
Hypothetische Modelle

Heutiges Paper

The TIR1 protein of *Arabidopsis* functions in auxin response and is related to human SKP2 and yeast Grr1p

Max Ruegger,¹ Elizabeth Dewey, William M. Gray, Lawrence Hobbie,² Jocelyn Turner, and Mark Estelle³

Department of Biology, Indiana University, Bloomington, Indiana 47405 USA

Vorgehensweise:

- Screening nach neuen Mutanten mit neuen Phänotyp
- Neuer Phänotyp: CPD, NPA- Resistenz (CPD, NPA: Wachstumshemmung durch Inhibierung des Auxin-Transport in der Wurzel)

Charakterisierung der tirl Mutanten

- Durch Screening mittels CPD 16 Mutanten mit gleichem Phänotyp erhalten
- Komplementationsanalyse:
 5 Mutanten haben verschiedene Allele des selben Gens (*TIR1*)
- *tir1* = transport inhibitor response 1

Table 1. Segregation of CPD resistance in a tir1-2 × wild-type F_2 population

F ₂ root length	F ₂ genotype ¹			
(mm)	tir1/tir1 ²	tir1/+ ²	+/+2	
17	2			
16	5			
15	1			
14				
13		C. B. a. Barrieron		
12		1		
11				
10		6		
9		6		
8		7	6	
7		3	4	
6		2	4	
5				
4		1		
3		1		
Totals	8	27	14	

 $^{^{1}\}mbox{Genotype}$ determined by analyzing CPD resistance in \mbox{F}_{3} plants.

Table 2. *CPD resistance in tir homozygous and heterozygous plants*

Line	Root length (mm)	±S.E.	No
+/+	7.8	0.1	32
tir1-1/tir1-1	15.7	0.3	33
tir1-3/tir1-3	15.8	0.4	34
tir1-7/tir1-7	13.0	0.5	33
<i>tir1-1/</i> +	10.9	0.3	15
tir1-3/+	12.5	0.3	17
tir1-7/+	12.6	0.2	17

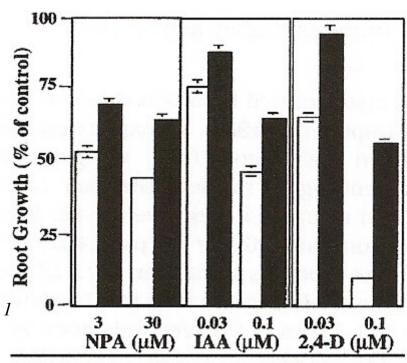
GENES & DEVELOPMENT

199

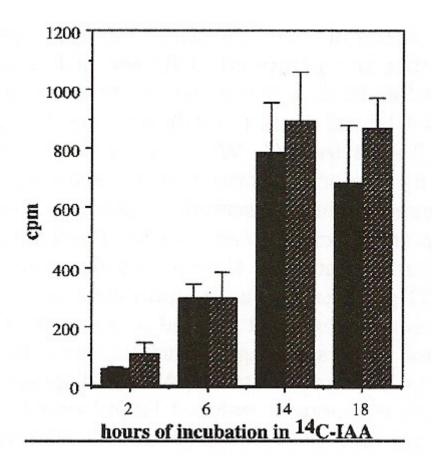
²Number of seedlings.

Charakterisierung der tirl Mutanten

- Ergebnisse:
- Partielle Dominanz (Semidominanz)
- CPD inhibiert Transport oder Signal


transport vs. signaling effect

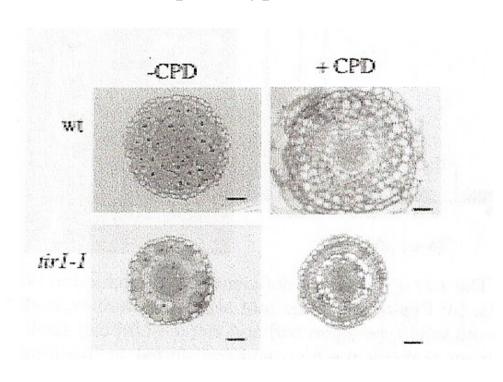
• <u>Ziel:</u>


- Ausschluss von spezifischen Reaktionen mit CPD
- Ist die Wachstumsinhibierung signalbedingt oder transportbedingt?

weißer Balken: WT

schwarze Balken: tir1-1

polar IAA transport

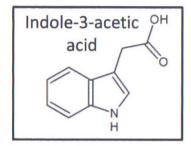

schwarze Balken: WT

gepunktete Balken: tir1-1

Ergebnis: kein Transporteffekt

Zellproliferation

Neues phänotypisches Merkmal: Schwellung

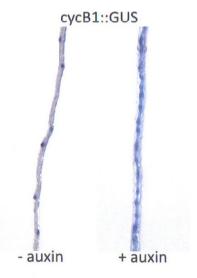


• Ergebnisse:

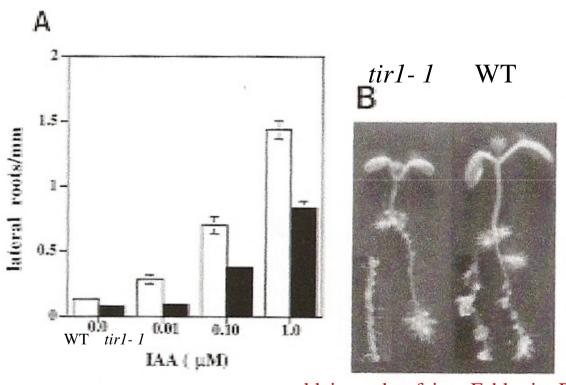
- *tir1-1* hat keine Auxinwahrnehmung mehr
- CPD wirkt wachstumsreduzierend auf die Wurzel

IAA induziert laterale Wurzel- Bildung

Auxin regulates plant development



Embryonic patterning

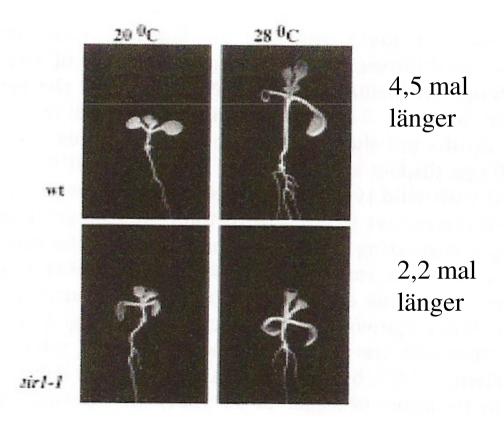

Growth & Apical dominance

Root development

Tropic growth responses

TIR1 Gen ist involviert in der lateralen Wurzel- Bildung

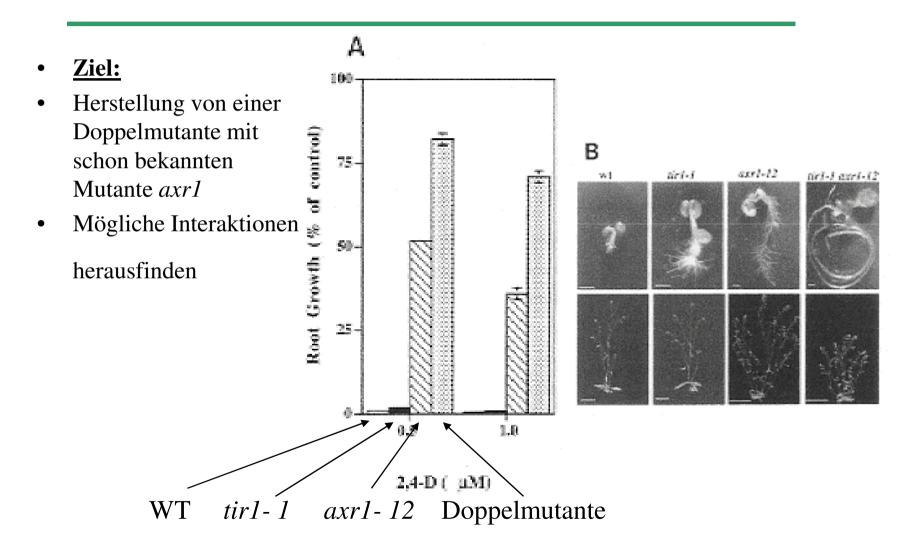
kleiner, aber feiner Fehler im Paper


TIR1 Gen ist involviert in der lateralen Wurzel- Bildung

• Ergebnisse:

- Auxin fördert die Ausbildung von lateralen Wurzeln
- *tir1* Mutanten nicht komplett Auxin "blind" (reagieren auf Auxinkonzentration)
- *tir1* Mutante hat wenig laterale Wurzeln

Zell- Elongation

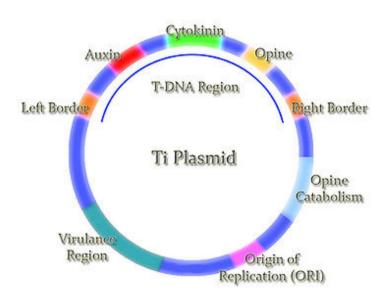

- **Test:** temperaturabhängiges Wachstum des Hyperkotyls von WT und *tir1-1*
- (Primäre Auxinabhängigkeit, Giberellin und Ethylen haben in der Regel keine Auswirkung)

Zell- Elongation

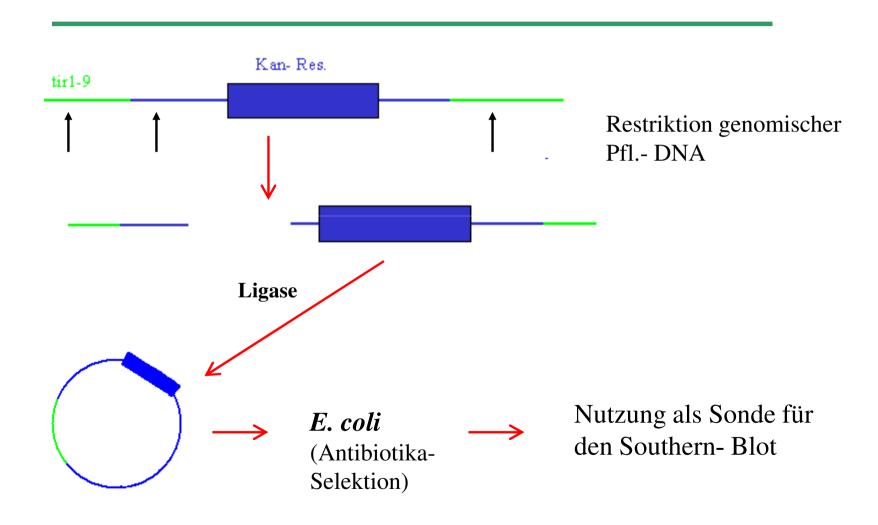
- Ergebnisse:
- Wildtyp hat bei 28°C 4,5 mal längeres Hyperkotyl als bei 20 °C
- *tir1-1* hat bei 28 °C nur 2,2 mal längeres Hyperkotyl
- Weitere Bestätigung, das tirl eine Störung im Auxinsignaling hat

tir1 und axr1 haben eine synergistische Interaktion

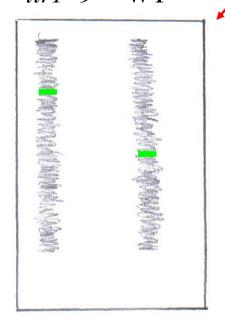
tir1 und axr1 haben eine synergistische Interaktion

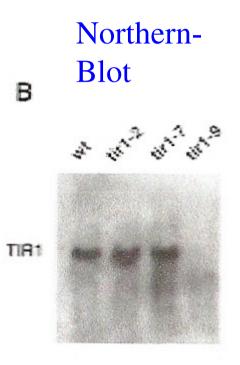

• Ergebnisse:

- Die Doppelmutante mit *axr1-12* und *tir1-1* ist sehr resistent gegen die hohe Konzentration von 2,4- D
- die Doppelmutantenwurzel ist länger als *tir1-1* allein
- Phänotyp im Habitus (laterale Wurzeln, buschig)
- Schlussfolgerung: *tir1* und *axr1* interagieren synergistisch miteinander (evtl. im selben pathway)


- Einbringen von DNA- Fragmenten durch *Agrobacterium tumefaciens*, zuvor Austausch des tumerinduzierden Gens und anderen Genen durch Kanamycinresistenzgen als Marker
- Zufälliger Einbau in die genomische DNA des Wirtes
- Es existiert eine große T- DNA Datenbank

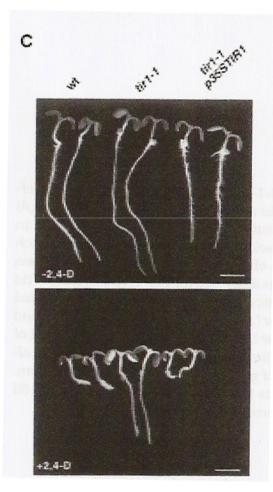
Screen auf
Auxin-Resistenz


tir1-9


hhttp://de.wikipedia.org/wiki/Ti-Plasmid

tir1-9 WT

- dient als Kontrolle:
- Ergebnis: Längenpolymorphismus
- das bedeutet der Plasmid ist geeignet
- das gleiche für cDNA- Bank (Nutzung der Sonde)
- bei der *E.coli* Kolonie bei der eine Bande auftritt ist das gesuchte Gen (cDNA)



- Gen nachgewiesen, *TIR1* ist das gesuchte Gen

A	Sec	Sequenzanalyse			
1	MORRIALSFP	EEVLEHVESE	IQLDKDRNSV	SLVCKSWYEI	ERWCRRKVF
51	GNCYAVSPAT	VIRREPKVRS	VELKGKPHFA		GYVYPWIRAL
101	SSSYTWLEET	RLKRMVVTDD	CLELIAKSPK	NFKVLVLSSC	EGFSTDGLA
151	IAATCRNLKE	LDLRESDVDD	VSGHCLSHFP	DTYTSLVSLN	ISCLASEVS
201	SALERLVTRC	PNLKSLKLNR	AVPLEKLATL	LQRAPQLEEL	GTGGYTAEV
251	PDVYSGLSVA	LSGCKELRCL	SGFWDAVPAY	LPAVYSVCSR	LTTLNLSYA
301	VQSYDLVKLL	CQCPKLQRLW	VLDYIEDAGL	EVLASTCKTY	RELRVFPSE
351	FVMEPNVALT	EQGLVSVSMG	CPKLESVLYF	CRQMTNAALI (tir1-2)	
401	RFRLCIIEPK	APDYLTLEPL	DIGFGAIVEH		
451	IGTYAKKMEM	LSVAFAGDSD	LGMHHVLSGC	DSLRKLEIRD	CPFGDRALLI
501	NASKLETHRS	LWMSSCSVSF	GACKLLGQKM	PKLNVEVIDE	RGAPDSRPES
551	CPVERVFIYR	TVAGPREDMP	GFVWNMDQDS	TMRFSROIIT	TNGL

- Mutation scheint verantwortlich für die Auxin- Resistenz

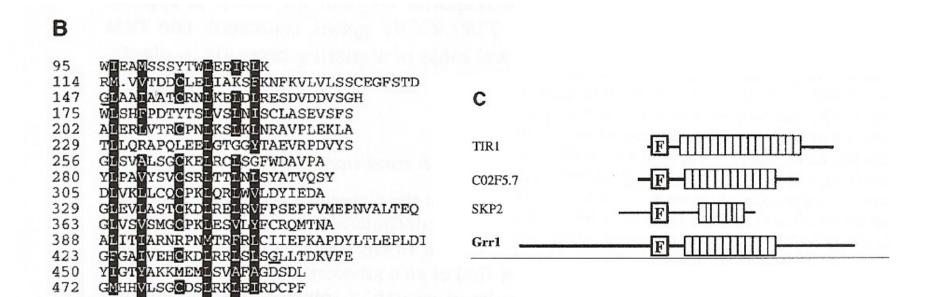
Komplementation

Transformation des *p35S:TIR1* Plasmids in *tir1-1*

- Ergebnis:
- Beweis, dass *TIR1* das gesuchte Gen ist
- *TIR1* Gen befindet sich an Position 128 im Chromosom 3, nahe nga 128

TIR1 Proteine bestehen aus einer F- Box und LRR

• F- Box und LRR homologe Proteine von TIR1: Grr1p; SKP2; C02F5.7

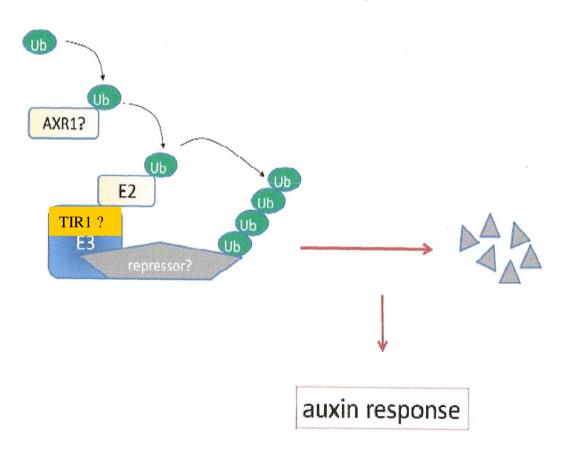

• F- Box:

- Homolge Proteine:
 Säugetiere und Hefe: SKP2; Mensch: Cyclin F; Hefe: Cdc4 und Grr1
- An die F- Box bindet SKP1, mit Cdc53 bilden diese den E3- Komplex (SCF)
- **LRR:** leucine rich repeats, (für Proteininteraktionen?)

TIR1 Proteine bestehen aus einer F- Box und LRR

TIR1 LG SCLCL.PLLK SG/CLR/R SKP2 320 SELHLEDKLNOKYDIVKELT SEL AWIIV.KIL.YY Grr1 FREVELK SFLOT. KALCR AQUORS SI C02F5.7 50 LPP LIDRVIAFLPP.PAFFRTRC UFO 47 FOKLIDRITACLPP. PAFFRERSVORR FIM 35 PEDWIFHILKWLSVE. DILA RAVHSOLKD VD. NHASYN Cyclin F 278 FFEISLKIENYLOFE. DIIN LGVSON NK Cdc4 Consensus LP-ELL--IF--L----Da--a--VCK-WY-La----a-VL

TIR1 Proteine bestehen aus einer F- Box und LRR


Con: .L..a...C..L..L.a.....

Zusammenfassung:

- Entdeckung neuer Mutanten (tir) über einen CPD und NPA- Assay
- 5 Mutanten (*tir1-1*, *tir1-2*, *tir1-3*, *tir1-6*, *tir1-7*)
- Resistenz gegenüber Auxin- Transportinhibitation
- *tir1* Mutanten im Auxinsignaling gestört
- Lokalisierung des *TIR1* Gens
- Identifizierung des TIR1 Protein
- Vermutung das TIR1 Protein ein Bestandteil des SCF- Komplexes ist

Hypothese:

• TIR1 Protein ist ein Bestandteil des E3- Komplexes wie seine Homologen

Nächstes Paper

• Christian/Inga Romina

