- Announcements
- Pre-lab Lecture
 - Ligation and cloning: basic
 - Ligation and cloning: TOPO
 - Bacterial transformation
 - Today in Lab: M1D4
 - LATER: Writing a figure caption

Announcements

- Reminder: quiz next time
- Another long(ish) FNT:
 - gel figure
 - results section opening
 - results section outline
 - overview schematic
- Journal club coming up in a week! (And two)
- First notebook M1D7
 - D2, 4, or 5 collected ★ 0wf.

	TUE/WED	THU/FRI
)	27 MID 1p ■ Quiz 3: M1D3-4 (W/F) 2p M1D4 FNT due, W/F	28 MID6 1p Journal Club I (T/R)
.) I)	6 MID7 1p ■ Quiz 4: M1D5-6 (W/F) 2p ■ Reflection 1 (W/F JCI) +2 more F/ Noteback	7 M ID8 1p Journal Club II (T/R)
n II)	13 11 Module 1 draft 11 am 1p Reflection 1 (W/F JCII	14
;	20 11 ■ Primer summary due 1p ■ Quiz 5: M2D1-2 (W/F)	21
	27	28

wnere we are/going

Bird stool Complex DNA pool Simpler DNA pool (many pathogen DNAs) (bacterial 16S DNA) sample extract DNA PCR DAY 3 DAY 2 Individual 16S cell colonies gel putify, clone liquid culture and transform co 04115, 9/0W 0/N Individual 16S DNA plasmids isolate DNA clones identify, relate, and from bacteria compare sequences 0000000 Voilà!

DAY 7

DAY 5

Plasmid overview

- ds circular extrachromosomal

why? vector to introduce foreign gene/frog-nent into cells

Ampicillia resistance >
conselect bacteria
that have plasmed
an ampicillia plates

Ligation and cloning: basic approach

X and E = restriction enzyme sites = WA sequences (enginized

Ligation and cloning: TOPO approach

Bacterial transformation

DNA amplification in bacteria

"Blue-white screening" for insert selection

lacZ encodes β-galactosidase

in ow cell shain

inactive mutant can be rescued by peptide fragment

 production of complete X-gal = β-gal analogue

blue color → active β-gal

· want: while colonies -> disrupted B-gal - insert

DNA EP: clean-up and safety

 Use nitrile gloves when handling DNA gels and all equipment used for gels.

 Gels and gel-contaminated papers are disposed of in solid chemical waste.

 Wear amber glasses (blue light) or face shields (UV) when cutting DNA bands out of a gel.

Today in Lab (M1D4)

- Gels w/PCR products run 45 min. Meanwhile,
 - 15 min on figure caption best practices
 - prepare for next steps etc.
- Gel purify IFF multiple products; share if no product.
- Surprise! You each get to do a ligation. No re-pairing.
 - filter tips for prepping ligation reaction
- During 1 hr incubation
 - transformation demo (X-gal prep)
 - prepare tubes for liquid O/N culture
 - prepare primer stocks for μsporidia PCR

over for figure discussion

Figures: style and scope

- Title: concise, informative, tells overall goal/result
- Caption: gives <u>context</u> for result from big
 small
 - Introduce what we are looking at
 - Include just enough methods to understand result
 - Define all elements (e.g., DNA ladder)
 - Cover primarily <u>facts</u>, not interpretation e.g., observed and expected sizes
- Aesthetics: simplicity, clarity

 at-a-glance labeling (e.g., some ladder band sizes)

Figure 3 CCL21 impacts naïve T cell proliferation under conditions of rare Ag-specific T-DC encounters. Co-cultures comprising 9% OVA-specific OT-II CD4' T cells, 81% C57Bl/6 CD4' T cells, 5% OVA-mDC and 5% iDC with/without CCL2 I were analyzed by flow cytometry at 85 h. (A) Sample CFSE histograms are shown for control (left, iDC only) and experimental (right, with OVA-mDC) conditions. (B) OTII cell recovery for all conditions is shown. Ave ± std. dev. for 3 wells per condition. [* indicates bracketed conditions statistically different (p ≤ 0.05)] (A-B) are from 1 representative of 5 experiments.