- Announcements
 - Memo due in 1 week
 - H NK Sun, 3-5pm, b5
 - probably Mon 5-6+
 - <no lab Wed!>

- Lab Quiz

- Pre-lab Lecture
 - Intro to lipofection, workflow
 - Samples for HR experiment

- Optional Post-lab Lecture
 - Statistics Review
Lipofection

- DNA carrier is similar to the cell membrane
- Efficient transfection (can be >95%)

Figure 6 - Outline of transfection procedure for Lipofectamine™ 2000 Reagent

1. Dilute DNA
2. Dilute Lipofectamine™ 2000 Reagent
3. Combine diluted Lipofectamine™ 2000 Reagent and DNA
4. Add complexes to cells in growth medium

Assay for expression of select stable transfecants

Figure from Invitrogen website
Lipofection Workflow

Wait 5-30 min

... then add to

Lipofectamine in Opti-MEM

50 mL

62.5 mL 0.475 mL

$16.5 \times \text{ Vol. prep}$

triplicate: $150 \text{ mL} + 150 \text{ mL}$

Wait 20 min

... then add to

DNA in Opti-MEM

50 mL

$0.1 \text{ mg} \times \frac{\text{ mL}}{0.05 \text{ mg}} = 2 \text{ mL}$

Wait 20 min

... then add to

Lipid/nucleic acid complexes

Wells with MES cells

Controls, exp. - triplicate
Controls for HR Assay

- How do you know if your experiment worked?
Experimental Samples for HR Assay

- How might we increase HR frequency?
 - break DNA before
 - UV, restriction digestion
 - vary ratios after
 - irradiation, chemicals
 - vary [DNA] if RIE → location

- Plan for today
 - Baseline: 1:1 \(\Delta 5: \Delta 3 \)
 - A: 1:0.5 "1" = 0.1 \(\mu \)g DNA
 - B: 1:2
 - C: 1:10
Tissue Culture Tips

• Set up a few inches behind the barrier/grate
• Minimize opportunities to bump or expose sterile equipment or your samples
 – Uncap bottles before opening pipet
 – Keep tips and dishes closed when not in use
 – Avoid passing your hands/arms over open dishes
 – Don’t try to hold > 2 things at once! 😊
• Take care not to clog the pipet-aids
Today in Lab

- Lipofection of MES in TC
- Return here to finish Sonada paper discussion
- Finally, complete statistics assignment
 - Dive right in, or listen to optional lecture
 - Hand in as part of your notebook
- Sign up for a Friday FACS time: you only have to come to lab at your time (no lab quiz)

Day 8 "Talk" page
Statistics Review: Basics

- Need-to-know concepts: standard deviation, mean, sample size $n \neq$ degrees of freedom DOF
- Normal (Gaussian) distribution
Confidence intervals (CI) Principle

• Sample problem, \(x = 60 \)
• 95% CI: “I’m 95% sure that the true mean”
 \(\mu = x \pm 3 = 60 \pm 3 = 57 - 63 \) (shorthand, not exactly true)
• 90% CI: \(\mu = x \pm a \) where \(a < 3 \quad a > 3 \quad a = 3 \) ?
• Consider betting example
• What about \(n \)?
Calculating Confidence Intervals (CI)

\[\mu = \bar{x} \pm \frac{t \cdot s}{\sqrt{n}} \]

- \(t \) is tabulated by DOF vs CI%
 - DOF = \(n - 1 \)
- In Excel, use \(TINV \) function
 - Input \(p \)-value = \((100 - \text{CI})/100 \)
Introduction to t-test

• Every statistical test
 – Has
 – Asks
 – Requires

• Some t-test assumptions

• Question
Calculating t-test Significance

\[t_{\text{calc}} = \frac{x_1 - x_2}{S} \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \]

DOF =

- If \(t_{\text{calc}} > t_{\text{table}} \) difference is significant
- In Excel, use \(TTEST \) function
- Excel returns \(p \)-value \(\rightarrow \) confidence level
- 1-tailed vs. 2-tailed test
Assignment Today

- Get heights of men and women in class
- Calculate 95% CI for both means
- Plot means on bar graph with CI error bars
- Try t-test to compare the two means
 - In Excel, and using a table if you have time
Comparing HR Samples