- Announcements Memo due in Iweek
- Lab Quiz
- 0 H NK Sun, 3-5pm, 65 probably Mon -5-6+ Pre-lab Lecture
- < no bb Wed!>
 - Intro to lipofection, workflow
 - Samples for HR experiment
- Optional Post-lab Lecture
 - Statistics Review

Lipofection

- DNA carrier is similar to the cell membrane
- Efficient transfection (can be >95%)

Figure from Invitrogen website

Lipofection Workflow

Wells with MES cells

Controls for HR Assay

How do you know if your experiment worked?

Experimental Samples for HR Assay

How might we increase HR frequency?

```
break DNA bofore txn: UV, restrictly digishing offer 1'xn; irradiation, chemicals

vary ratios ? Iday

if R.E. > bootson
```

Plan for today

```
- Baseline: 1:1 \Delta 5: \Delta 3
- A: 1:0.5 "1" = 0.1 mg DMA
- B: 1:2
- C: 1:10
```

Tissue Culture Tips

- Set up a few inches behind the barrier/grate
- Minimize opportunities to bump or expose sterile equipment or your samples
 - Uncap bottles before opening pipet
 - Keep tips and dishes closed when not in use
 - Avoid passing your hands/arms over open dishes
 - Don't try to hold > 2 things at once! ☺
- Take care not to clog the pipet-aids

Today in Lab

Lipofection of MES in TC

- led by Michelle
- Return here to finish Sonada paper discussion
- Finally, complete statistics assignment
 - Dive right in, or listen to optional lecture
 - Hand in as part of your notebook

Statistics Review: Basics

- Need-to-know concepts: standard deviation,
 mean, sample size n ≠ degrees of freedom DOF
- Normal (Gaussian) distribution

Confidence intervals (CI) Principle

- Sample problem, x = 60
- 95 % CI: "I'm 95% sure that the true mean" $\mu = x \pm 3 = 60 \pm 3 = 57 63$ (shorthand, not exactly true)
- 90% CI: μ = x ± a where a <3 a>3 a=3 ?

- Consider betting example
- What about n?

Calculating Confidence Intervals (CI)

$$\mu = \overline{x} \pm \frac{t \, s}{\sqrt{n}}$$

- t is tabulated by DOF vs CI%
 - -DOF = n 1
- In Excel, us TINV function
 - Input *p*-value = (100-CI)/100

Introduction to t-test

- Every statistical test
 - Has
 - Asks
 - Requires
- Some t-test assumptions

Question

Calculating t-test Significance

$$t_{calc} = \frac{\overline{x}_1 - \overline{x}_2}{s} \sqrt{\frac{n_1 n_2}{n_1 + n_2}}$$
DOF =

- If $t_{calc} > t_{table}$ difference is significant
- In Excel, us TTEST function
- Excel returns p-value → confidence level
- 1-tailed vs. 2-tailed test

Assignment Today

- Get heights of men and women in class
- Calculate 95% CI for both means
- Plot means on bar graph with CI error bars
- Try t-test to compare the two means
 - In Excel, and using a table if you have time

Comparing HR Samples

