

Towards engineering a Biothermometer Delft University of Technology

R.J.J. Jorna, B.A. van den Berg, F. Ehtemam, S.M. Flipse, R. Haghi, O.M.J.A. Stassen 2008–11-8

Team and Instructors

Design: Bas van den Berg

Modeling: Farzad Ehtemam Rad Haghi

Lab work: Oscar Stassen Ruud Jorna

Ethics: Steven Flipse

Presentation outline

- Background & Basics
- Design
- Laboratory work
- Modeling
- Ethics
- Summary

The biothermometer

- The project is approached as two seperate modules
 - Sensor: RNA thermometer
 - Reporter: isoprenoid biosynthesis pathway
- Potential applications
 - Monitoring temperature during fermentation
 - Temperature inducible protein expression

RNA thermometers

Functionality

- Post-transcriptional regulation
- The hairpin masks ribosome binding site¹

1. F. Narberhaus, et al. 2006.

Towards engineering a Biothermometer 6 | 24

2. T. Waldminghaus, et al. 2007.

TUDelft

Design

Turning RNA thermometers into BioBricks

- 3 known thermometers² turned into BioBricks
- Secondary structure important for functionality
- Adjustment for scar

Design Changing the switching temperature

 Similar profile used to design 32°C and 27°C RNA thermometers

energy (kcal/mol) 0.0 -2.0 Software -4.0 2008 -6.0 **TU**Delft -8.0 -10.0 -12.0 ree -14.0 scar start -16.0 uacu Software tool written Produces RNA sequences of <u>¢</u>, RNA hairpin designer _ O X hairpin structures with a RNA Hairpin sequence template cuug gagga.uacuagaug 3' given stability profile RNA hairpin stability profile Can be used to design RNA -300, -300, -300, -300, -433, -566, -699, -832, -965 🔺 thermometers • • Maximal distance 200 Results Number of results: 69 Get Sequences cgucugguguuuuuccuuggaggaguacuagaug ugucugguguuuuuccuuggaggaguacuagaug Ŧ caucudduduuuuccuuddaddaduacuadaud Save result 0

. . .

Lab work on RNA thermometers

- Assemble BioBricks to make working constructs
- Testing sensitivity
 - Replacing the isoprenoid biosynthesis pathway with luciferase
 - Generate a protocol to measure luciferase (luminescence)
 - Correct luciferase measurements for total protein content

Experimental approach

- Temperature sensitive device (BBa_K115035)
- Reference device (BBa_K115012)

Experimental procedure

- Grow cultures at different temperatures
- Lyse cells
- Measure
 - total protein content
 - luciferase activity
- Problems in cell lysis
 - Lysis buffer interferes with protein content
 - Protein precipitation not reproducible
 - Fastprep denatures luciferase
 - Beadbeater not reproducible
 - Sonication denatures some luciferase but reproducible

Results

TUDelft

BBa_K115035 is a working device (32°C switch)

At 30°C a **1.92** fold increase (Ref: 2.44)
At 37°C a **17.62** fold increase (Ref: 4.66)

Color Pathway

- 14 enzymes involved
- Escherichia coli and Saccharomyces cerevisiae genes for FPP production
- Three enzymes obtained in the laboratory:
 - atoB thiolase
 - idi isopentenyl-PP isomerase
 - ispA FPP synthase
- FPP to colorant(s) → Biobricks by Edinburgh 2007

Delft

V. Martin. et al. 2003.

Color Pathway

Geranylgeranyl diphosphate phytoene synthase Phytoene phytoene desaturase Lycopene (Red) lycopene B-cyclase B-carotene (Orange) 3,3'-B ionone hydroxylase Zeaxanthin (Yellow)

 FPP to colorant(s) → Biobricks by Edinburgh 2007

TUDelft

Modeling

- Input:
 - Temperature
 - Challenge: Find appropriate model describing temperature sensitivity
- Output:
 - Color
 - Challenge: Define parameter spaces yielding stable dynamic system

Modeling

- Enzyme production: Hill type
 - m, α , and K are estimated by using luciferase assay results

- The results show a switch behavior for the model
 - Parameters estimated by Genetic Algorithm

Modeling

- Sensitivity analysis
 - The sensitivity analysis on the last four products show the effect of the p parameter on the model

- Bifurcation analysis
 - The bifurcation analysis shows the stability for all estimated parameters

Ethics

• Goal

Understanding ethical issues in Synthetic Biology and within iGEM

- Why?
 - Ethical issues important to consider, also during design
- Report
 - "LIFE to LEGO SynthEthics in the TU Delft iGEM project"
 - Ethical reflections for participants in the open source synthetic biology based iGEM competition

Ethical issues integrated

- Value sensitive design
 - Consider ethical issues in biological design, from the beginning of the project
- Literature survey Macro ethics
 - Learn which ethical issues play in Sythetic Biology
- Questionnaire Micro ethics
 - Learn participants' opinions
 - Generate awareness, reflect on ethical issues
- Question of the week
 - Stimulate discussion on ethical issues relevant to the project

Summary

- Software to design RNA thermometers developed
- RNA thermometer (BBa_K115035) confirmed
- Three genes of color pathway cloned
- Mathematical models describing the biothermometer generated
- More awareness on ethical issues by:
 - Implementing value sensitive design
 - Interviews
 - Discussing ethical questions

Sponsors / Acknowledgements

Sponsors

Kluyver ICENTRE | Kluyver Centre for Genomics of Industrial Fermentation

TUDelft

Department of Bionanoscience Department of Biotechnology Advisors Prof.dr. J.T. Pronk Prof.dr.ir. J.J. Heijnen Dr.ir. A.J.A. van Maris Dr. A.P. Gultyaev M.Eng. F. Menolascina *Instructors* Domenico Bellomo Marco de Groot Janine Kiers Ali Mesbah Emrah Nikerel

Ethics Ibo van de Poel Huib de Vriend Daan Schuurbiers

Other people Prof.dr. S. de Vries Dr. L.A. Robertson Ing. S. Hage Lab Work Esengül Yildirim Laura Koekkoek Loesje Bevers Linda Otten Marijke Luttik Gert van der Steen

The last four products

