09_06 Notebook

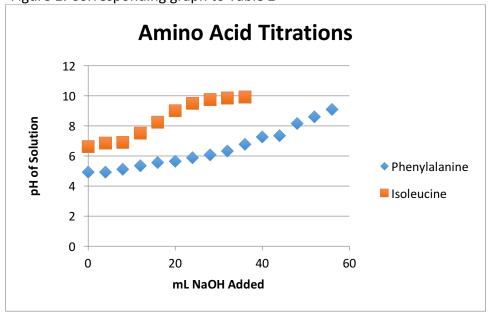
Au:Amino Acid: NaOH solutions from 09_05

Pink solutions: Arginine (1:1:1), Phenylalanine (1:1:1), Isoleucine (1:1:1) all using 1M NaOH

Titrant Standardization cont.

- -0.001 g KHPhth in $30mL\ H_2O$
- -(200*10-6)*(0.25L)/(5*10-3)= **0.01L of 5mM NaOH**

-Table 1: Shows Calculated KHPhth concentration based on titration using NaOH


	mL NaOH added			
Trial 1	29			
Trial 2	25.7			
Average	27.35			
M1V1=M2V	/2			
M1= KHPht	h concentratio	n		
V1= 0.03L water added to KHPhth solid			0.03	
M2= 200uM NaOH		2.00E-04		
V2= 0.02735L needed for titration			0.02735	
To solve for	KHPhth conce	entration		
M1= (M2V2)/(V1)			
M1	0.00018233	M KHPhth		

Amino Acid Titration

-Table 2: Shows measured pH values for Phenylalanine and Isoleucine as NaOH was added

NaOH added	Phenylalanine	Isoleucine
	pH	
0	4.92	6.62
4	4.92	6.84
8	5.1	6.9
12	5.33	7.5
16	5.56	8.24
20	5.63	9
24	5.87	9.5
28	6.06	9.75
32	6.31	9.85
36	6.76	9.92
40	7.26	
44	7.34	
48	8.14	
52	8.6	
56	9.09	
60	9.51	
64	9.72	
68	9.83	
72	9.89	
76		
80		
84		

-Figure 1: Corresponding graph to Table 2

