i 4 'ma @ UNIVERSIDAD
F) POLITECNICA

Y%/ DE VALENCIA

Electronics
Introducction to Synthetic Biology :::.
0000
'YX)
o0
°®
E Navarro
A Montagud

P Fernandez de Cordoba
JF Urchueguia

InterTech' @

Overview

e Introduction

e Boolean algebras

e Logical gates

e Representation of boolean functions
e Karnaugh maps

A BRIEF HISTORY

Dryden Flight Research Center E49-0053 Photographed 10/49
@ Early "computers” at work. NASA photo E

Simbolo

ANALOG SYSTEMS

e Analog
e Continuous
e Can take on any value in a given range
e Very susceptible to noise

e Digital
e Discrete
e Can only take on certain values in a given range
e Can be less susceptible to noise

BOOLEAN ALGEBRAS

e George Boole:

An Investigation of the Laws of
Thought on Which are
Founded the Mathematical
Theories of Logic and
Probabilities (1854)

Algebra: a strange mathematical structure between
groups and vectors

Claude Elwood Shannon was the first to use Boolean
Algebra to solve problems in electronic circuit design.
(1938)

Basis of this algebra

e All the elements of this algebra have values

of Oor 1.

e Three operators:
-OR writtenas +,asin ~ A+ B
-AND writtenase,asin A.B
-NOT written as an overline, as in K

Operators: OR
f..(a,b)=a+b
b | f (ab)

e The result of the OR operator is 1
if either of the operands is a 1.

0

e The only time the result of an OR
is 0 is when both operands are
Os.

e ORis like our old pal addition, but
operates only on binary values

- + O O QD

0

1 1
0 1
1 1

Truth table

[X XX
a8
Operators: AND .
fhg(a,b)=ab
e Theresultofan ANDisal a b f (a b)
only when both operands and\™=
are 1s. 0 0 0
e |If either operand is a 0, the 0 1 0
result is 0.
1 0 0
e AND is like our old nemesis
multiplication, but operates 1 1 1
on binary values.
Truth table
[X X J
0000
[X XX
[XX
. oo
Operators: NOT
fot(@)= A
e NOT is a unary operator — it a b f (a)
operates on only one not
operand. 0 - 1
e NOT negates it's operand. 0 - 1
1 - 0
e |Ifthe operandis a 1, the
result of the NOT is a 0. 1 - 0

Truth table

Equations :

Boolean algebra uses equations to express
relationships. For example:

X = A-(B +C)

This equation expressed a relationship
between the value of X and the values of A,
B and C.

Quiz (already?) :
What is the value of each X:

X, =1-(0+1)

X, =A+A

X, =AA

X, =X, +1

Laws of Boolean Algebra :

Just like in good old algebra, Boolean
Algebra has postulates and identities.

We can often use these laws to reduce
expressions or put expressions in to a
more desirable form.

Basic Postulates of Boolean sece
Algebra :

e Using just the basic postulates — everything
else can be derived.

Commutative laws
Distributive laws
Identity
Inverse

A

A+0=A
A-1l

ldentity Laws
Inverse Laws

A+ A

Commutative Laws

A+B=B+ A

A-B=B-A

Distributive Laws

A+(B-C)=(A+B)-(A+C)

A-(B+C)=(A-B)+(A-C)

Other Identities :

Can be derived from the basic postulates.
Laws of Ones and Zeros
Associative Laws

DeMorgan’s Theorems

Zero and One Laws :
A+1=]1 Law of Ones
Al=A

A+0= A Law of Zeros
A-0=0

Associative Laws
A+(B+C)=(A+B)+C

A«(B-C)=(A-B)-C

DeMorgan’s Theorems

A+B=A-B
A|/B|A+B. A B A+B A.B
ool o 111 1
o1l 1 "1]/0] 0 o0
1o/ 1 o/1]0 o
11/ 1 _0o/0] 0 0

DeMorgan’s Theorems :

A-B=A+B
A B|AB AB A B|A+B
00 0 1 | | 1
01 0 1 | 0 1
110 0 1 0 |1 1
1 |1 | 0 00 0
Other Operators 3

e Boolean Algebra is defined over the 3 operators
AND, OR and NOT.

e thisis a functionally complete set.

e There are other useful operators:
e NOR:is a0 if either operandisa 1
e NAND: is a 0 only if both operands are 1
e XOR:is al if the operands are different.

e NOTE: NOR or NAND is (by itself) a functionally
omplete set!

Boolean Functions :

e Boolean functions are functions that operate
on a number of Boolean variables.

e The result of a Boolean function is itself either
alOoral.

e Example: f(a,b) = atb

Question 43

e How many Boolean functions of 1 variable
are there?

e \We can answer this by listing them all!

f,(X) =X
fz(x) :;(
f,(x)=0

f,(x)=1

Tougher Question :

e How many Boolean functions of 2 variables
are there?

e It's much harder to list them all, but it is still
possible...

Alternative Representation :

e \We can define a Boolean function showing it
by means of using algebraic operations.

e \We can also define a Boolean function by
listing the value of the function for all possible
inputs.

Truth Tables

a b| OR | AND | NOR |NAND| XOR
O O 0 0 1 1 0
0 1 1 0 0] 1 1
1 0 1 0 o) 1 1
1 1 1 1 o) 0 0

Truth Table for (X+Y)-Z

X Y zZ|X+Y)zZ
0O 0 O 0
0O 0 1 0
0O 1 0O 0
0o 1 1 1
1 0 O 0
1 0 1 1
1 1 0 0
1 1 1 1

Gates &

e Digital logic circuits are electronic circuits that
are implementations of some Boolean
function(s).

e A circuit is built up of gates, each gate
implements some simple logic function.

A Gate e

Inputs 777 —> {(A,B)

B =—>

Gates compute something! :

e The output depends on the inputs.

e If the input changes, the output might
change.

e If the inputs don’t change — the output does
not change.

An OR gate 2
A
A+B
B a b | f(ab)
0 0 0
0o 1 1
1 0 1
1 1 1

An AND gate

A
3 A. B
B fand(a1b)

a b
0 0 0
0 1 0
1 0 0
1 1 1
A Not gate HE

A NAND and NOR gate

A<B

A+B

XOR and XNOR

Output

0

) >

—|—|2| O
—Q|~2|W

1
1
0

Output

1

[N =] R=] R
.—CJ.—CJUU

0
0
1

Combinational Circuits :

e \We can put gates together into circuits
e output of some gates are inputs of other ones.

e \We can design a circuit that represents any
Boolean function!

A Simple Circuit :

A_> ?
e

Truth Table for our circuit :

a b b |asb | a-b
0 of 1 1 1 0
0o 1| 1 0 0 1
1 0| O 1 0 1
1 1| o 0 0 1

Alternative Representations :

e Any of these can express a Boolean function:

Boolean Equation
Circuit (Logic Diagram)
Truth Table

Implementation :

e A logic diagram is used to design an
implementation of a function.

e The implementation involves the specific
gates and the way they are connected.

e We can buy a bunch of gates, put them
together (along with a power source) and
build up a machine.

Function Implementation :

e Given a Boolean function expressed as a
truth table or Boolean Equation, there are
many possible implementations.

e The actual implementation depends on what
kind of gates are available.

e In general it would be convenient to minimize
the number of gates.

Example: f — Ae B-I—Z\‘ B

A B| AeB | AeB f
O Of O 0] 0]
O 1(O 1 1
1 0] 1 0 1
1 1] O 0] 0]

One Implementation f = AOB+AL B

A

—D—

D_
=D

Another Implementation
A

B Eﬁb» ___

f =AeB+AeB=(A+B)s(A+B)

Proof it’s the same function
AeB+AeB= .
(Ao _) (ﬂo B): DeMorgan's Law
(A+ B) (A+ B) DeMorgan's Laws
(()) ((KJF)) Distributive
(_. A+Be)+ (ﬂ B+BeB) Distributive
(Be A + K. Inverse, ldentity

B. A .(ﬁ) DeMorgan's Law

(E + Z\)o (A+B) DeMorgan's Laws

Karnaugh maps :

e The Karnaugh map was invented in 1952 by
and developed further 1953 by

e Karnaugh maps make use of the human brain's excellent
pattern-matching capability to decide which terms should be
combined to get the simplest expression.

e Karnaugh maps permit the rapid identification and elimination
of potential , something that boolean equations
alone cannot do.

e A Karnaugh map is an excellent aid for simplification of up to
six variables, but with more variables it becomes hard even
for our brain to discern optimal patterns.

e For problems involving more than six variables, solving the
boolean expressions is preferred to use of a Karnaugh map.

Review: Standard forms of
expressions 3

e Expressions can be written in many ways, but some ways are more useful than
others

e A sum of products (SOP) expression contains:
e Only OR (sum) operations at the “outermost” level
e Each term that is summed must be a product

f(x,y,z) =y’ + X'yz' + xz
e The advantage is that any sum of product expression can be implemented using
a two-level circuit

e literals and their complements at the “Oth” level
e AND gates at the first level ¥y

e asingle OR gate at the second level
X —]
L — —f
e This diagram uses some shorthands... Zy_}

e NOT gates are implicit
e literals are reused z2—
e this is not okay in LogicWorks!

Terminology: Minterms

A minterm is a special product of literals, in which each input variable
appears exactly once.

A function with n variables has 2" minterms (since each variable can
appear complemented or not)

A three-variable function, such as f(x,y,z), has 23 =8 minterms:

Xy'z’ X'y'z xX'yz’ xX'yz
xy'z’ Xy'z xyz' Xyz
Each minterm is true for exactly one combination of inputs:
Minterm Is true when... Shorthand

Xy'z' x=0, y=0, z=0 m,
X'y'z x=0, y=0, z=1 m,
X'yz' x=0, y=1, z=0 m,
X'yz x=0, y=1, z=1 m,
xy'z’ x=1, y=0, z=0 m,
Xy'z x=1, y=0, z=1 mg
Xyz’ x=1, y=1, z=0 mg
Xyz x=1,y=1, z=1 m,

Terminology: Sum of minterms | ¥
form e

Every function can be written as a sum of minterms, which is a special
kind of sum of products form

The sum of minterms form for any function is unique

If you have a truth table for a function, you can write a sum of minterms
expression just by picking out the rows of the table where the function
output is 1

) f=xXyz' +Xyz+Xyz +Xyz + xXyz'
x y z|f(xyz) f(xy.z2)
0 0 o 1 0 Mo * My * M, * My + M

=3 1,2

00 1| 1 0 m(0.123.)
01 0 1 0 f=xy'z’ + xy'z + xyz
0 1 1 1 0 =M, + Mg +m,
1 00| o 1 =Im(4,5,7)
1 0 1 0 1
1 1 0 1 0 f' contains all the minterms not in f
1 1 1 0 1

Can we know the number of functions that we
have if we know the number of variables?

Re-arranging the truth table

e A two-variable function has four possible minterms. We can
re-arrange these minterms into a Karnaugh map.

Xy | minterm Y

0 O x'y' 0 1
0 1 X'y B ’ X 0] xy' | xy
1 0 Xy’ 1] xy' | xy
1 1 Xy

e Now we can easily see which minterms contain common literals.
e Minterms on the left and right sides contain y’ and y respectively.
e Minterms on the top and bottom rows contain x’ and x respectively.

Y

f_%
0 1 Y Y

{ 0| xy | xy X | xy | xy
X ; ;
1] xy' | xy XL xy | xy

Karnaugh map simplifications

e Imagine a two-variable sum of minterms:
Xy’ + Xy

e Both of these minterms appear in the top row of a Karnaugh map,
which means that both of them contain the literal x'.

Y
[xy | xy]
X | xy [xy

e What happens if you simplify this expression using Boolean algebra?

Xy +xy =Xy +vy) [Distributive]
=x el [y+y':1]
=x [xel=x]

More two-variable examples

e Other example expression is X'y + xy.
e Both minterms appear in the right side, where y is uncomplemented.
e Thus, we can reduce X'y + Xy justtoy.

Y
Xy || Xy
X [xy' |l xy

e How about X'y’ + X'y + xy?
e We have x'y’ + Xy in the top row, corresponding to x'.
e There’s also x'y + xy in the right side, corresponding to y.
e This whole expression can be reduced to x’ + .

y
[xy [[xy]l
X [xy' | [xy] [

A three-variable Karnaugh map

e For a three-variable expression with inputs x,
Yy, Z, the arrangement of minterms is more

tricky: vZ
00 01 1 10
X 0 | xy'z | xy'z | xyz | xyZ
1 xy'z | xy'z | xyz | xyz'

e Another way to label the K-map (use
whichever you like):

Y

X'Y'Z'

x'y'z

Xyz | x'yz'

X | xy'z

xy'z

xyz | xyz'

z

YZ
00 01 11 10
0 Mo my ms ma
X
1 my ms mz Me
Y
Mo | My | M3 | Mp
XL mg|[ms| mz| mg
V4

Not all the gates are equally easy to build

NOT gate MNAND gate MOR gate
Source
Source Source
Vout V
- L{'k t
- L 4() e
vz
= w w
Ground Ground Ground
Ground

Digital Circuits :

e Combinatorial logic

e Results of an operation depend only on the present inputs
of the operation

e Uses: perform arithmetic, control data movement,
comparison of values for decision making
e Sequential logic

e Results depend on both the inputs of the operation and the
result of the previous operation

e Uses: counter

[X X J
0000
[X XX
[R
(X J
Comparators :
It compares two input signals.
Inputs Outputs %
(}
A BA{BA=-=BA>RDB B
° C
0o o 1 0 O a<s
01 1 0 0 0 a=8
110 0 0 1 L O ms
111 0 1 0

Based on this it can built a filter, or other more important
devices like a analog digital converter or controllers

0000
[X XX
82
Adder :
It performs the additioning operation of three binary digits.
Input | Qutput
A B G C, 8 A
000 B]
0 0|1 Cin+ c
010
0|11 ~Caout
100
1101
110
111
[X X J
0000
[X XX
: : : : 13
Sequential Logic Circuits :
e Output depends on
e Input _
o Previous state of the S — Q
circuit

e Flip-flop: basic memory
element

e State table: output for
all combinations of input R——
and previous states

ol

SR Latch

o000
o000
eo00
o0
™

SR latch operation

R .

S R Action Q

0 O Keepstate

0 1 Q=0 _

Q

1 0 Q=1 S 1

1 1 Unstable combination,

SR Latch
o000
o000
o000
: : 4
Other electronic devices :
e Multiplexer:
L L,
_out = — 5 out
I1 I1 :
/1

sel se1§

000
0000
S

Register COPY Operation :

e Uses both = e
sequential and N ey
combinational J_'D_—Ck
logic a

RN
Az J— | F _2:‘3
NﬁJ_ —Ede
.
000
0000
S

Where are we?

We are

Bibliography

e Integrated Electronics: Analog and Digital Circuits
and Systems. J Millman, CC Halkias. McGraw-Hill.

e Ones and Zeros: Understanding Boolean Algebra,
Digital Circuits, and the Logic of Sets. JR Gregg.
IEEE Press Understanding Science & Technology
Series.

e Introduction to Logic Design. AB Marcovitz.
McGraw-Hill.

InterTech @ 00

