
Electronics
Introducction to Synthetic Biology

E Navarro
A Montagud
P Fernandez de Cordoba
JF Urchueguía

Overview

Introduction
Boolean algebras
Logical gates
Representation of boolean functions
Karnaugh maps

A BRIEF HISTORY

ANALOG SYSTEMS

Analog
Continuous
Can take on any value in a given range
Very susceptible to noise

Digital
Discrete
Can only take on certain values in a given range
Can be less susceptible to noise

BOOLEAN ALGEBRAS
George Boole:

An Investigation of the Laws of
Thought on Which are
Founded the Mathematical
Theories of Logic and
Probabilities (1854)

Algebra: a strange mathematical structure between
groups and vectors

Claude Elwood Shannon was the first to use Boolean
Algebra to solve problems in electronic circuit design.
(1938)

Basis of this algebra

All the elements of this algebra have values
of 0 or 1.

Three operators:
-OR written as +, as in
- AND written as •, as in
-NOT written as an overline, as in

BA+
BA ⋅

A

Operators: OR

The result of the OR operator is 1
if either of the operands is a 1.

The only time the result of an OR
is 0 is when both operands are
0s.

OR is like our old pal addition, but
operates only on binary values

a b for(a,b)

0 0 0

0 1 1

1 0 1

1 1 1

Truth table

for(a,b)=a+b

Operators: AND

The result of an AND is a 1
only when both operands
are 1s.

If either operand is a 0, the
result is 0.

AND is like our old nemesis
multiplication, but operates
on binary values.

a b fand(a,b)

0 0 0

0 1 0

1 0 0

1 1 1

fand(a,b)=a·b

Truth table

Operators: NOT

NOT is a unary operator – it
operates on only one
operand.

NOT negates it’s operand.

If the operand is a 1, the
result of the NOT is a 0.

a b fnot(a)
0 - 1
0 - 1
1 - 0
1 - 0

fnot(a)= a

Truth table

Equations

Boolean algebra uses equations to express
relationships. For example:

This equation expressed a relationship
between the value of X and the values of A,
B and C.

)(CBAX +⋅=

Quiz (already?)
What is the value of each X:

1

)10(1

44

3

2

1

+=
⋅=

+=

+⋅=

XX
AAX
AAX

X

Laws of Boolean Algebra

Just like in good old algebra, Boolean
Algebra has postulates and identities.

We can often use these laws to reduce
expressions or put expressions in to a
more desirable form.

Basic Postulates of Boolean
Algebra

Using just the basic postulates – everything
else can be derived.

Commutative laws
Distributive laws

Identity
Inverse

Identity Laws

AA

AA

=⋅

=+

1

0

Inverse Laws

0

1

=⋅

=+

AA

AA

Commutative Laws

ABBA

ABBA

⋅=⋅

+=+

Distributive Laws

)()()(

)()()(

CABACBA

CABACBA

⋅+⋅=+⋅

+⋅+=⋅+

Other Identities

Can be derived from the basic postulates.

Laws of Ones and Zeros

Associative Laws

DeMorgan’s Theorems

Zero and One Laws

00
0

1
11

=⋅
=+

=⋅
=+

A
AA

AA
A Law of Ones

Law of Zeros

Associative Laws

CBACBA

CBACBA

⋅⋅=⋅⋅

++=++

)()(

)()(

DeMorgan’s Theorems

BABA ⋅=+

DeMorgan’s Theorems

BABA +=⋅

Other Operators
Boolean Algebra is defined over the 3 operators
AND, OR and NOT.

this is a functionally complete set.

There are other useful operators:
NOR: is a 0 if either operand is a 1
NAND: is a 0 only if both operands are 1
XOR: is a 1 if the operands are different.

NOTE: NOR or NAND is (by itself) a functionally
complete set!

Boolean Functions

Boolean functions are functions that operate
on a number of Boolean variables.

The result of a Boolean function is itself either
a 0 or a 1.

Example: f(a,b) = a+b

Question
How many Boolean functions of 1 variable
are there?
We can answer this by listing them all!

1)(
0)(

)(

)(

4

3

2

1

=
=
=

=

xf
xf

xxf

xxf

Tougher Question

How many Boolean functions of 2 variables
are there?

It’s much harder to list them all, but it is still
possible…

Alternative Representation

We can define a Boolean function showing it
by means of using algebraic operations.

We can also define a Boolean function by
listing the value of the function for all possible
inputs.

Truth Tables

a b OR AND NOR NAND XOR
0 0 0 0 1 1 0

0 1 1 0 0 1 1

1 0 1 0 0 1 1

1 1 1 1 0 0 0

Truth Table for (X+Y)·Z

X Y Z (X+Y)·Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Gates

Digital logic circuits are electronic circuits that
are implementations of some Boolean
function(s).

A circuit is built up of gates, each gate
implements some simple logic function.

A Gate

???Inputs

OutputA

B
f(A,B)

Gates compute something!

The output depends on the inputs.

If the input changes, the output might
change.

If the inputs don’t change – the output does
not change.

An OR gate

A
B

A+B
a b for(a,b)

0 0 0

0 1 1

1 0 1

1 1 1

A

B
A•B

An AND gate

a b fand(a,b)

0 0 0

0 1 0

1 0 0

1 1 1

A A

A Not gate

A•B
A

B

A

B
A+B

A NAND and NOR gate

XOR and XNOR

Combinational Circuits

We can put gates together into circuits
output of some gates are inputs of other ones.

We can design a circuit that represents any
Boolean function!

A Simple Circuit

A

B

?

Truth Table for our circuit

a b a b a • b a • b

0 0 1 1 1 0

0 1 1 0 0 1

1 0 0 1 0 1

1 1 0 0 0 1

Alternative Representations

Any of these can express a Boolean function:

Boolean Equation

Circuit (Logic Diagram)

Truth Table

Implementation

A logic diagram is used to design an
implementation of a function.

The implementation involves the specific
gates and the way they are connected.

We can buy a bunch of gates, put them
together (along with a power source) and
build up a machine.

Function Implementation
Given a Boolean function expressed as a
truth table or Boolean Equation, there are
many possible implementations.

The actual implementation depends on what
kind of gates are available.

In general it would be convenient to minimize
the number of gates.

Example: BABAf •+•=

A B f
0 0 0 0 0
0 1 0 1 1
1 0 1 0 1
1 1 0 0 0

BA• BA•

One Implementation BABAf •+•=

A

B

f

Another Implementation
A

B

f

() ()BABABABAf +•+=•+•=

Proof it’s the same function

() ()
() ()
()() ()()
() ()
() ()
() ()
() ()BAAB

BAAB

BAAB

BBBAABAA

BBAABA

BABA

BABA

BABA

+•+

=•••

=•+•

=•+•+•+•

=•++•+

=+•+

=•••

=•+•

DeMorgan's Law

DeMorgan's Laws

Distributive

Distributive

Inverse, Identity

DeMorgan's Law

DeMorgan's Laws

Karnaugh maps
The Karnaugh map was invented in 1952 by Edward W.
Veitch and developed further 1953 by Maurice Karnaugh.
Karnaugh maps make use of the human brain's excellent
pattern-matching capability to decide which terms should be
combined to get the simplest expression.
Karnaugh maps permit the rapid identification and elimination
of potential race hazards, something that boolean equations
alone cannot do.
A Karnaugh map is an excellent aid for simplification of up to
six variables, but with more variables it becomes hard even
for our brain to discern optimal patterns.
For problems involving more than six variables, solving the
boolean expressions is preferred to use of a Karnaugh map.

Expressions can be written in many ways, but some ways are more useful than
others

A sum of products (SOP) expression contains:
Only OR (sum) operations at the “outermost” level
Each term that is summed must be a product

The advantage is that any sum of product expression can be implemented using
a two-level circuit

literals and their complements at the “0th” level
AND gates at the first level
a single OR gate at the second level

This diagram uses some shorthands…
NOT gates are implicit
literals are reused
this is not okay in LogicWorks!

Review: Standard forms of
expressions

f(x,y,z) = y’ + x’yz’ + xz

Terminology: Minterms
A minterm is a special product of literals, in which each input variable
appears exactly once.
A function with n variables has 2n minterms (since each variable can
appear complemented or not)
A three-variable function, such as f(x,y,z), has 23 = 8 minterms:

Each minterm is true for exactly one combination of inputs:

x’y’z’ x’y’z x’yz’ x’yz
xy’z’ xy’z xyz’ xyz

Minterm Is true when… Shorthand
x’y’z’ x=0, y=0, z=0 m0
x’y’z x=0, y=0, z=1 m1
x’yz’ x=0, y=1, z=0 m2
x’yz x=0, y=1, z=1 m3
xy’z’ x=1, y=0, z=0 m4
xy’z x=1, y=0, z=1 m5
xyz’ x=1, y=1, z=0 m6
xyz x=1, y=1, z=1 m7

Terminology: Sum of minterms
form

Every function can be written as a sum of minterms, which is a special
kind of sum of products form
The sum of minterms form for any function is unique
If you have a truth table for a function, you can write a sum of minterms
expression just by picking out the rows of the table where the function
output is 1.

x y z f(x,y,z) f’(x,y,z)
0 0 0 1 0
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 0 1
1 0 1 0 1
1 1 0 1 0
1 1 1 0 1

f = x’y’z’ + x’y’z + x’yz’ + x’yz + xyz’
= m0 + m1 + m2 + m3 + m6

= Σm(0,1,2,3,6)

f’ = xy’z’ + xy’z + xyz
= m4 + m5 + m7

= Σm(4,5,7)

f’ contains all the minterms not in f

Can we know the number of functions that we
have if we know the number of variables?

Re-arranging the truth table
A two-variable function has four possible minterms. We can
re-arrange these minterms into a Karnaugh map.

Now we can easily see which minterms contain common literals.
Minterms on the left and right sides contain y’ and y respectively.
Minterms on the top and bottom rows contain x’ and x respectively.

x y minterm
0 0 x’y’
0 1 x’y
1 0 xy’
1 1 xy

Y

0 1
0 x’y’ x’y

X
1 xy’ xy

Y

0 1
0 x’y’ x’y

X
1 xy’ xy

Y’ Y
X’ x’y’ x’y
X xy’ xy

Karnaugh map simplifications
Imagine a two-variable sum of minterms:

x’y’ + x’y

Both of these minterms appear in the top row of a Karnaugh map,
which means that both of them contain the literal x’.

What happens if you simplify this expression using Boolean algebra?

x’y’ + x’y = x’(y’ + y) [Distributive]
= x’ • 1 [y + y’ = 1]
= x’ [x • 1 = x]

Y
x’y’ x’y

X xy’ xy

More two-variable examples
Other example expression is x’y + xy.

Both minterms appear in the right side, where y is uncomplemented.
Thus, we can reduce x’y + xy just to y.

How about x’y’ + x’y + xy?
We have x’y’ + x’y in the top row, corresponding to x’.
There’s also x’y + xy in the right side, corresponding to y.
This whole expression can be reduced to x’ + y.

Y
x’y’ x’y

X xy’ xy

Y
x’y’ x’y

X xy’ xy

A three-variable Karnaugh map

For a three-variable expression with inputs x,
y, z, the arrangement of minterms is more
tricky:

Another way to label the K-map (use
whichever you like):

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z

YZ
00 01 11 10

0 x’y’z’ x’y’z x’yz x’yz’
X

1 xy’z’ xy’z xyz xyz’

YZ
00 01 11 10

0 m0 m1 m3 m2X
1 m4 m5 m7 m6

Not all the gates are equally easy to build

Digital Circuits
Combinatorial logic

Results of an operation depend only on the present inputs
of the operation
Uses: perform arithmetic, control data movement,
comparison of values for decision making

Sequential logic
Results depend on both the inputs of the operation and the
result of the previous operation
Uses: counter

Comparators

It compares two input signals.

Based on this it can built a filter, or other more important
devices like a analog digital converter or controllers

C

Adder
It performs the additioning operation of three binary digits.

C

Sequential Logic Circuits
Output depends on

Input
Previous state of the
circuit

Flip-flop: basic memory
element
State table: output for
all combinations of input
and previous states

SR Latch

SR latch operation

S R Action

0 0 Keep state

0 1 Q = 0

1 0 Q = 1

1 1 Unstable combination,

SR Latch

Other electronic devices

Multiplexer:

Register COPY Operation
Uses both
sequential and
combinational
logic

Where are we?

We are

Bibliography
Integrated Electronics: Analog and Digital Circuits
and Systems. J Millman, CC Halkias. McGraw-Hill.
Ones and Zeros: Understanding Boolean Algebra,
Digital Circuits, and the Logic of Sets. JR Gregg.
IEEE Press Understanding Science & Technology
Series.
Introduction to Logic Design. AB Marcovitz.
McGraw-Hill.

