$1^{\text {ma }}$		MNIVERIDAD
Electronics		
Introducction to Synthetic Biology		
E Navarro A Montagud InterTech \square @ © © P Fernandez de Cordoba OF Urchueguía		

Overview

- Introduction
- Boolean algebras
- Logical gates
- Representation of boolean functions
- Karnaugh maps

ANALOG SYSTEMS

Analog Signal

- Analog
- Continuous
- Can take on any value in a given range
- Very susceptible to noise
- Digital
- Discrete
- Can only take on certain values in a given range
- Can be less susceptible to noise

BOOLEAN ALGEBRAS

- George Boole:

An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities (1854)

Algebra: a strange mathematical structure between groups and vectors

Claude Elwood Shannon was the first to use Boolean Algebra to solve problems in electronic circuit design. (1938)

Basis of this algebra

- All the elements of this algebra have values of 0 or 1 .
- Three operators:
-OR written as + , as in $A+B$
- AND written as \bullet, as in $\quad A \cdot B$ -NOT written as an overline, as in \bar{A}

Operators: OR

$$
f_{o r}(a, b)=a+b
$$

- The result of the OR operator is 1 if either of the operands is a 1.
- The only time the result of an OR is 0 is when both operands are Os.
- OR is like our old pal addition, but operates only on binary values

a	b	$f_{o r}(a, b)$
0	0	0
0	1	1
1	0	1
1	1	1

Equations

Boolean algebra uses equations to express relationships. For example:

$$
X=A \cdot(\bar{B}+C)
$$

This equation expressed a relationship between the value of \boldsymbol{X} and the values of \boldsymbol{A}, B and C.

Quiz (already?)

What is the value of each X :

$$
\begin{aligned}
& X_{1}=1 \cdot(0+1) \\
& X_{2}=A+\bar{A} \\
& X_{3}=A \cdot \bar{A} \\
& X_{4}=X_{4}+1
\end{aligned}
$$

Laws of Boolean Algebra

Just like in good old algebra, Boolean Algebra has postulates and identities.

We can often use these laws to reduce expressions or put expressions in to a more desirable form.

Basic Postulates of Boolean Algebra

- Using just the basic postulates - everything else can be derived.

Commutative laws
Distributive laws
Identity
Inverse

Identity Laws

$$
\begin{gathered}
A+0=A \\
A \cdot 1=A
\end{gathered}
$$

Inverse Laws

$$
\begin{gathered}
A+\bar{A}=1 \\
A \cdot \bar{A}=0
\end{gathered}
$$

Commutative Laws

$$
\begin{gathered}
A+B=B+A \\
A \cdot B=B \cdot A
\end{gathered}
$$

Distributive Laws

$$
\begin{aligned}
& A+(B \cdot C)=(A+B) \cdot(A+C) \\
& A \cdot(B+C)=(A \cdot B)+(A \cdot C)
\end{aligned}
$$

Other Identities

Can be derived from the basic postulates.

Laws of Ones and Zeros

Associative Laws

DeMorgan's Theorems

Zero and One Laws

$$
\begin{aligned}
& A+1=1 \quad \text { Law of Ones } \\
& A \cdot 1=A \\
& A+0=A \quad \text { Law of Zeros } \\
& A \cdot 0=0
\end{aligned}
$$

Associative Laws

$$
\begin{gathered}
A+(B+C)=(A+B)+C \\
A \cdot(B \cdot C)=(A \cdot B) \cdot C
\end{gathered}
$$

DeMorgan's Theorems

$$
\overline{A+B}=\bar{A} \cdot \bar{B}
$$

\mathbf{A}	\mathbf{B}	$\mathbf{A}+\mathbf{B}$	$\overline{\mathbf{A}}$	$\overline{\mathbf{B}}$	$\overline{\mathbf{A}+\mathbf{B}}$	$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$
0	0	0	1	1	$\mathbf{1}$	$\mathbf{1}$
0	1	1	1	0	$\mathbf{0}$	$\mathbf{0}$
1	0	1	0	1	$\mathbf{0}$	$\mathbf{0}$
1	1	1	0	0	$\mathbf{0}$	$\mathbf{0}$

DeMorgan's Theorems

$$
\overline{A \cdot B}=\bar{A}+\bar{B}
$$

\mathbf{A}	\mathbf{B}	$\mathbf{A B}$	$\overline{\mathbf{A B}}$	$\overline{\mathbf{A}}$	$\overline{\mathbf{B}}$	$\overline{\mathbf{A}}+\overline{\mathbf{B}}$
0	0	0	$\mathbf{1}$	1	1	$\mathbf{1}$
0	1	0	$\mathbf{1}$	1	0	$\mathbf{1}$
1	0	0	$\mathbf{1}$	0	1	$\mathbf{1}$
1	1	1	$\mathbf{0}$	0	0	$\mathbf{0}$

Other Operators

- Boolean Algebra is defined over the 3 operators AND, OR and NOT.
- this is a functionally complete set.
- There are other useful operators:
- NOR: is a 0 if either operand is a 1
- NAND: is a 0 only if both operands are 1
- XOR: is a 1 if the operands are different.
- NOTE: NOR or NAND is (by itself) a functionally
complete set!

Boolean Functions

- Boolean functions are functions that operate on a number of Boolean variables.
- The result of a Boolean function is itself either a 0 or a 1.
- Example: $f(a, b)=a+b$

Question

- How many Boolean functions of 1 variable are there?
- We can answer this by listing them all!

$$
\begin{aligned}
& f_{1}(x)=x \\
& f_{2}(x)=\bar{x} \\
& f_{3}(x)=0 \\
& f_{4}(x)=1
\end{aligned}
$$

Tougher Question

- How many Boolean functions of 2 variables are there?
- It's much harder to list them all, but it is still possible...

Alternative Representation

- We can define a Boolean function showing it by means of using algebraic operations.
- We can also define a Boolean function by listing the value of the function for all possible inputs.

Truth Tables

a	b	OR	AND	NOR	NAND	XOR
0	0	0	0	1	1	0
0	1	1	0	0	1	1
1	0	1	0	0	1	1
1	1	1	1	0	0	0

Truth Table for (X+Y)•Z

X	Y	Z	$(X+Y) \cdot Z$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Gates

- Digital logic circuits are electronic circuits that are implementations of some Boolean function(s).
- A circuit is built up of gates, each gate implements some simple logic function.

Gates compute something!

- The output depends on the inputs.
- If the input changes, the output might change.
- If the inputs don't change - the output does not change.

An OR gate

An AND gate

a	b	$f_{\text {and }}(a, b)$
0	0	0
0	1	0
1	0	0
1	1	1

A Not gate

XOR and XNOR

A	B	Output
0	0	1
0	1	0
1	0	0
1	1	1

Combinational Circuits

- We can put gates together into circuits
- output of some gates are inputs of other ones.
- We can design a circuit that represents any Boolean function!

A Simple Circuit

Truth Table for our circuit

a	b	\bar{a}	\bar{b}	$\bar{a} \cdot \bar{b}$	$\overline{\bar{a} \cdot \bar{b}}$
0	0	1	1	1	0
0	1	1	0	0	1
1	0	0	1	0	1
1	1	0	0	0	1

Alternative Representations

- Any of these can express a Boolean function:

Boolean Equation

Circuit (Logic Diagram)
Truth Table

Implementation

- A logic diagram is used to design an implementation of a function.
- The implementation involves the specific gates and the way they are connected.
- We can buy a bunch of gates, put them together (along with a power source) and build up a machine.

Function Implementation

- Given a Boolean function expressed as a truth table or Boolean Equation, there are many possible implementations.
- The actual implementation depends on what kind of gates are available.
- In general it would be convenient to minimize the number of gates.

Example: $f=A \bullet B+\bar{A} \bullet \dot{B}$

$$
\begin{array}{cc|c|c|c}
A & B & A \bullet \bar{B} & \bar{A} \bullet B & f \\
\hline 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{array}
$$

One Implementation
$f=A \bullet \bar{B}+\bar{A} \bullet B$

Another Implementation

$$
f=A \bullet \bar{B}+\bar{A} \bullet B=(A+B) \bullet(\bar{A}+\bar{B})
$$

Proof it's the same function

$$
A \bullet \bar{B}+\bar{A} \bullet B=
$$

$\overline{(A \bullet \bar{B}) \bullet(\bar{A} \bullet B)}=$	DeMorgan's Law
$(\overline{\bar{A}+B) \cdot(A+\bar{B})}=$	DeMorgan's Laws

DeMorgan's Laws

$$
((\bar{A}+B) \bullet A)+((\bar{A}+B) \bullet \bar{B})=\quad \text { Distributive }
$$

$$
(\bar{A} \bullet A+B \bullet A)+(\bar{A} \bullet \bar{B}+B \bullet \bar{B})=\quad \text { Distributive }
$$

$$
\overline{(B \bullet A)+(\bar{A} \bullet \bar{B})}=\quad \text { Inverse, Identity }
$$

$$
\overline{(B \bullet A)} \bullet(\overline{\bar{A} \bullet \bar{B}})=\quad \text { DeMorgan's Law }
$$

$$
(\bar{B}+\bar{A}) \cdot(A+B) \quad \text { DeMorgan's Laws }
$$

Karnaugh maps

- The Karnaugh map was invented in 1952 by Edward W. Veitch and developed further 1953 by Maurice Karnaugh.
- Karnaugh maps make use of the human brain's excellent pattern-matching capability to decide which terms should be combined to get the simplest expression.
- Karnaugh maps permit the rapid identification and elimination of potential race hazards, something that boolean equations alone cannot do.
- A Karnaugh map is an excellent aid for simplification of up to six variables, but with more variables it becomes hard even for our brain to discern optimal patterns.
- For problems involving more than six variables, solving the boolean expressions is preferred to use of a Karnaugh map.

Review: Standard forms of expressions

- Expressions can be written in many ways, but some ways are more useful than others
- A sum of products (SOP) expression contains:
- Only OR (sum) operations at the "outermost" level
- Each term that is summed must be a product

$$
f(x, y, z)=y^{\prime}+x^{\prime} y z^{\prime}+x z
$$

- The advantage is that any sum of product expression can be implemented using a two-level circuit
- literals and their complements at the "Oth" level
- AND gates at the first level
- a single OR gate at the second level
- This diagram uses some shorthands...
- NOT gates are implicit
- literals are reused
- this is not okay in LogicWorks!

Terminology: Minterms

- A minterm is a special product of literals, in which each input variable appears exactly once.
- A function with n variables has 2^{n} minterms (since each variable can appear complemented or not)
- A three-variable function, such as $f(x, y, z)$, has $2^{3}=8$ minterms:

$$
\begin{array}{llll}
x^{\prime} y^{\prime} z \prime & x^{\prime} y^{\prime} z & x^{\prime} y z ' & x ' y z \\
x y y^{\prime} z^{\prime} & x y^{\prime} z & x y z ' & x y z
\end{array}
$$

- Each minterm is true for exactly one combination of inputs:

Minterm	Is true when \ldots	Shorthand
$x^{\prime} y^{\prime} z^{\prime}$	$x=0, y=0, z=0$	m_{0}
$x^{\prime} y^{\prime} z$	$x=0, y=0, z=1$	m_{1}
$x^{\prime} y z^{\prime}$	$x=0, y=1, z=0$	m_{2}
$x^{\prime} y z$	$x=0, y=1, z=1$	m_{3}
$x y^{\prime} z^{\prime}$	$x=1, y=0, z=0$	m_{4}
$x y y^{\prime} z$	$x=1, y=0, z=1$	m_{5}
$x y z '$	$x=1, y=1, z=0$	m_{6}
$x y z$	$x=1, y=1, z=1$	m_{7}

Terminology: Sum of minterms form

- Every function can be written as a sum of minterms, which is a special kind of sum of products form
- The sum of minterms form for any function is unique
- If you have a truth table for a function, you can write a sum of minterms expression just by picking out the rows of the table where the function
output is 1 .

x	y	z	$f(x, y, z)$	$f^{\prime}(x, y, z)$
0	0	0	1	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	0	1

$$
\begin{aligned}
f= & x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x^{\prime} y z+x y z^{\prime} \\
& =m_{0}+m_{1}+m_{2}+m_{3}+m_{6} \\
= & \Sigma m(0,1,2,3,6) \\
& f^{\prime}=x y^{\prime} z^{\prime}+x y^{\prime} z+x y z \\
& =m_{4}+m_{5}+m_{7} \\
& =\Sigma m(4,5,7)
\end{aligned}
$$

f^{\prime} contains all the minterms not in f

Re-arranging the truth table

- A two-variable function has four possible minterms. We can re-arrange these minterms into a Karnaugh map.

- Now we can easily see which minterms contain common literals.
- Minterms on the left and right sides contain y' and y respectively.
- Minterms on the top and bottom rows contain x ' and \times respectively.

Karnaugh map simplifications

- Imagine a two-variable sum of minterms:

$$
x^{\prime} y^{\prime}+x^{\prime} y
$$

- Both of these minterms appear in the top row of a Karnaugh map, which means that both of them contain the literal x^{\prime}.

	y	
	$x^{\prime} y^{\prime}$	$x^{\prime} y$
\times	$x y^{\prime}$	$x y$

- What happens if you simplify this expression using Boolean algebra?

$$
\begin{aligned}
x^{\prime} y^{\prime}+x^{\prime} y & =x^{\prime}\left(y^{\prime}+y\right) & & {[\text { Distributive }] } \\
& =x^{\prime} \cdot 1 & & {\left[y+y^{\prime}=1\right] } \\
& =x^{\prime} & & {[x \bullet 1=x] }
\end{aligned}
$$

More two-variable examples

- Other example expression is $x^{\prime} y+x y$.
- Both minterms appear in the right side, where y is uncomplemented.
- Thus, we can reduce $x^{\prime} y+x y$ just to y.

- How about $x^{\prime} y^{\prime}+x^{\prime} y+x y$?
- We have $x^{\prime} y^{\prime}+x^{\prime} y$ in the top row, corresponding to x^{\prime}.
- There's also $x^{\prime} y+x y$ in the right side, corresponding to y.
- This whole expression can be reduced to $x^{\prime}+y$.

A three-variable Karnaugh map

- For a three-variable expression with inputs x, y, z, the arrangement of minterms is more tricky:

	00	01	11	10
0	$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	x'yz	$x^{\prime} y z^{\prime}$
X 1	$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	xyz'

- Another way to label the K-map (use whichever you like):

		y		
	$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	$x^{\prime} y z^{\prime}$
\times	$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	$x y z$	$x y z^{\prime}$
	Z			

	m_{0}	m_{1}	m_{3}	m_{2}	
\times	m_{4}	m_{5}	m_{7}	m_{6}	
		Z			

Digital Circuits

- Combinatorial logic
- Results of an operation depend only on the present inputs of the operation
- Uses: perform arithmetic, control data movement, comparison of values for decision making
- Sequential logic
- Results depend on both the inputs of the operation and the result of the previous operation
- Uses: counter

Comparators

It compares two input signals.

Inputs		Outputs		
\boldsymbol{A}	\boldsymbol{B}	$\boldsymbol{A}<\boldsymbol{B}$	$\boldsymbol{A}=\boldsymbol{B}$	$\boldsymbol{A}>\boldsymbol{B}$
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

Based on this it can built a filter, or other more important devices like a analog digital converter or controllers

Adder

It performs the additioning operation of three binary digits.

Input			Output	
\boldsymbol{A}	\boldsymbol{B}	$C_{\boldsymbol{i}}$	$\boldsymbol{C}_{\boldsymbol{o}}$	\boldsymbol{S}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Sequential Logic Circuits

- Output depends on
- Input
- Previous state of the circuit
- Flip-flop: basic memory element
- State table: output for all combinations of input and previous states

SR Latch

Other electronic devices

- Multiplexer:

Bibliography

- Integrated Electronics: Analog and Digital Circuits and Systems. J Millman, CC Halkias. McGraw-Hill.
- Ones and Zeros: Understanding Boolean Algebra, Digital Circuits, and the Logic of Sets. JR Gregg. IEEE Press Understanding Science \& Technology Series.
- Introduction to Logic Design. AB Marcovitz. McGraw-Hill.

