Towards engineering a Biothermometer
Delft University of Technology

R.J.J. Jorna, B.A. van den Berg, F. Ehtemam, S.M. Flipse, R. Haghi, O.M.J.A. Stassen

2008-11-8
Team and Instructors

Design:
Bas van den Berg

Modeling:
Farzad Ehtemam
Rad Haghi

Lab work:
Oscar Stassen
Ruud Jorna

Ethics:
Steven Flipse
Presentation outline

• Background & Basics
• Design
• Laboratory work
• Modeling
• Ethics
• Summary
The project is approached as two separate modules
 • Sensor: RNA thermometer
 • Reporter: isoprenoid biosynthesis pathway

Potential applications
 • Monitoring temperature during fermentation
 • Temperature inducible protein expression
RNA thermometers

- Functionality
 - Post-transcriptional regulation
 - The hairpin masks ribosome binding site

Design
Turning RNA thermometers into BioBricks

- 3 known thermometers\(^2\) turned into BioBricks
- Secondary structure important for functionality
- Adjustment for scar

Design

Changing the switching temperature

- Stability profile for 37°C (*RNAfold*)

- Similar profile used to design 32°C and 27°C RNA thermometers
Towards engineering a Biothermometer

Software

- Software tool written
- Produces RNA sequences of hairpin structures with a given stability profile
- Can be used to design RNA thermometers
Lab work on RNA thermometers

• Assemble BioBricks to make working constructs

• Testing sensitivity
 • Replacing the isoprenoid biosynthesis pathway with luciferase
 • Generate a protocol to measure luciferase (luminescence)
 • Correct luciferase measurements for total protein content
Experimental approach

• Temperature sensitive device (BBa_K115035)

• Reference device (BBa_K115012)
Experimental procedure

- Grow cultures at different temperatures
- Lyse cells
- Measure
 - total protein content
 - luciferase activity

- Problems in cell lysis
 - Lysis buffer – interferes with protein content
 - Protein precipitation – not reproducible
 - Fastprep – denatures luciferase
 - Beadbeater – not reproducible
 - Sonication – denatures some luciferase but reproducible
Results

- **BBa_K115035 is a working device (32°C switch)**

<table>
<thead>
<tr>
<th></th>
<th>20°C</th>
<th>30°C</th>
<th>37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>1.00</td>
<td>2.44</td>
<td>4.66</td>
</tr>
<tr>
<td>SEM ± 2</td>
<td>0.30</td>
<td>1.04</td>
<td>2.18</td>
</tr>
<tr>
<td>BBa_K115035</td>
<td>1.00</td>
<td>1.92</td>
<td>17.62</td>
</tr>
<tr>
<td>SEM ± 2</td>
<td>0.10</td>
<td>0.36</td>
<td>7.52</td>
</tr>
</tbody>
</table>

- At 30°C a **1.92** fold increase (Ref: 2.44)
- At 37°C a **17.62** fold increase (Ref: 4.66)
Color Pathway

- 14 enzymes involved
- *Escherichia coli* and *Saccharomyces cerevisiae* genes for FPP production
- Three enzymes obtained in the laboratory:
 - *atoB* — thiolase
 - *idi* — isopentenyl-PP isomerase
 - *ispA* — FPP synthase
- FPP to colorant(s) → Biobricks by Edinburgh 2007

Color Pathway

Geranylgeranyl diphosphate

\[\text{phytoene synthase} \]

\[\text{phytoene desaturase} \]

Lycopene (Red)

\[\text{lycopene B-cyclase} \]

B-carotene (Orange)

\[3,3'-B\text{ ionone hydroxylase} \]

Zeaxanthin (Yellow)

• FPP to colorant(s) → Biobricks by Edinburgh 2007
Modeling

• Input:
 • Temperature
 • Challenge: Find appropriate model describing temperature sensitivity

• Output:
 • Color
 • Challenge: Define parameter spaces yielding stable dynamic system

TABLE

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Color</td>
</tr>
<tr>
<td>Lycopene</td>
<td>Lycopene</td>
</tr>
<tr>
<td>B-Carotene</td>
<td>B-Carotene</td>
</tr>
<tr>
<td>Zeaxanthin</td>
<td>Zeaxanthin</td>
</tr>
</tbody>
</table>

Model

- Input: Temperature
- Output: Color, Lycopene, B-Carotene, Zeaxanthin
Modeling

• Enzyme production: Hill type
 • m, α, and K are estimated by using luciferase assay results

Without inhibition

$$[e] = \alpha \frac{T^m}{T^m + K^m} + 1$$

With inhibition

$$[e] = \alpha \frac{T^m}{T^m + K^m \frac{1}{T^p + K^p_i}} + 1$$
Modeling

- The results show a switch behavior for the model
 - Parameters estimated by Genetic Algorithm

The results for the switch at 30°C is:

\[
\frac{e_2}{e_0} = 2 \times 10^{40} \frac{T^{25}}{T^{25} + 28.78^{25}} \frac{1}{T^{25} + 39.25^{25}} + 1
\]
Modeling

• Sensitivity analysis
 • The sensitivity analysis on the last four products show the effect of the parameter on the model

• Bifurcation analysis
 • The bifurcation analysis shows the stability for all estimated parameters
Ethics

• Goal
 • Understanding ethical issues in Synthetic Biology and within iGEM

• Why?
 • Ethical issues important to consider, also during design

• Report
 • “LIFE to LEGO – SynthEthics in the TU Delft iGEM project”
 • Ethical reflections for participants in the open source synthetic biology
 based iGEM competition
Ethical issues integrated

- Value sensitive design
 - Consider ethical issues in biological design, from the beginning of the project

- Literature survey – Macro ethics
 - Learn which ethical issues play in Synthetic Biology

- Questionnaire – Micro ethics
 - Learn participants' opinions
 - Generate awareness, reflect on ethical issues

- Question of the week
 - Stimulate discussion on ethical issues relevant to the project
The issues identified

- General ethical issues in synthetic biology
 - Biosafety
 - Biosecurity
 - Naturalness
 - Patenting

- Ethical issues in iGEM specifically
 - Value of Life
 - Intellectual Property

- BioTerror
- BioError
- Usefulness
- Open source
- Commercialization
- Responsibility
- Applied or fundamental science?
- Misuse
Summary

• Software to design RNA thermometers developed

• RNA thermometer (BBa_K115035) confirmed

• Three genes of color pathway cloned

• Mathematical models describing the biothermometer generated

• More awareness on ethical issues by:
 • Implementing value sensitive design
 • Interviews
 • Discussing ethical questions
Sponsors / Acknowledgements

Sponsors

Department of Bionanoscience
Department of Biotechnology

Advisors
Prof.dr. J.T. Pronk
Prof.dr.ir. J.J. Heijnen
Dr.ir. A.J.A. van Maris
Dr. A.P. Gultyaev
M.Eng. F. Menolascina

Instructors
Domenico Bellomo
Marco de Groot
Janine Kiers
Ali Mesbah
Emrah Nikerel

Instructors

Ethics
Ibo van de Poel
Huib de Vriend
Daan Schuurbiers

Lab Work
Esengül Yildirim
Laura Koekkoek
Loesje Bevers
Linda Otten
Marijke Luttik
Gert van der Steen

Other people
Prof.dr. S. de Vries
Dr. L.A. Robertson
Ing. S. Hage
Questions?
The last four products