Poor temporal precision in judging the position of
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imposed at a late stage of visual processing

Accessing the position of a moving object

Relative position judgments of nearby targets moving together are remarkably good (hyperacuity).

What about judgments of the position of a moving object relative to a stationary reference? Similar
stimuli are used in studies of the flash-lag effect, however most concentrate on the average error
or bias (lag).

We are interested in precision of the position representation, which will yield clues regarding the
underlying mechanism and which may be important for everyday actions.

We investigate precision using four different ways of asking a person where an object was at a par-
ticular time.
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Consider two possible outcomes:
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A high-level limit on position judgments

Vernier task
Is the outer

blob ahead?

Conclusions

Where in the visual system is this >60 ms temporal noise intro-

duced?

It cannot be at the earliest stages such as the retina, because Ver-
nier acuity, even radial Vernier acuity shows only a few ms of

temporal noise'? We have verified this by testing our stimuli

with a Vernier task:
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Precision is similar when we triple the eccentricity of the stimulus

(2 deg, 6 deg), again suggesting that the temporal noise is not caused by low-level factors.
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For localizing the position of a moving object,

e The three position judgment tasks are dominated by
temporal noise (~73 ms) rather than spatial noise.

e Sensorimotor synchronization is also dominated by
temporal noise, although perhaps reduced (~64 ms).

*The limits appear to be high-level as they do not

afflict our control tasks.
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Task: Are these rotating in phase or

180° out of phase?

Complication, to be investigated

A further test of what tasks
show the >60 ms temporal
noise.

Synchrony judgments of two
stimuli side-by-side are in
phase is easy at 6 Hz, a rate
that people seem to show
uniform distributions with
position judgments.
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Where in the system does the temporal noise originate?

e Temporal uncertainty regarding the time of the cue? But we would
have expected a great improvement in the collision task.

e Temporal uncertainty in the representation of the moving object
itself? But this should also affect Vernier thresholds.

e Temporal imprecision in the process of binding the moving object
with the cue? Possibly, as this is consistent with imprecision for

binding flickering stimuli

5,6,7

How is the amazing precision (3 ms)* manifest in sport

achieved? Do other cues to position, or practice allow one to
overcome our >60 ms temporal noise! We don’t know.
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However, 6 Hz = 83 ms
separation when out of
phase. If errors occur when
a gaussian-distributed rep-
resentation of position
causes errors greater than
90°, then underlying stan-
dard deviation is compara-
ble to our position judg-
ment tasks.

But we suspect that these
judgments actually reflect
a process with better tem-
poral precision than posi-
tion judgments.

Maybe something is going
wrong at higher frequen-
cies, like failure of motion
deblurring?

We will test phase thresh-
olds at 1-3 Hz to check.



