
CDK1 mRNA-
PRDM4 mRNA +
PRDM4 mRNA-
CCTGGAATCCTGCATAAGCAC
CACCTTCACTGCAAATGGAA
AAGTCACTGGTCCATGTTCG
ID1 mRNA+(Lofstedt et al., CTACGACATGAACGGCTGTTACTC
2004)

ID1 mRNA- (Lofstedt et al., CTTGCTCACCTTGCGGTTCT 2004)

ANAPC10 mRNA+ ANAPC10 mRNACCNA 2 mRNA + CCNA2 mRNA-
CDKN1A mRNA+ CDKN1A mRNA-
BUB3 mRNA+
BUB3 mRNA-
BCCIP mRNA+
BCCIP mRNA-
CDKN3 mRNA+
CTGATGAAAGCTATACTCCAAGCA
GGAACATGAATCCAGCCACT
CAGAAAACCATTGGTCCCTC
CACTCACTGGCTTTTCATCTTC
TGCGTTCACAGGTGTTTCTG
GTCCACTGGGCCGAAGAG
AATGCTGGGACCTTCTCTCA
TCCGTAAGTCCCACACCAA
GAAAACCTGAGGTGCTTGGA
TCAGAGAAACCAGGGCTGTC
TCATGGCTATCTTTGTCACGA
CDKN3 mRNA- TCTTTTTGGACATTTCTTCTAACA
BTG3 mRNA+
BTG3 mRNA-
GNL3 mRNA+
GNL3 mRNA-
DBF4 mRNA+
DBF4 mRNA-
PSA mRNA+(Wang et al.,
2007)

PSA mRNA-(Wang et al.,
TGTATAGTGACCTGGGCTTGC
TCAAAGCTGGCAACAATGAA
TCCTCAGGTAGAAGAGGCCA
GCCAGCTCTCCAAATTCTCC
ATGGGGAGTAAAAATTCTTCATATTG
TGCACCACTACCAACTCTTTTG
TGTGTGCTGGACGCTGGA
2007)

TMPRSS2 mRNA+(Wang et GGACAGTGTGCACCTCAAAGAC al., 2007)
TMPRSS2 mRNA-(Wang et TCCCACGAGGAAGGTCCC
al., 2007)
PDE9A mRNA+(Wang et GATCCCAATGTTTGAAACAGTGAC al., 2007)
PDE9A mRNA-(Wang et al., TCCCAAAGTGGCTGCAGC 2007)

CLDN8 mRNA+(Wang et CGGCTGGAATCATCTTCATCA
al., 2007)
CLDN8 mRNA-(Wang et al., TTGGCAACCCAGCTCACAG 2007)

FKBP5 mRNA+ GCGGAGAGTGACGGAGTC
FKBP5 mRNA- TGGGGCTTTCTTCATTGTTC
NRDG1 mRNA+
NRDG1 mRNA-

GTGGAGAAAGGGGAGACCAT
ACAGCGTGACGTGAACAGAG

siRNA sequences

siAR1 (Dharmacon ON
TARGET plus siRNA)
(1)GGAACUCGAUCGUAUCAUU
(2)CAAGGGAGGUUACACCAAA
(3)UCAAGGAACUCGAUCGUAU

```
siAR2 (Haag et al.,
2005)
siFoxA1 (Carroll et al.,
2005)
siGATA2 (Dharmacon ON
TARGET plus siRNA) (1)UCGAGGAGCUGUCAAAGUG
(2)ACUACAAGCUGCACAAUGU
(3)GAAGAGCCGGCACCUGUUG
(4)GCCCAGGCCUAGCUACUAU
siUBE2C (Dharmacon ON
TARGET plus siRNA)
(1)GAACCCAACAUUGAUAGUC
(2)UAAAUUAAGCCUCGGUUGA
(3)GUAUAGGACUCUUUAUCUU
(4)GCAAGAAACCUACUCAAAG
siMED1 (Dharmacon
siGenome siRNA)
(1)GCAGAGAAAUCUUAUCAGA
(2)CCAUUAAGCUUGUGCGUCA
(3)CAGCAAUGACUGAUCGUUU
(4)GGCCGAAGAGCAAGGCUUA
siCDK1 (Dharmacon ON TARGET plus siRNA)
siCDC20 (Dharmacon ON
TARGET plus siRNA)
(1)GGUUAUAUCUCAUCUUUGA
(2)UCGGGAAAUUUCUCUAUUA
(3)GUAUAAGGGUAGACACAAA
(4)CAAACGAAUUUCUGGCAAA
(1)CGGAAGACCUGCCGUUACA
(2)GGGCCGAACUCCUGGCAAA
(3)GAUCAAAGAGGGCAACUAC
(4)CAGAACAGACUGAAAGUAC
```


Table S2

RefSeq numbers	Gene＿name	Gene＿locus MAX AR bindina locus wimphas
NM＿080816	SIRPG	chr20：155779 N／A No
NM－018556	isoform of NM＿080816	chr20：155779 N／A No
NM＿016262	tube1	chr6：1124986 N／A No
NM＿001786	CDC2	chr10：622082، chr10：62160949－621616¢ Yes
NM＿033379	isoform of NM＿001786	chr10：622099 chr10：62160949－621616¢ Yes
NM＿014865	CNAP1	chr12：647355 N / A Yes
NM＿206825	GNL3	chr3：5269497］chr3：52697623－5269837：No
NM＿206826	isoform of NM＿206825	chr3：5269497：chr3：52697623－5269837E No
NM－014366	isoform of NM＿206825	chr3：5269497］chr3：52697623－5269837こ No
NM＿057749	CCNE2	chr8：9596163． N / A No
NM＿057735	isoform of NM＿057749	chr8：9596163 N／A No
NM＿001827	CKS2	chr9：9111593： N / A No
NM＿001790	CDC25C	chr5：1376488：N／A Yes
NM＿022809	isoform of NM＿001790	chr5：1376488：N／A Yes
NM＿001255	CDC20	chr1：4359721：chr1：43586290－4358704C Yes
NM－004219	PTTG1	chr5：1597814＊$/$ A Yes
NM＿003035	STIL	chr1：4748839 N / A No
NM＿006191	PA2G4	chri2：5478431 $/ \mathrm{A}$（ No
NM＿016359	NUSAP1	
NM＿018454	isoform of NM＿016359	chr15：394123 $/$／${ }^{\text {a }}$（ Yes
NM＿152524	SGOL2	chr2：20109911 N / A No
NM＿012415	RAD54B	chr8：9545336．N／A Yes
NM＿007019	UBE2C	chr20：4387461 chr20：43841021－4384177 Yes
NM＿181803	isoform of NM＿007019	chr20：4387461 chr20：43841021－4384177 Yes
NM＿181802	isoform of NM＿007019	chr20：4387461 chr20：43841021－4384177 Yes
NM＿181800	isoform of NM＿007019	chr20：4387461 chr20：43841021－4384177 Yes
NM＿181801	isoform of NM＿007019	chr20：438750 chr20：43841021－4384177 Yes
NM＿181799	isoform of NM＿007019	chr20：4387461 Chr20：43841021－4384177 Yes
NM＿002165	ID1	chr20：296567：chr20： $29639157-296399$ C No
NM＿181353	isoform of NM＿002165	chr20：296567：chr20：29639157－296399¢ No
NM＿078467	CDKN1A	chr6：3675446، chr6：36754833－3675558ミ No
NM＿000389	isoform of NM＿078467	chr6：3675446، chr6：36754833－3675558̇ No
NM＿001007793	bub3	chr 10：124903i chr10：124890022－12489C Yes
NM－006806	BTG3	chr21：178878．chr21：17896368－1789711 No
NM＿016567	BCCIP	chr10：127502 chr10：127502735－12750ミ No
NM＿002198	IRF1	chr5：1318466：N／A No
NM＿018492	PBK	chr8：2772305：N／A Yes
NM＿005879	TRAIP	chr3：4984103 N／A No
NM＿005192	CDKN3	chr14：539334 chr14：53977126－5397787 No
NM＿14665	SESN3	chr11：945457：N／A No
NM－006716	DBF4	chr7：8734347：chr7：87343219－8734396¢ No
NM＿012406	PRDM4	chr12：106650＇chr12：106677445－106678 No
NM＿014750	DLG7	
NM＿002201	ISG20	chr15：869830．N／A No
NM＿018101	CDCAB	chr1：3793074．N／A No
NM＿004935	CDK5	chr7：1503818：N／A No
NM＿006101	KNTC2	chr18：256160．$/$／${ }^{\text {a }}$（ ${ }^{\text {a }}$
NM－001237	CCNA2	chr4：1229579＇chr4 ：122962258－122963C Yes
NM＿198315	LOH11CR2A	chr11：123491：N／A No
NM＿005862	STAG1	chr3：1375386：N／A Yes
NM＿004365	CETN3	chr5：8972528i N／A Yes
NM＿014885	ANAPC10	chr 4 ： 1461357 chr4：146206463－1462072 Yes

Fold over input（－／＋DHT）	
N／A	
	4．53／9．89
4．53／9．89	
${ }^{1.588 / 3.37}$	
${ }_{\text {N／A }} 1.58 / 3.37$	
N／A	
N／A	
${ }_{2}^{\text {N／}}$／ $24 / 2.94$	
N／A	
N／A	
N／A	
N／A	
N／A	
2．73／7．55	
$2.73 / 7.55$$2.73 / 7.55$	
2．73／7．55	
2.7377 .55$2.73 / 7.55$	
2.7377 .55$2.73 / 7.55$	
2.7377 .55$0.27 / 0.26$	
$0.27 / 26$$0.27 / 0.26$	
$1.55 / 4$	
${ }^{1.55 / 4}$	
5．1998．42$0.89 / 1.7$	
3．1／7．55	
N／A	
N／A	
N／A	
2．19／2．52	
N／A	
N／A	
N／A	
N／A	
	1．38／6．54
N／A	
N／A	
	1．64／5．02

expression inc	ression inde：R	RT－PCR validat Fold（LNCaP／a
4.58218506	4.483470042 N／A	
4.52696721	4.489912814	NA
5.70672923	5.233071301 N	N／A
8.21329203	8.967081753	9
8.43914772	9.142799508	
6.81039042	7.922802155	N／A
9.73841304	9.290786148	1.2
9.73841304	9.290786148	
9.73841304	9.290786148	1.2
5.59369809	6.741646704	N／A
5.59369809	$6.741646704 N$	N／A
9.17222984	10.15144742 NA	
4.94401231	6.170019916 NA	N／A
5.02547018	6.539295202 NA	N／A
7.00808947	9.065187135	． 43
8.79030912	10.51114977 NA	
5.44311542	6．424333732 NA	N／A
7.8224597	$6.829515049 \mathrm{~N} /$	N／A
7.51838671	9.227392953 NA	N
7.51838671	9.227392953 NA	N／A
4．85880638	${ }^{7.1080553577}$ NA	N／A
5.09715134	6．493933597 NA	N／A
7.95370942	9.4174472	
8.40600671	10.14054329 N	
7.95370942	9.4174472	
7.64577392	9．224184332	
7.95370942	9.4174472	0.43
8.85002557	${ }^{10.39395483 ~}$	
3.76052332	7.86913246	
3.76052332	7.86913246	
8.95474486	8.483660584	1.08
8.95474486	8.483660584	
9.11864956	9．094199591	． 85
7.92146396	8.13885979	0.96
7.70028236	7.658222404	． 15
5.49159723	5.851208001	N／A
7.38932565	9．415107145 NA	
4.31808238	5．528833817 NA	N／A
6.85142272	8.639640953	4.82
7.69789296	7.332408968 N	
4.25859625	5.97364262	
6.55035025	6.470557094	24
6.29524702	8.073699613 NA	N／
6.35851262	6.642775083 NA	N／A
7.16916153	8.247358692 NA	N／A
8.29366812	7.840165371	N／
5.46444853	7.024865273 NA	N／A
5.9705573	7.257637087	
5.69398091	5.22172828	
5.35793355	5.624377654	N／A
8.55036787	8.280063382 N	
5.70063313	6.494122565	

Supplemental Experimental Procedures

ChIP assays

Antibodies used were as follows: anti-AR (N20), anti-GATA2 (H116), anti-Oct1 (C21) and anti-MED1 (M255) from Santa Cruz Biotechnology (Santa Cruz, CA), anti-FoxA1 (ab23738), anti-H3K4me1 (ab8895), anti-H3K4me2 (ab7766) and anti-H3K4me3 (ab8580) from Abcam (Cambridge, MA).

Western blot analysis

Antibodies used were anti-AR (441), anti-CDK1 (17), anti-PSA (C19), anti-GATA2 (H116), anti-Oct1 (C21) and anti-MED1 (M255) from Santa Cruz Biotechnology, antiCDC20 (ab26483) and anti-FoxA1 (ab23738) from Abcam, anti-UBE2C (A650) from Boston Biochem (Cambridge, MA), An antibody against KDM1 was a gift from Roland Schule (Universitäts-Frauenklinik und Zentrum für Klinische Forschung, Freiburg, Germany).

Quantitative chromosome conformation capture assay (3C-qPCR)

The data was normalized for primer efficiency difference using BAC RP11-75C3 that covers the UBE2C locus, and for DNA concentration difference using a GADPH loading control. In addition, the interaction of two Bgl II sites in the GADPH locus was used to correct for difference in crosslinking and digestion efficiencies between different cell lines as previously described (Duan et al., 2008; Hakim et al., 2009). The Taqman probe and primer sequences are listed in Table S1.

Tissue microarray analysis

The tissue microarray slides were scanned using the Ariol image analysis system (Applied Imaging Inc, San Jose, CA) at 20x objective magnification. Each specimen was represented by 2 to 3 tissue microarray cores. Each core of the tissue microarray was then marked so that only one specific tissue type is represented in each core. Using the MultiStain assay, an appropriate classifier was developed that can pick out the area of positive staining and count the number of nuclei that were positively stained. Additionally, the classifier was developed to count negative nuclei. Subsequently, the tissue microarrays were analyzed using this classifier and scores were calculated using the data given. The Nuclear Staining Score was given by the formula $\log 10$ (((Intensity Score)*(Percentage positive nuclei)) + 1) while the Total Staining Score was given by $\log 10((($ Intensity Score $) *($ Percentage pixels positively stained $)+1)$.

Supplemental References

Bieche, I., Parfait, B., Tozlu, S., Lidereau, R., and Vidaud, M. (2001). Quantitation of androgen receptor gene expression in sporadic breast tumors by real-time RT-PCR: evidence that MYC is an AR-regulated gene. Carcinogenesis 22, 1521-1526.

Carroll, J.S., Liu, X.S., Brodsky, A.S., Li, W., Meyer, C.A., Szary, A.J., Eeckhoute, J., Shao, W., Hestermann, E.V., Geistlinger, T.R., et al. (2005). Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33-43.

Duan, H., Xiang, H., Ma, L., and Boxer, L.M. (2008). Functional long-range interactions of the $\operatorname{IgH} 3$ ' enhancers with the bcl-2 promoter region in $\mathrm{t}(14 ; 18)$ lymphoma cells. Oncogene 27, 6720-6728.

Haag, P., Bektic, J., Bartsch, G., Klocker, H., and Eder, I.E. (2005). Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol 96, 251-258.

Hagege, H., Klous, P., Braem, C., Splinter, E., Dekker, J., Cathala, G., de Laat, W., and Forne, T. (2007). Quantitative analysis of chromosome conformation capture assays (3CqPCR). Nat Protoc 2, 1722-1733.

Hakim, O., John, S., Ling, J.Q., Biddie, S.C., Hoffman, A.R., and Hager, G.L. (2009). Glucocorticoid receptor activation of the ciz1-lcn2 locus by long range interactions. J Biol Chem 284, 6048-6052.

Jia, L., Kim, J., Shen, H., Clark, P.E., Tilley, W.D., and Coetzee, G.A. (2003). Androgen receptor activity at the prostate specific antigen locus: steroidal and non-steroidal mechanisms. Mol Cancer Res 1, 385-392.

Lofstedt, T., Jogi, A., Sigvardsson, M., Gradin, K., Poellinger, L., Pahlman, S., and Axelson, H. (2004). Induction of ID2 expression by hypoxia-inducible factor-1: a role in dedifferentiation of hypoxic neuroblastoma cells. J Biol Chem 279, 39223-39231.

Okamoto, Y., Ozaki, T., Miyazaki, K., Aoyama, M., Miyazaki, M., and Nakagawara, A. (2003). UbcH10 is the cancer-related E2 ubiquitin-conjugating enzyme. Cancer Res 63, 4167-4173.

Reddy, S.K., Rape, M., Margansky, W.A., and Kirschner, M.W. (2007). Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature 446, 921-925.

Schuur, E.R., Henderson, G.A., Kmetec, L.A., Miller, J.D., Lamparski, H.G., and Henderson, D.R. (1996). Prostate-specific antigen expression is regulated by an upstream enhancer. J Biol Chem 271, 7043-7051.

Sun, Z., Pan, J., and Balk, S.P. (1997). Androgen receptor-associated protein complex binds upstream of the androgen-responsive elements in the promoters of human prostatespecific antigen and kallikrein 2 genes. Nucleic Acids Res 25, 3318-3325.

Wang, Q., Carroll, J.S., and Brown, M. (2005). Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19, 631-642.

Wang, Q., Li, W., Liu, X.S., Carroll, J.S., Janne, O.A., Keeton, E.K., Chinnaiyan, A.M., Pienta, K.J., and Brown, M. (2007). A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27, 380-392.

Yu, D.C., Sakamoto, G.T., and Henderson, D.R. (1999). Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res 59, 1498-1504.

Yu, J., Rhodes, D.R., Tomlins, S.A., Cao, X., Chen, G., Mehra, R., Wang, X., Ghosh, D., Shah, R.B., Varambally, S., et al. (2007). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67, 10657-10663.

Yuan, B., Xu, Y., Woo, J.H., Wang, Y., Bae, Y.K., Yoon, D.S., Wersto, R.P., Tully, E., Wilsbach, K., and Gabrielson, E. (2006). Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res 12, 405-410.

