Cartilage TE: *in vitro* and *in vivo* models and assays

Module 3, Lecture 5

20.109 Spring 2009
Lecture 4 review

• What are the major distinguishing features of apoptosis vs. necrosis?

• How are cell viability and nutrient diffusion profiles related, studied, and potentially improved?

• What are some major features of a fluorescence microscope?
Topics for Lecture 5

• Gene and protein expression assays
• Cartilage TE *in vitro* and *in vivo*
• Clinical relevance
Module overview: 2nd half

1. Enzymatic digestion
 \hspace{1cm} \textbf{Test for collagen proteins (by ELISA)}

2. EDTA-citrate dissolution

\begin{itemize}
 \item Purify mRNA from cells \rightarrow \text{Amplify collagen cDNAs} \rightarrow
 \item Compare collagen I and II transcript levels, normalized to GAPDH
\end{itemize}
Antibodies are specific and diverse

• Specificity
 – variable region binding, $K_D \sim nM$
 – linear or conformational antigens

• Diversity
 – gene recombination

• Production
 – inject animal with antigen, collect blood
 – hybridomas (B cell + immortal cell)
Day 5-7: protein analysis by ELISA

- **ELISA**: enzyme-linked immunosorbent assay
 - specific
 - sensitive
 - multiple kinds

“blocking” step also needed

Indirect ELISA
- bind antigen
- add 1° antibody
- wash
- add 2° antibody, wash

Sandwich ELISA
- bind capture antibody
- add antigen
- wash
- add detection antibody, wash
Common protein-level assays

- **PAGE**
 - simple and low cost
 - Coomassie detection limit ~ 0.3-1 ug/band
 (2-5 ng/band for silver staining)
 - cannot distinguish two proteins of same MW

- **Western blot**
 - can identify specific protein
 - detection limit ~1 pg (chemiluminescent)
 - only simple for denatured proteins

- **ELISA**
 - detects native state proteins
 - quantitative (standard curve)
 - high throughput

Current Protocols in Cell Biology, Molecular Biology
Day 4-5: transcript analysis

• Last time: RT-PCR
 – Collagen II + GAPDH
 – Collagen I + GAPDH

• Next: run out on a gel

• Measure band intensity/area
 – low dynamic range
 – exposure time

• Controls/references
 – GAPDH loading control
 – fresh stem cells
 – fresh chondrocytes
Common transcript-level assays

- **RT-PCR (end-point)**
 - simple, low cost
 - can be semi-quantitative

- **Microarrays (end-point)**
 - requires specialty equipment, high cost
 - complicated and fraught analysis
 - high throughput

- **q-PCR (real-time)**
 - some special equipment, medium cost
 - highly quantitative
 - potential for multiplexing
 - usually requires optimization (primers)
Introduction to qPCR

- Real-time tracking of DNA production
- Uses probes that fluoresce
 - when bind to any DNA
 - when bind to specific DNA (FRET)
- Why does PCR plateau?
- Several analysis methods
 - relative standard curve: fold-change of a transcript (normalized)
 - efficiency-correction: compare genes
 - absolute levels by radiolabeling

Current Protocols in Cell Biology, Molecular Biology
Day 5-6: image analysis

- Imaging data is often high throughput
 - potentially 4D: time-lapse, xyz
 - require computation, as well as
 - human design and interpretation

- Many available analysis packages
 - specialty packages may run $20-30K
 - NIH ImageJ freely available

- Your analyses
 - relative intensities of cDNA bands
 - automated cell counting
 - optionally explore other features

Interlude:

1. Stand/stretch a minute

2. What TE topics would you like to hear more about (list on board)?
Polymer composite for cartilage TE

- Porous PLA scaffold + stem cells
- Cells loaded in medium
 - elongated morphology
- Cells loaded in alginate
 - round morphology
 - improved cell retention

Chondrogenesis in vitro

- Porous PLA scaffold w/ or w/out alginate
- Alginate alone somewhat chondrogenic
- Alginate+TGF better than PLA+TGF

Scaffold-free *in vitro* cartilage TE

- Method: rotational culture of rabbit chondrocytes with no cytokines
- Results
 - Mostly dynamic culture optimal: less apoptosis, more rigid disc
 - Newly synthesized extracellular matrix: primarily CN II and PG
 - Organized architecture, similar to *in vivo*
- A scaffold-free method is inherently biocompatible
 - Any disadvantages?
 - Pros/cons of *cell*-free methods?

Cells and scaffolds *in vivo*

- Stem cells and/or injectable natural matrix (gelatin/HA) in rabbit knee defects
- Matrix and cells both contributed; synergy

<table>
<thead>
<tr>
<th>Group</th>
<th>Interval Until Animals Were Sacrificed (Wks)</th>
<th>Restoration of Osteochondral Architecture</th>
<th>Repair Tissue Integration</th>
<th>Cellular Morphology</th>
<th>Matrix Staining</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>4</td>
<td>0.13</td>
<td>0.25</td>
<td>0.00</td>
<td>0.00</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.63</td>
<td>0.50</td>
<td>0.38</td>
<td>0.13</td>
<td>4.59</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.00</td>
<td>1.13</td>
<td>0.13</td>
<td>0.25</td>
<td>5.63</td>
</tr>
<tr>
<td>MSCs only</td>
<td>8</td>
<td>0.63</td>
<td>0.25</td>
<td>0.38</td>
<td>0.00</td>
<td>3.39</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.50</td>
<td>1.50</td>
<td>0.38</td>
<td>0.25</td>
<td>8.01</td>
</tr>
<tr>
<td>sECM only</td>
<td>8</td>
<td>3.25</td>
<td>0.50</td>
<td>1.25</td>
<td>2.13</td>
<td>11.64</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.75</td>
<td>2.75</td>
<td>1.38</td>
<td>2.75</td>
<td>12.76</td>
</tr>
<tr>
<td>MSCs + sECM</td>
<td>8</td>
<td>3.25</td>
<td>1.50</td>
<td>2.00</td>
<td>2.38</td>
<td>15.38</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.50</td>
<td>2.25</td>
<td>3.63</td>
<td>2.63</td>
<td>18.64</td>
</tr>
</tbody>
</table>

4 wks

12 wks
Large animal *in vivo* model

- Biodegradable scaffold with autologous cells
- Examined horses and dissected joints after 6-12 months
- Matrix synthesis, implant integration with native tissue
- Why use a large animal model (vs. small)?
Advantages of working *in vivo*

- Ability to mimic human disease-state

- Ability to mimic therapy/surgery applied to humans
 - especially true for large animal models

- Can compare results to “gold standard” treatment

- The construct interfaces with an actual wound, the immune system, etc. - more realistic environment

- Toxicity studies more meaningful
Cartilage pathology

- Cartilage has little regeneration capacity
- Early damage can promote later disease
- Osteoarthritis pathology
 - PG and collagen loss, PG size ↓
 - ↑ water content, ↓ strength
 - chondrocyte death
- Symptoms
 - loss of mobility
 - pain

Clinical treatments

• **Strategy 1: enhance/provoke healing**
 - biologics: hyaluronic acid, TGF-B, etc.
 - damage bone to stimulate stem cells

• **Strategy 2: replace tissue**
 - cell and/or scaffold implantation
 - immature therapy
 - joint replacement
 - synthetic or donated tissue
 - invasive or fiber-optic (partial)

• **Other or supplemental**
 - mechanical or electrical stimulation
 - debridement (rid debris)

Lecture 5: conclusions

• Antibodies to diverse targets (e.g., proteins) can be made and used for detection/measurement.
• Trade-offs exist (e.g., between simplicity and accuracy) for different transcript-level assays.
• Various *in vitro* and *in vivo* models have been developed for cartilage tissue engineering.

Next time: Atissa on presenting with a partner, and come ready to discuss your projects.

Lectures 7/8: special topics, review, loose ends