

Overview

- Introduction
- Boolean algebras
- Logical gates
- Representation of boolean functions
- Karnaugh maps

A BRIEF HISTORY Dryden Flight Research Center E49-0053 Photographed 10/49 Early "computers" at work. NASA photo

Analog

- Continuous
- Can take on any value in a given range
- Very susceptible to noise

Digital

- Discrete
- Can only take on certain values in a given range
- Can be less susceptible to noise

BOOLEAN ALGEBRAS

George Boole:

An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities (1854)

Algebra: a strange mathematical structure between groups and vectors

Claude Elwood Shannon was the first to use Boolean Algebra to solve problems in electronic circuit design. (1938)

Basis of this algebra

- All the elements of this algebra have values of 0 or 1.
- Three operators:
 - -OR written as +, as in A+B AND written as •, as in $A \cdot B$ -NOT written as an overline, as in \overline{A}

Operators: OR

$$f_{or}(a,b)=a+b$$

- The result of the OR operator is 1 if either of the operands is a 1.
- The only time the result of an OR is 0 is when both operands are 0s.
- OR is like our old pal addition, but operates only on binary values

b	f _{or} (a,b)
0	0
1	1
0	1
1	1
	0

Truth table

Operators: AND

- The result of an AND is a 1 only when both operands are 1s.
- If either operand is a 0, the result is 0.
- AND is like our old nemesis multiplication, but operates on binary values.

а	b	f _{and} (a,b)				
0	0	0				
0	1	0				
1	0	0				
1	1	1				
 Truth table						

Operators: NOT

$$f_{not}(a) = \overline{a}$$

- NOT is a unary operator it operates on only one operand.
- NOT *negates* it's operand.
- If the operand is a 1, the result of the NOT is a 0.

а	b	f _{not} (a)
0	-	1
0	-	1
1	-	0
1	-	0

Truth table

Equations

Boolean algebra uses equations to express relationships. For example:

$$X = A \cdot (\overline{B} + C)$$

This equation expressed a relationship between the value of **X** and the values of **A**, **B** and **C**.

Quiz (already?)

What is the value of each X:

$$X_1 = 1 \cdot (0+1)$$

$$X_2 = A + \overline{A}$$

$$X_3 = A \cdot \overline{A}$$

$$X_4 = X_4 + 1$$

Laws of Boolean Algebra

Just like in *good old algebra*, Boolean Algebra has postulates and identities.

We can often use these laws to reduce expressions or put expressions in to a more desirable form.

Basic Postulates of Boolean Algebra

 Using just the basic postulates – everything else can be derived.

Commutative laws
Distributive laws
Identity
Inverse

Identity Laws

$$A + 0 = A$$

$$A \cdot 1 = A$$

Inverse Laws

$$A + \overline{A} = 1$$

$$A \cdot \overline{A} = 0$$

Commutative Laws

$$A + B = B + A$$

$$A \cdot B = B \cdot A$$

Distributive Laws

$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$

Other Identities

Can be derived from the basic postulates.

Laws of Ones and Zeros

Associative Laws

DeMorgan's Theorems

Zero and One Laws

$$A+1=1$$
 Law of Ones

$$A \cdot 1 = A$$

$$A+0=A$$
 Law of Zeros

$$A \cdot 0 = 0$$

Associative Laws

$$A + (B + C) = (A + B) + C$$

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

DeMorgan's Theorems

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

A	В	A+B	Ā	B	$\overline{A+B}$	$\overline{A} \cdot \overline{B}$
0	0	0	1	1	1	1
0	1	1	1	0	0	0
1	0	1	0	1	0	0
1	1	1	0	0	0	0

DeMorgan's Theorems

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

A	В	AB	AB	Ā	B	$\overline{A} + \overline{B}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

Other Operators

- Boolean Algebra is defined over the 3 operators AND, OR and NOT.
 - this is a functionally complete set.
- There are other useful operators:
 - NOR: is a 0 if either operand is a 1
 - NAND: is a 0 only if both operands are 1
 - XOR: is a 1 if the operands are different.
- NOTE: NOR or NAND is (by itself) a functionally complete set!

Boolean Functions

- Boolean functions are functions that operate on a number of Boolean variables.
- The result of a Boolean function is itself either a 0 or a 1.
- Example: f(a,b) = a+b

Question

- How many Boolean functions of 1 variable are there?
- We can answer this by listing them all!

$$f_1(x) = x$$
$$f_2(x) = x$$
$$f_3(x) = 0$$

$$f_4(x) = 1$$

Tougher Question

- How many Boolean functions of 2 variables are there?
- It's much harder to list them all, but it is still possible...

Alternative Representation

- We can define a Boolean function showing it by means of using algebraic operations.
- We can also define a Boolean function by listing the value of the function for all possible inputs.

Truth Tables

	а	b	OR	AND	NOR	NAND	XOR
•	0	0	0	0	1	1	0
	0	1	1	0	0	1	1
	1	0	1	0	0	1	1
	1	1	1	1	0	0	0

Truth Table for (X+Y)-Z

Χ	Υ	Ζ	(X+Y)·Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Gates

- Digital logic circuits are electronic circuits that are implementations of some Boolean function(s).
- A circuit is built up of *gates*, each *gate* implements some simple logic function.

A Gate

Gates compute something!

- The output depends on the inputs.
- If the input changes, the output might change.
- If the inputs don't change the output does not change.

Combinational Circuits

- We can put gates together into circuits
 - output of some gates are inputs of other ones.
- We can design a circuit that represents any Boolean function!

A Simple Circuit A B Circuit

Truth Table for our circuit

а	b	a	b	a • b	<u>a • b</u>
0	0	1	1	1	0
0	1	1	0	0	1
1	0	0	1	0	1
1	1	0	0	0	1

Alternative Representations

• Any of these can express a Boolean function:

Boolean Equation
Circuit (Logic Diagram)
Truth Table

Implementation

- A logic diagram is used to design an *implementation* of a function.
- The implementation involves the specific gates and the way they are connected.
- We can buy a bunch of gates, put them together (along with a power source) and build up a machine.

Function Implementation

- Given a Boolean function expressed as a truth table or Boolean Equation, there are many possible implementations.
- The actual implementation depends on what kind of gates are available.
- In general it would be convenient to minimize the number of gates.

_A	В	$A \bullet \overline{B}$	$\overline{A} \bullet B$	f
0	0	0	0	0
0	1	0	1	1
1	0	1	0	1
1	1	0	0	0

One Implementation
$$f = A \bullet \overline{B} + \overline{A} \bullet \overline{B}$$

Proof it's the same function

$$A \bullet \overline{B} + \overline{A} \bullet B =$$

$$\overline{\left(\!\!\!\begin{array}{c} \overline{A\bullet B}\!\!\!\end{array}\!\!\!\right)\!\!\!\bullet\!\!\!\left(\!\!\!\begin{array}{c} \overline{A\bullet B}\!\!\!\end{array}\!\!\!\right)}\!\!=\!$$

$$\overline{\left(\overline{A}+B\right)} \bullet \left(\overline{A}+\overline{B}\right) =$$

$$\overline{\left(\left(\overline{A}+B\right)\bullet A\right)+\left(\left(\overline{A}+B\right)\bullet \overline{B}\right)}=$$

$$\overline{\left((\overline{A} + B) \bullet A\right) + \left((\overline{A} + B) \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet A + B \bullet A\right) + \left(\overline{A} \bullet \overline{B} + B \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet A + B \bullet A\right) + \left(\overline{A} \bullet \overline{B} + B \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet A + B \bullet A\right) + \left(\overline{A} \bullet \overline{B} + B \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet A + B \bullet A\right) + \left(\overline{A} \bullet \overline{B} + B \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet A + B \bullet A\right) + \left(\overline{A} \bullet \overline{B} + B \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet A + B \bullet A\right) + \left(\overline{A} \bullet \overline{B} + B \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet A + B \bullet A\right) + \left(\overline{A} \bullet \overline{B} + B \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet A + B \bullet A\right) + \left(\overline{A} \bullet \overline{B} + B \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet A + B \bullet A\right) + \left(\overline{A} \bullet \overline{B} + B \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet A + B \bullet A\right) + \left(\overline{A} \bullet \overline{B} + B \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet A + B \bullet A\right) + \left(\overline{A} \bullet \overline{B} + B \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet A + B \bullet \overline{B}\right)} = \overline{\left(\overline{A} \bullet \overline{B} + B \bullet \overline{B}\right)} = \overline{\left(\overline{$$

$$\overline{(B \bullet A) + (\overline{A} \bullet \overline{B})} =$$

$$\overline{(B \bullet A)} \bullet \overline{(\overline{A} \bullet \overline{B})} =$$

$$(\overline{B} + \overline{A}) \bullet (A + B)$$

DeMorgan's Law

DeMorgan's Laws

Distributive

Distributive

Inverse, Identity

DeMorgan's Law

DeMorgan's Laws

Karnaugh maps

- The Karnaugh map was invented in 1952 by <u>Edward W.</u>
 <u>Veitch</u> and developed further 1953 by <u>Maurice Karnaugh</u>.
- Karnaugh maps make use of the human brain's excellent pattern-matching capability to decide which terms should be combined to get the simplest expression.
- Karnaugh maps permit the rapid identification and elimination of potential <u>race hazards</u>, something that boolean equations alone cannot do.
- A Karnaugh map is an excellent aid for simplification of up to six variables, but with more variables it becomes hard even for our brain to discern optimal patterns.
- For problems involving more than six variables, solving the boolean expressions is preferred to use of a Karnaugh map.

Review: Standard forms of expressions

- Expressions can be written in many ways, but some ways are more useful than others
- A sum of products (SOP) expression contains:
 - Only OR (sum) operations at the "outermost" level
 - Each term that is summed must be a product

$$f(x,y,z) = y' + x'yz' + xz$$

- The advantage is that any sum of product expression can be implemented using a two-level circuit
 - literals and their complements at the "0th" level
 - AND gates at the first level
 - a single OR gate at the second level
- This diagram uses some shorthands...
 - NOT gates are implicit
 - literals are reused
 - this is not okay in LogicWorks!

Terminology: Minterms

- A minterm is a special product of literals, in which each input variable appears exactly once.
- A function with n variables has 2ⁿ minterms (since each variable can appear complemented or not)
- A three-variable function, such as f(x,y,z), has $2^3 = 8$ minterms:

$$\begin{array}{ccccc} x'y'z' & x'y'z & x'yz' & x'yz \\ xy'z' & xy'z & xyz' & xyz \end{array}$$

Each minterm is true for exactly one combination of inputs:

Minterm	Is true when	Shorthand
x'y'z'	x=0, y=0, z=0	m_0
x'y'z	x=0, y=0, z=1	m_1
x'yz'	x=0, y=1, z=0	m_2
x'yz	x=0, y=1, z=1	m_3
xy'z'	x=1, y=0, z=0	m_4
xy'z	x=1, y=0, z=1	m_5
xyz'	x=1, y=1, z=0	m_6
xyz	x=1, y=1, z=1	m_7

Terminology: Sum of minterms form

- Every function can be written as a sum of minterms, which is a special kind of sum of products form
- The sum of minterms form for any function is unique
- If you have a truth table for a function, you can write a sum of minterms expression just by picking out the rows of the table where the function output is 1.

	u	ιραι	10 I		
	×	у	Z	f(x,y,z)	f'(x,y,z)
1	0	0	0	1	0
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	1	0
	1	0	0	0	1
l	1	0	1	0	1
l	1	1	0	1	0
	1	1	1	0	1

$$\begin{split} f &= x'y'z' + x'y'z + x'yz' + x'yz + xyz' \\ &= m_0 + m_1 + m_2 + m_3 + m_6 \\ &= \Sigma m(0,1,2,3,6) \\ f' &= xy'z' + xy'z + xyz \\ &= m_4 + m_5 + m_7 \\ &= \Sigma m(4,5,7) \end{split}$$

f' contains all the minterms not in f

Can we know the number of functions that we have if we know the number of variables?

Re-arranging the truth table

• A two-variable function has four possible minterms. We can re-arrange these minterms into a Karnaugh map.

_			_	
×	У	minterm		
0	0	x'y'		
0	1	x'y		[ο[
1	0	xy'		$X $ $\begin{cases} 1 \\ 1 \end{cases}$
1	1	VV		٠ ـ

- Now we can easily see which minterms contain common literals.
 - Minterms on the left and right sides contain y' and y respectively.
 - Minterms on the top and bottom rows contain x' and x respectively.

	У'	У	
X	x'y'	x'y	
X	xy'	xy	

Karnaugh map simplifications

• Imagine a two-variable sum of minterms:

 Both of these minterms appear in the top row of a Karnaugh map, which means that both of them contain the literal x'.

		У
	x'y'	x'y
Х	xy'	ху

• What happens if you simplify this expression using Boolean algebra?

$$x'y' + x'y = x'(y' + y)$$
 [Distributive]
= $x' \cdot 1$ [$y + y' = 1$]
= x' [$x \cdot 1 = x$]

More two-variable examples

- Other example expression is x'y + xy.
 - Both minterms appear in the right side, where y is uncomplemented.
 - Thus, we can reduce x'y + xy just to y.

		У
	x'y'	x'y
Χ	xy'	ху

- How about x'y' + x'y + xy?
 - We have x'y' + x'y in the top row, corresponding to x'.
 - There's also x'y + xy in the right side, corresponding to y.
 - This whole expression can be reduced to x' + y.

		У
	x'y'	x'y
X	xy'	xy

A three-variable Karnaugh map

For a three-variable expression with inputs x,
 y, z, the arrangement of minterms is more

[[I	СКУ		٧Z			
••••		00	01	11	10	
~	0	x'y'z'	x'y'z	x'yz	x'yz'	
^	1	xy'z'	xy'z	xyz	xyz'	

 Another way to label the K-map (use whichever you like):

			,	У
	x'y'z'	x'y'z	x'yz	x'yz'
X	xy'z'	xy'z	xyz	xyz'
		Z		

			`	/
	m_0	m_1	m ₃	m ₂
Χ	m ₄	m ₅	m ₇	m ₆
		Z		

Not all the gates are equally easy to build

Digital Circuits

- Combinatorial logic
 - Results of an operation depend only on the present inputs of the operation
 - Uses: perform arithmetic, control data movement, comparison of values for decision making
- Sequential logic
 - Results depend on both the inputs of the operation and the result of the previous operation
 - Uses: counter

Comparators

It compares two input signals.

Inp	uts	Outputs			
A	В	A < B	A = B	A > B	
0	0	0	1	0	
0	1	1	0	0	
1	0	0	0	1	
1	1	0	1	0	

Based on this it can built a filter, or other more important devices like a analog digital converter or controllers

Sequential Logic Circuits

- Output depends on
 - Input
 - Previous state of the circuit
- Flip-flop: basic memory element
- State table: output for all combinations of input and previous states

SR Latch

Other electronic devices

Multiplexer:

We are

Bibliography

- Integrated Electronics: Analog and Digital Circuits and Systems. J Millman, CC Halkias. McGraw-Hill.
- Ones and Zeros: Understanding Boolean Algebra, Digital Circuits, and the Logic of Sets. JR Gregg. IEEE Press Understanding Science & Technology Series.
- Introduction to Logic Design. AB Marcovitz. McGraw-Hill.

