Maryam Yamadi 09/05 Lab Notebook
-Prepare 5 mM NaOH solution (by dilution)
$5 \mathrm{mM} \mathrm{NaOH}=5^{*} 10^{-3} \mathrm{M} \mathrm{NaOH}$
$\left(5^{*} 10^{-3} \mathrm{M} \mathrm{NaOH}\right)^{*}(0.05 \mathrm{~L}) /(1 \mathrm{M}$ stockNaOH $)=2.5^{*} 10^{-4} \mathrm{~L}=\mathbf{0 . 2 5 m L}$ stock NaOH to $49.75 \mathrm{~mL} \mathrm{H}_{\mathbf{2}} \mathrm{O}$
-Remake solutions with low Au:amino acid ratios over different pH range

Ratio	Au	AA	NaOH	H 20
theoretical pH				
1_1_1 (dilut 1 mL	1 mL	1 mL	7 mL	10.3979
1_1_0.1 (sto 1 mL	1 mL	0.1 mL	7.9 mL	11.989
1_1_1 (stock 1 mL	1 mL	1 mL	7 mL	12.9989
1_1_0.5 (dilu 1 mL	1 mL	0.5 mL	7.5 mL	7

-Theoretical pH calculation for 1:1:1 ratio of 5 mM NaOH diluted solution $\left(1^{*} 10^{-3} \mathrm{~L}\right) *\left(5^{*} 10^{-3} \mathrm{M} \mathrm{NaHO}\right)=5 * 10^{-6} \mathrm{~mol} \mathrm{OH}$
$\left(1 * 10^{-3} \mathrm{~L}\right) *\left(2.5^{*} 10^{-3} \mathrm{M} \mathrm{HAuCl}_{4}\right)=2.5 * 10^{-6} \mathrm{~mol} \mathrm{H}^{\mathbf{~}}$
$\left(5^{*} 10^{-6} \mathrm{~mol} \mathrm{OH}\right)-\left(2.5^{*} 10^{-6} \mathrm{~mol} \mathrm{H}\right)=2.5^{*} 10^{-6} \mathrm{xs} \mathrm{mol} \mathrm{OH}$
$\left(2.5 * 10^{-6} \mathrm{xs} \mathrm{mol} \mathrm{OH}\right) /\left(10^{*} 10^{-3} \mathrm{~L}\right)=2.5 * 10^{-4} \mathrm{M} \mathrm{OH}$
$\mathrm{pOH}=-\log [\mathrm{OH}]=-\log \left[2.5^{*} 10^{-4}\right]=3.602059$
$\mathrm{pH}=14-\mathrm{pOH}=14-3.60=10.3979$
-Theoretical pH calculation for 1:1:0.1 ratio of $\mathbf{1 M} \mathrm{NaOH}$ stock solution
$2.5 * 10^{-6} \mathrm{~mol} \mathrm{H}$
$\left(0.1 * 10^{-3} \mathrm{~L}\right) *(1 \mathrm{M} \mathrm{NaOH})=\mathbf{0 . 1} \mathbf{1 0}^{-\mathbf{3}} \mathrm{mol} \mathrm{OH}$
$\left(0.1 * 10^{-3} \mathrm{~mol} \mathrm{OH}\right)-\left(2.5^{*} 10^{-6} \mathrm{~mol} \mathrm{H}\right)=9.75 * 10^{-5} \mathrm{xs} \mathrm{mol} \mathrm{OH}$
$\left(9.75 * 10^{-5} \mathrm{xs} \mathrm{mol} \mathrm{OH}\right) /\left(10^{*} 10^{-3} \mathrm{~L}\right)=\mathbf{0 . 0 0 9 7 5 M ~ O H}$
$\mathrm{pOH}=-\log [\mathrm{OH}]=-\log [0.00975]=2.01099$
$\mathrm{pH}=14-\mathrm{pOH}=14-2.0199=11.989$
-Theoretical pH calculation for 1:1:1 ratio of 1 M NaOH stock solution
$2.5 * 10^{-6} \mathrm{~mol} \mathrm{H}$
$\left(1^{*} 10^{-3} \mathrm{~L}\right) *(1 \mathrm{M} \mathrm{NaOH})=1 * 10^{-3} \mathrm{~mol} \mathrm{OH}$
$\left(1 * 10^{-3} \mathrm{~mol} \mathrm{OH}\right)-\left(2.5 * 10^{-6} \mathrm{~mol} \mathrm{H}\right)=9.975 * 10^{-4} \mathrm{xs} \mathrm{mol} \mathrm{OH}$
$\left(9.975^{*} 10^{-4} \mathrm{xs} \mathrm{mol} \mathrm{OH}\right) /\left(10^{*} 10^{-3} \mathrm{~L}\right)=\mathbf{0 . 0 9 9 7 5} \mathbf{~ M ~ O H}$
$\mathrm{pOH}=-\log [\mathrm{OH}]=-\log [0.09975]=1.00108$
$\mathrm{pH}=14-\mathrm{pOH}=14-1.00108=12.9989$
-Theoretical pH calculation for 1:1:0.5 ratio of 5 mM NaOH diluted solution $2.5 * 10^{-6} \mathrm{~mol} \mathrm{H}$
$\left(0.5 * 10^{-3} \mathrm{~L}\right) *\left(5 * 10^{-3} \mathrm{M} \mathrm{NaOH}\right)=2.5 * 10^{-6} \mathrm{~mol} \mathrm{OH}$
no xs moles reacting meaning the $\mathbf{p H}=7$
-Titrant Standardization

- $\quad 0.01 \mathrm{~g} \mathrm{KHPhth} \mathrm{in} 30 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ in which phenolphthalein was added
- $\quad\left(200 * 10^{-6}\right)(0.25 \mathrm{~L}) /\left(5^{*} 10^{-3}\right)=0.01 \mathrm{~L}$ of 5 mM NaOH

