VLSI design in biology

Unpredictable transgenesis
Design and simulation of biochemical networks
Challengers of synthetic biology
Acceleration of biological evolution by computation
DNA in bottleneck

http://obolab.euro.ru

How could we engineer living organisms?

• Minimal life? Programmable artificial cell?
 – Chris Langton’s Self-Reproducing Loop, 86 cells, 8 states
 – phiX174, 5386 nt, 11 genes

• Minimal cell, [~100, 265-350] genes
 – Top-down: reprogramming simple organisms
 • *Mycoplasma genitalium* G-37, 580 Kbp, 480 genes, Craig Venter
 • *Mesoplasma florum* L1, 793 Kbp, 517 genes, Tom Knight
 • Synthetic genomic Inc, 2005, Craig Venter
 – Bottom-up: creating cells from nonliving material
 • Los Alamos Bug, PNA, Steen Rasmussen
 • ProtoLife, 2005, Norman Packard, Mark Bedau

• Human, 3.4 Gbp, 20,000-25,000 genes
 – Genetic interface: biological VM on chassis cells (T7, SP6 DNA-dependent RNA polymerases), non-DNA VM (TNA), orthosome (HNA, CeNA), …

• Evolution under the control of a man or a computer?
Gene Composer™, GeneDesign - web-design of synthetic genes

- Reverse Translation
- Codon Juggling
- Silent Site Insertion/Removal
- Sequence Analysis

- Oligo Design
- Enzyme/Vector Choosing
- Short Sequence Removal
- Random DNA

More than 300 genomes in the global database! We could play God to try an “intelligent design”
The environment for DNA program installation

In *E. coli* the intracellular protein concentration is 200-320 mg/ml (100 nm window)

Database of Interacting Proteins (DIP)

Benefits and limitations

- very small system
- small number of molecules, intrinsic noise
- wires, diffusion, speed
- parallelism
- synchronization
- signal levels
Molecular dynamics & simulation of biochemical networks

<table>
<thead>
<tr>
<th></th>
<th>Deterministic</th>
<th>Stochastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-spatial</td>
<td>mass-action ODE solvers Gepasi</td>
<td>Gillespie’s first reaction algorithm Stochastirator</td>
</tr>
</tbody>
</table>
| **Spatial** | PDE, reaction-diffusion equation Virtual Cell
| | • exact | reaction events occur during collision |
| | • approximate | MCell ray-tracing algorithms |
| | • hybrid approach | ChemCell |
| | • special-purpose hardware - field programmable gate arrays (FPGAs) | Moleculizer for protein complexes, the program automatically generates the network of reactions BioNetGen signaling pathways |

Gibson modified Gillespie algorithm allows to execute 10^{10} reactions per day on 800 MHz Pentium III Processor. A hypothetical simulation of *E.coli* will track 10^{14}-10^{16} reactions per cell.
Number of molecules vs. concentrations

- Plots of reaction probability density function $P(\tau, \mu)$
- Gibson modified Gillespie next reaction algorithm: only log of number of reactions
Enabling Biological Engineering (Drew Endy, 2005)

- **System abstraction**
 - Insulate relevant characteristics from overwhelming detail
 - Simple artifacts that can be used in combination
 - From Physics to EE, 1800s

- **Standardization of components**
 - Predictable performance
 - Off-the-shelf
 - ME, 1800s

- **Decoupling of design from fabrication**
 - Rules insulating design process from details of fabrication
 - Enable parts, device, and system designers to work together
 - VLSI electronics, 1970s

- **Hierarchy**
 - Systems
 - Devices
 - Parts
 - DNA

![Diagram of system abstraction, standardization of components, and decoupling of design from fabrication with DNA sequence: 5'-TAATACGACTCACTATAGGGAGA-3']
Registry of standard biological parts (http://parts.mit.edu/)

- File parts in XML format or RDBMS
- A modular way of building and composing DNA parts with prefix & suffix (Tom Knight, MIT)
BioSPICE & BioJADE – tools for design and simulation of bio-systems

BioJADE

- Standard Simulators
 - Stochastirator
 - Tabasco
- Access Methods
 - JDBC
 - Perl/DBI
- BBDataStore
 - BBDBC (Oracle, MySQL)
 - BBXML
- BioBricks Collection
 - promoters, RBS, structural genes, terminators…
BioJADE for synthetic biologist
(Jonathan Goler, 2004)
DNA synthesis: long & cost

Carlson Curves:

- It is possible to order a 10 Kbp DNA fragment over the web: Codon Devices, Blue Heron
- $0.85 to $1.60 per bp
- Some researchers consider that it is now possible to build 200 Kbp DNA fragments and expect that a ~1 Mbp bacterial genome will be constructed within the next two years
- BioFAB™ production platform that is expected to accurately synthesize Kilo- to Mega-bp-length genetic code
Potential applications

• Programmable devices: sensors, control logic, effectors
• Bacterial robots
• Amorphous computing
• Smart materials and self-assembly
• Molecular medical devices
• Artificial metabolic pathways
 – *Artemisinin* (malaria drug)
 – Energy & Fuel productions (photosynthesis, ethanol, hydrogen)
 – Ecology (reduce greenhouse gas emissions)
• …
• Creation of artificial life for the industrial applications

Levskaya et al. (2005) Engineering *E.coli* to see light, Nature, 438: 441-442
Evolution *in silico* vs. design

- **Compiling, optimization**
 - The computation is cheaper and faster than the synthesis of DNA
 - Write DNA encoding the successful solutions and next transfer this design from model to life

- **Golem Project**: model-based evolution *in silico*
Algorithmic paradigms of evolution

(Richard Watson, 2006)

<table>
<thead>
<tr>
<th>Dependency of variables</th>
<th>Few / weak interdependencies</th>
<th>Modular interdependencies</th>
<th>Arbitrary interdependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscape</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithmic paradigm</td>
<td>hill-climbing – accumulation of small variations</td>
<td>divide-and-conquer problem decomposition</td>
<td>exhaustive search, random search</td>
</tr>
<tr>
<td>Complexity</td>
<td>KN</td>
<td>N^K</td>
<td>K^N</td>
</tr>
<tr>
<td>Evolutionary analogy</td>
<td>gradual evolution</td>
<td>compositional evolution</td>
<td>“impossible” / “intelligent design”</td>
</tr>
</tbody>
</table>

N – # of variables, K – # of values for each variable
What is your dangerous idea?

• Start with fun and education
 – GEM-F Club
 – iGEM competition
• Continue with reliable infrastructure for the synthetic biology
• Finish with real applications to be a “Bill Gates”

A Scientist discovers that which exists.
An Engineer creates that which never was.
Theodore von Karman