"Next generation sequencing techniques"

Toma Tebaldi
Centre for Integrative Biology
University of Trento

Mattarello
September 28, 2009
Sequencing

Fundamental task in modern biology

- read the information content of biological molecules (DNA, RNA).

- direct and primary access to understand how biological systems function and evolve in time.
First generation sequencing: Sanger

- DNA is fragmented
- Cloned to a plasmid vector
- Cyclic sequencing reaction
- Separation by electrophoresis
- Readout with fluorescent tags
Dideoxy nucleoside triphosphates (ddNTPs)

- Elongation with a mixture of dNTPs and ddNTPs.
- Lack an -OH on the 3'-C as well as the 2'-C of the deoxyribose sugar.
- Each ddNTP is labeled with a different fluorescent dye.
- Once the ddNTP is incorporated, chain elongation is terminated.
Glossary

✓ **Sequencing depth**: total number of all the sequence reads or base pairs represented in a single sequencing experiment.

✓ **Coverage Depth**: The total number of nucleotides from reads that are mapped to a given position (e.g. 10x).

✓ **Read Length**: length of the sequenced fragments (tags).

✓ **Number of sequencing reads**: number of reads (sequence tags) produced in a single experiment.
Second (next) generation sequencing

- Greater sequencing throughput
- More economical sequencing technology

Three leading platforms

- Roche/454 FLX Pyrosequencer
- Illumina/Solexa Genome Analyzer
- Applied Biosystems SOLiD
454 sequencer: DNA library preparation

- Genome fragmented by nebulization
- No cloning; no colony picking
- ssDNA library created with adaptors
- A/B fragments selected using avidin-biotin purification

4.5 hours

gDNA → Ligation → Selection (isolate AB fragments only) → ssDNA library
454 sequencer: Emulsion PCR

8 hours

Anneal ssDNA to an excess of DNA capture beads

Emulsify beads and PCR reagents in water-in-oil microreactors

Clonal amplification occurs inside microreactors

Break microreactors and enrich for DNA-positive beads

sstDNA library

Bead-amplified ssDNA library
454 sequencer: Sequencing

7.5 hours

- Well diameter: average of 44 μm
- 400,000 reads obtained in parallel
- A single cloned amplified ssDNA bead is deposited per well

Amplified ssDNA library beads → Quality filtered bases
Illumina: Library Preparation

Prepare genomic DNA sample
Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.

Attach DNA to surface
Bind single-stranded fragments randomly to the inside surface of the flow cell channels.
Illumina: Bridge PCR

Bridge amplification
Add unlabeled nucleotides and enzyme to initiate solid-phase bridge amplification.
Illumina: Sequencing by Synthesis

First chemistry cycle:
To initiate the first sequencing cycle, add all four labeled reversible terminators, primers, and DNA polymerase enzyme to the flow cell.

Image of first chemistry cycle
After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.

Before initiating the next chemistry cycle
The blocked 3' terminus and the fluorophore from each incorporated base are removed.

Sequence read over multiple chemistry cycles
Repeat cycles of sequencing to determine the sequence of bases in a given fragment a single base at a time.
Illumina: Base Calling

Base calling from raw data

The identity of each base of a cluster is read off from sequential images
Emulsion PCR

- Fragments, with adaptors, are PCR amplified within a water drop in oil.
- One primer is attached to the surface of a bead.
- Used by 454, Polonator and SOLiD.
DNA fragments are flanked with adaptors.

A flat surface coated with two types of primers, corresponding to the adaptors.

Amplification proceeds in cycles, with one end of each bridge tethered to the surface.

Used by Solexa.
Problems arising with short sequence reads

Short sequences do not map uniquely to the genome:

- Solution 1: Get longer reads.
- Solution 2: Get paired reads
Paired reads are important for mapping

Known Distance

Read 1
Read 2

Repetitive DNA
Unique DNA

Paired read maps uniquely

Single read maps to multiple positions
Platforms comparison

With 3730s, ~60Mb per year

Specifications as of summer 2008

<table>
<thead>
<tr>
<th></th>
<th>454</th>
<th>Solexa</th>
<th>SOLiD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bp per run</td>
<td>400 Mb</td>
<td>2-3 Gb</td>
<td>3-6 Gb</td>
</tr>
<tr>
<td>Read length</td>
<td>250-400 bp</td>
<td>35-50 (70-100) bp</td>
<td>35-50 bp</td>
</tr>
<tr>
<td>run time</td>
<td>10 hr</td>
<td>2.5 days</td>
<td>5 days</td>
</tr>
<tr>
<td>Download</td>
<td>20 min</td>
<td>27 hr (44 min)</td>
<td>~1 day</td>
</tr>
<tr>
<td>Analysis</td>
<td>2-5 hr</td>
<td>2 days</td>
<td>2-3 days</td>
</tr>
<tr>
<td>Files</td>
<td>20-50 Gb</td>
<td>1T</td>
<td>1 T</td>
</tr>
</tbody>
</table>

- Next-gen sequencing technologies have reduced the cost of sequencing by > 4 orders of magnitude already
Comparisons between methods

From John McPherson, OICR

AB/SOLiDv3, Illumina/GAII short-read sequencers
(10+Gb in 50-100 bp reads, >100M reads, 4-8 days)

454 GS FLX pyrosequencer
(100-500 Mb in 100-400 bp reads, 0.5-1M reads, 5-10 hours)

ABI capillary sequencer
(0.04-0.08 Mb in 450-800 bp reads, 96 reads, 1-3 hours)

From John McPherson, OICR
Computational tasks

✓ Hard to generate clean data: files with quality scores.

✓ Dealing with sequencing errors.

✓ Interpretation of data: need to correctly align sequence tags to a reference genome.

✓ The size of the data will constantly increase.

✓ Analytical bottleneck.
Applications of Next Generation Sequencing

- Whole-genome sequencing
 - *de novo* genome assembly (much harder with shorter reads)
 - Variant detection (SNPs, indels) and copy number
 - 1000 Genomes Project
- Targeted resequencing (e.g., exons) using ‘capture and release’ in combination with Agilent or Nimblegen microarrays
- ChIP-seq
 - Protein-DNA binding, histone modifications, nucleosomes
- Expression profiling:
 - RNA-seq – splicing variants
 - Digital expression profiling (DSAGE) – low abundance transcripts
- Small RNA sequencing
Transcriptome profiling: microarray methods

Hybridization-based approaches limitations:

✓ rely upon existing knowledge about genome sequence.

✓ high background levels owing to cross-hybridization.

✓ limited dynamic range of detection due to signal saturation.

✓ normalization methods to compare different experiments.
Transcriptome profiling: sequencing methods

Serial analysis of gene expression (SAGE): used to produce a snapshot of the messenger RNA population in a sample of interest (CAGE: cap analysis of gene expression).

- Based on Sanger sequencing

RNA-seq: based on next generation sequencing technologies.
Third (next-next) generation sequencing

Single molecule sequencing

✓ Helicos Heliscope
✓ Pacific Biosciences SMRT
✓ Nanopore BASE DNA sequencing