Module Overview

<table>
<thead>
<tr>
<th>Day</th>
<th>Lecture</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>DNA library synthesis (PCR)</td>
</tr>
<tr>
<td>2</td>
<td>SELEX I: Building a Library</td>
<td>DNA library purification (agarose gel electrophoresis)</td>
</tr>
<tr>
<td>3</td>
<td>SELEX II: Selecting RNA with target functionality</td>
<td>RNA library synthesis (In vitro transcription = IVT)</td>
</tr>
<tr>
<td>4</td>
<td>SELEX III: Technical advances & problem-solving</td>
<td>RNA purification and heme affinity selection</td>
</tr>
<tr>
<td>5</td>
<td>Characterizing aptamers</td>
<td>RNA to DNA by RT-PCR</td>
</tr>
<tr>
<td>6</td>
<td>Introduction to porphyrins: chemistry & biology</td>
<td>Post-selection IVT Journal Club 1</td>
</tr>
<tr>
<td>7</td>
<td>Aptamer applications in biology & technology</td>
<td>Aptamer binding assay</td>
</tr>
<tr>
<td>8</td>
<td>Aptamers as therapeutics</td>
<td>Journal Club 2</td>
</tr>
</tbody>
</table>
Therapeutic Aptamers

20.109 Lecture 8
3 March, 2011
Today’s Objectives

• Aptamers developed for therapeutic purposes:
 – Focus on one disease process
 – Gain an appreciation for:
 • Defining the problem you are addressing on several different levels:
 – Organism
 – Anatomical
 – Molecular
 • Developing solutions based on understanding disease mechanism
 • Some challenges in translating your molecular level solutions (aptamer) into efficacious drugs (in people)
Age-related macular degeneration (AMD)

• Disease affecting the eye
 – Most common cause of *irreversible* vision loss in the developed world

 – 8 million in the U.S. are affected

 – Typically, incomplete vision loss
 • Non-life threatening
 • Enough to impair independence in daily living activities
Anatomy of the eye

- Sclera
- Choroid
- Retina
- Cornea
- Pupil
- Lens
- Iris
- Ciliary body
- Fovea
- Optic nerve
- Vitreous humor

Gross Anatomy of the Eye, 2007 Update (NCBI Bookshelf)
Anatomy of the eye

• **Retina**
 – Light sensitive part of the eye

• **Macula**
 – Highest density of light sensitive receptors in this region
 • Highest visual acuity

• **Fovea**
 – Cones concentrated here
 – Most light entering the eye is focused here
 • Color vision
 • High acuity vision

Observed retinal changes during AMD

- Yellow-white deposits (drusen) appear in the macula
- Enlarged as the disease progresses
- New-blood vessels may develop (neovascularization)
 - Retinal hemorrhages may occur

Consequences of these retinal changes

• Macula function disrupted
 – Region of highest visual acuity is damaged
 – Central vision can be severely affected

Age-related macular degeneration (AMD)

- **Risk factors**
 - Age (primary risk factor)
 - “Middle aged” -- 2% risk
 - ≥ 75 years -- 30% risk
 - Smoking
 - Obesity
 - Race (highest in caucasians)
 - Family history

- **Two sub-types of AMD**
 - **Dry AMD**
 - No neovascularization
 - Large drusen deposits
 - **Wet AMD**
 - Neovascularization present
 - Sub-retinal hemorrhages possible
 - ~10-15% of all AMD cases
 - Responsible for ≥ 80% severe vision loss due to AMD!
Disease pathophysiology

• Not fully understood

• **Wet AMD:**
 – High Vascular Endothelial cell Growth Factor (VEGF) levels present in the eye
• Impacts endothelial cell function
 – Endothelial cell = special cell type lining the interior of all blood vessels
 – Endothelial cells in all blood vessels respond to VEGF

• VEGF affects endothelial cell:
 – Proliferation
 – Differentiation
 – Permeability

http://www.researchvegf.com/researchvegf/index.m (Genentech)
Disease pathophysiology

- Not fully understood

- **Wet AMD:**
 - High Vascular Endothelial cell Growth Factor (VEGF) levels present in the eye

 - VEGF is *pro-angiogenic* (promotes new blood vessel growth)
 - New blood vessels are more fragile
 - Leakiness/rupture leads to hemorrhage & vision loss

 - **What are some possible approaches to treating wet AMD based on this information?**
Treatment options for Wet AMD

- **Photodynamic therapy**
 - Aimed at directly treating new blood vessel formation
 - Photosensitizer drug injected systemically (entire body exposed)
 - Local irradiation of macula with red light
 - Verteporphin photo-activated in the presence of light and O\textsubscript{2} will produce reactive oxygen species (ROS)
 - ROS are toxic to nearby endothelial cells
Treatment options for Wet AMD

• **Photo-coagulation therapy**

 - Laser used to target new blood vessels growing in the macula

 - Does not prevent/slow disease progression

 - **Risks:**

 • Irreversible damage to surrounding retina

 • Further deterioration of visual acuity
Treatment options for Wet AMD

- **Anti-VEGF therapy**

 Hypothesis:

 - Elevated ocular VEGF levels are directly responsible (at least in part) to increased new blood vessel formation

 - Inhibiting VEGF activity can significantly reduce new blood vessel growth

 - Slows rate of vision loss by reducing retinal hemorrhages

 - Note: Treatment impacts Wet AMD only!
Treatment options for Wet AMD

- **Anti-VEGF therapy**
 - First FDA approved anti-VEGF drug to treat wet AMD: Pegaptanib, sodium (Macugen)
 - Approved: 2004
Developing aptamers as therapeutics

- What are some significant challenges to overcome in developing RNA aptamers as therapeutic agents?
 - **Stability**
 - Nucleases
 - Chemical (e.g. metal catalyzed)
 - **Clearance**
 - Drug must accumulate to a therapeutic level
 - But not achieve a toxic level
 - Minimize dosing frequency
 - **Delivery method/bioavailability**
 - Oral, intravenous, etc.
Nuclease activity spectrum

- Nucleases can be categorized broadly as:

 - **Endonucleases**
 - Cleave internal phosphodiester bonds anywhere within a nucleic acid polymer

 - **Exonucleases**
 - Cleave phosphodiester bond
 - But only at or near a free terminus
 - Two types:
 - 5’-exonuclease
 - 3’-exonuclease
Anti-VEGF aptamer modifications reducing nuclease susceptibility

5′-terminus

NDA 21-756

3′-terminus
Nucleotide sugar modifications

- RNA is significantly stabilized by introducing 2'-sugar modified nucleotides:
 - Fluoro group
 - Methoxy group

- Impart stabilization against:
 - Endonucleases
 - Spontaneous cleavage
 - Metal-catalyzed (chemical) cleavage

- What mechanism(s) can you propose to explain this?
Sugar modified nucleotides and stability

Spontaneous cleavage

- 2’-OH group has sufficient nucleophilicity to initiate intramolecular reaction that leads to phosphodiester bond cleavage

- Fluorine is highly electronegative
 - Poor nucleophile
 - F does not attack the phosphate group
 - Cleavage reduced

Sugar modified nucleotides and stability

Metal ion-dependent cleavage chemistry

- Some metals can help deprotonate the 2'-OH group in normal RNA
 - Accelerate cleavage reaction
- Both the 2’-F and 2’-OMe derivatives prevent this chemistry
 - Impart stability to RNA

Same factors contribute to imparting resistance to RNases

Modified backbone linkages

Anti-VEGF RNA Aptamer!
Modified backbone linkages

- Typical linkage in DNA or RNA
 - 3’-5’ phosphodiester linkage

- Notice the presence of new linkage at the 3’-end of the aptamer
 - 3’-3’ phosphodiester linkage

- Provides significant resistance against 3’-exonucleases
 - Major nuclease activity present in serum
Modified backbone linkages

Anti-VEGF RNA
Aptamer!
Modified 5’-terminus

- What does this accomplish?
- Reduced susceptibility to 5’-exonucleases
- Reduced clearance
 - Increased size of PEG-conjugated aptamer
 - Pegaptanib, sodium molecular weight ~ 50 KDa
 - Aptamer alone: ~ 10 KDa

and n is approximately 450.
Why not eliminate all sites from which aptamer degradation may occur?

- Elimination may be undesirable: Aptamer function compromised
- Intentional: Modulates aptamer’s lifetime within patient (pharmacokinetics)
How do you deliver aptamer drugs to the retina

- **Anti-VEGF therapy**
 - Cannot be delivered systemically (e.g. intravenously)
 - Pro-thrombotic
 - Poor oral bioavailability
 - *Injected directly into the vitreous humor of the eye!*

Summary

• Aptamers have been successfully developed as therapeutics
 – Other aptamers in different stages of drug testing trials include:
 • Anti-clotting agents
 • Anti-cancer agents

• Several factors must be specifically addressed to achieve this:
 – Stability to nuclease-mediated degradation
 – Bioavailability
 – Pharmacokinetics
 – Delivery to target interaction site
 – Cost