Sugar-Coated Nanoparticles Find Hidden Tumors

Eric Bland, Discovery News

Nanotechnology offers potential for detecting and treating cancer without altering healthy cells. TI means targeted death for cancerous tumors without the negative side effects of conventional therapies. We'll take a look at some of these methods and also explore the risks and promises of this new scientific field.

Top 10: Ways Nanotechnology Battles Cancer

Nanotechnology offers potential for detecting and treating cancer without altering healthy cells. TI means targeted death for cancerous tumors without the negative side effects of conventional therapies. We'll take a look at some of these methods and also explore the risks and promises of this new scientific field.

Yahoo! Buzz

del.icio.us

Digg

Mixx

MySpace

Newsvine

Reddit

puzzle: Nanotech Attacks Cancer

Cancer-fighting nanoparticles find and attack tumors and some therapies may even one day eliminate chemotherapy.

IM Interview: Nano SWAT Teams Kill Cancer

Tracy Staedter chats with Geoffrey von Malzal, who builds networks of artificial nanoparticles to communicate with each other to find cancer cell and destroy them.

My Take: Nanotech Tests, Not All the Same

Nanoparticles include a diverse family of molecular entities, which differ significantly in their properties. For this reason, each nanopartic
March 30, 2009 -- Nanoparticles that first illuminate, and could then destroy hidden tumors have been created by scientists at the University of California, San Diego. If approved for clinical use, the new technique could improve the odds of survival for cancer patients by letting doctors diagnose and treat cancer earlier. It would also, in theory, minimize the toxic side effects associated with traditional chemotherapy.

"The advantage is that if the nanostructure localizes [near the tumor], it gives you an improved ability to see or treat the tumor," said Michael Sailor, a scientist at the University of California, San Diego, who detailed the research in a recent issue of Nature Materials.

The drawback to most techniques for finding and treating cancer is toxicity. The same radioactive cadmium that accumulates inside tumors and shines light that MRI machines can detect also destroys various internal organs. Chemotherapy drugs such as abraxane destroy tumor cells but also kill plenty of healthy cells.

Related Content:

- Gold Nanoparticles Resurrect Failed HIV Drug
- Get the Wide Angle on Nanotech and Cancer at Discovery Tech
- HowStuffWorks.com: Nanotechnology and Cancer
- More Discovery News

Scientists started with thin silicon wafers, similar to those used in the semiconductor industry, and broke them into nano-sized pieces using ultrasound. To treat cancer, the particles would soak up whatever cancer drug would work best in a given case. The scientists then coat the particles in a thin layer of dextrose, a form of sugar.

The end result, according to Sailor, are cancer-killing pastries. "They're like little jelly donuts, rolled in chocolate to seal everything in," said Sailor.

Once the poisonous particles are injected into the bloodstream, they travel around the body.

Tumors need a lot of blood to grow quickly, but they are not good plumbers. The blood vessels surrounding the tumors are thin and full of holes. Those holes are typically just over 100 nanometers in size, just big enough for the 100-nanometer nanoparticles to slip through and get stuck inside the tumor itself.

The particles, made of non-toxic silicon instead of traditional toxic cadmium, glow under ultraviolet light. After about an hour of circulating through the body enough of them have physically lodged themselves near the tumor to be detected by an MRI machine, helping doctors pinpoint the location.
Sugar-Coated Nanoparticles Find Hidden Tumors : Discovery News
http://dsc.discovery.com/news/2009/03/30/nanoparticles-cancer...