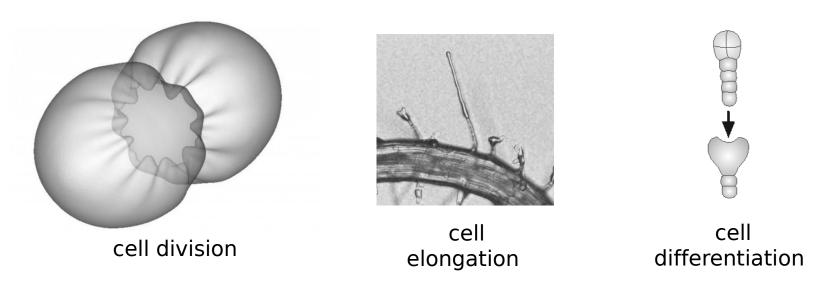
Seminar Molekulare Mechanismen der Signaltransduktion

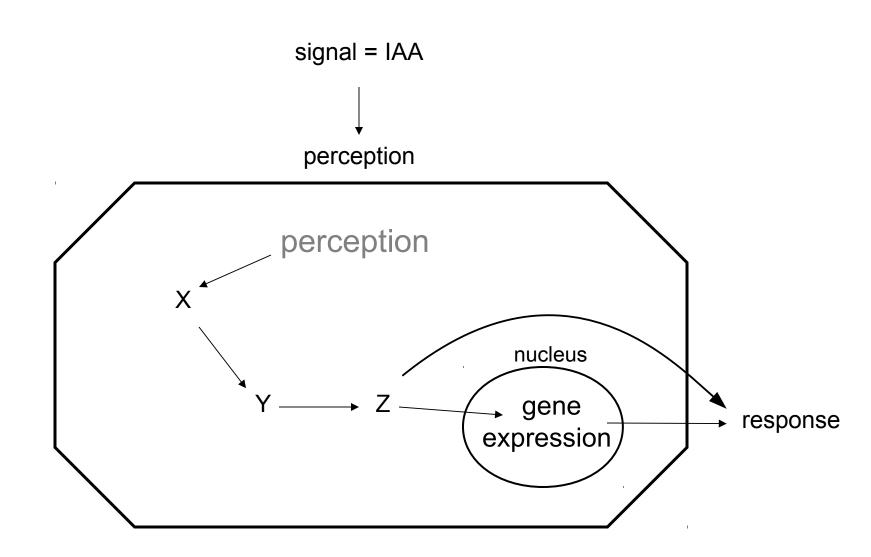
08.05.13 - MQ


- Background Auxin
- Einstieg in genetische Studien zum Auxin Signaling:
- 1. Estelle and Somerville, (1987) Auxin resistant mutants of *Arabidopsis thaliana* with an altered morphology. **Molecular and General Genetics** 206:200
- 2. Lincoln et al., (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071
- 3. Leyser et al., (**1993**) Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. **Nature** 364:161
- Terminvergabe

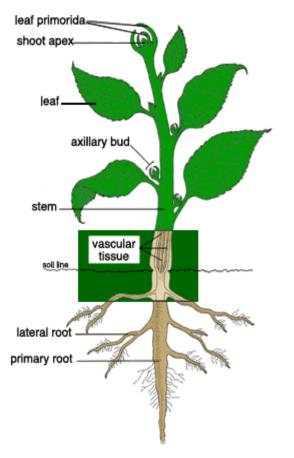
Introduction

Definition:

Hormones are chemical signals that are produced in one part of the body, transported to other parts, bind to specific receptors, and trigger responses in target cells and tissues.


- Hormone (greek) → to excite
- In general, plant hormones control plant growth and development by affecting the division, elongation, and differentiation of cells.

→ **Aim of this seminar**: Elucidate the transduction pathway of the signaling molecule/hormone auxin from perception to cellular/morphological responses

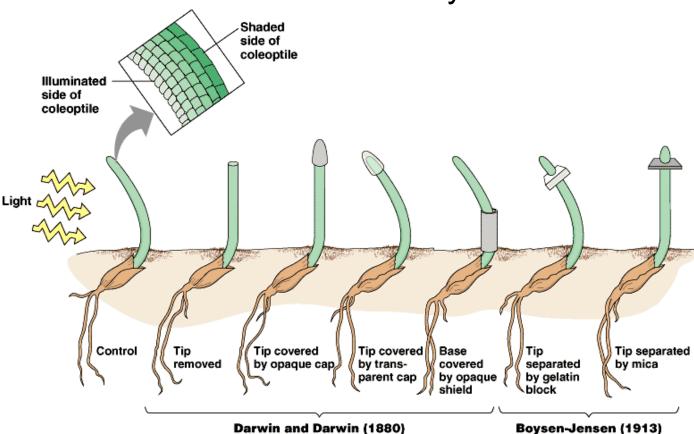

Excluding: biosynthesis, metabolism, transport

Black box of signaling

Auxin History I - 1758-1880

By definition hormones need to move between organs → transport system in plants?

→ two streams of sap moving in opposite directions are responsible for establishing correlations between organs

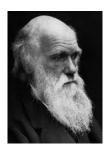

1880

Julius von Sachs

→ proposed a first coherent framework of root-forming, flower-inducing, and other special substances, which move in different directions through the plant to control its growth and development

The vasculature!
Alternatively: movement by diffusion

Auxin History II - 1880-1935

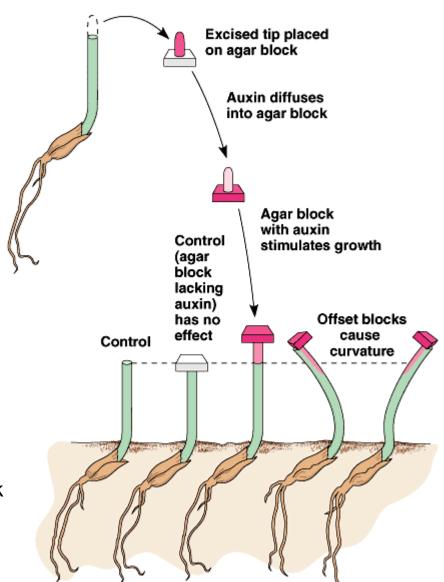


Canary grass (Phalaris canariensis)

Oat (Avena ssp)

"When seedlings are freely exposed to a lateral light some influence is transmitted from the upper part of the coleoptile that acts on the lower part of the coleoptile" "The Power of Movement in Plants" (1880) by Darwin and Darwin.

Peter Boysen-Jensen demonstrated that the signal was a mobile chemical substance


Auxin History II - 1880-1935

Frits W. Went - 1958

In 1926, F.W. Went extracted the chemical messenger for phototropism, naming it **auxin** → auxano (greek) = to grow

→ an asymmetrical distribution of auxin moving down from the coleoptile tip causes cells on the dark side to elongate faster than cells on the brighter side.

Auxin History II - 1880-1935

Kenneth V. Thimann 1960

Supplement to "Nature," January 19, 1935

Identity of the Growth-Promoting and Root-Forming Substances of Plants

IAA <u>i</u>ndole-3-<u>a</u>cetic <u>a</u>cid

→ the principal auxin in all plant species

Auxin History III - 1935-1985

NEW PHYTOLOGIST

Vol. XXXIV, No. 5 4 DECEMBER, 1935

ACTIVATION OF CAMBIAL GROWTH BY PURE HORMONES

By R. Snow Fellow of Magdalen College, Oxford

*Sunflower seedlings

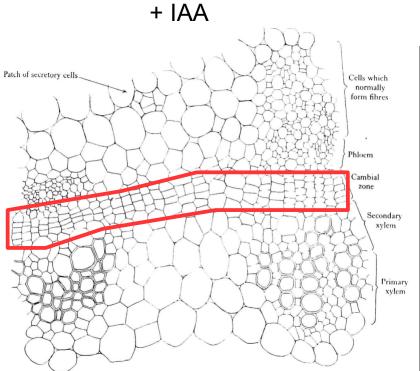


Fig. 4, Exp. 3* Experimental plant no. 1. Section at 10 mm. below top, and 5 mm. below zone covered by gelatins and auxin-a. × 202.

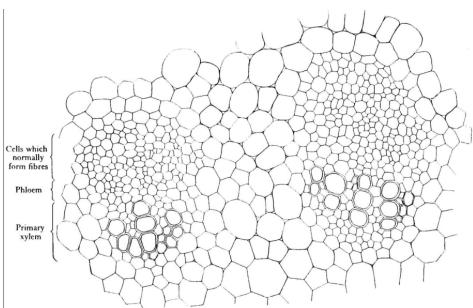


Fig. 5, Exp. 3* Decapitated control plant no. 1. Section at 15 mm. below top. ×202.

- IAA

^{*}Sunflower seedlings

Auxin History III - 1935-1985

Changes Induced by Indoleacetic Acid in Nucleic Acid Contents and Growth of Tobacco Pith Tissue¹

Julius Silberger, Jr., and Folke Skoog Department of Botany, University of Wisconsin, Madison

Science, Vol. 118 October 16, 1953

Auxin treatment increases the level of nucleic acids!

Gene activation?

Support:

Inhibitors of RNA and protein biosynthesis prevent cell elongation (Key, **1969**, Annu Rev Plant Physiol)

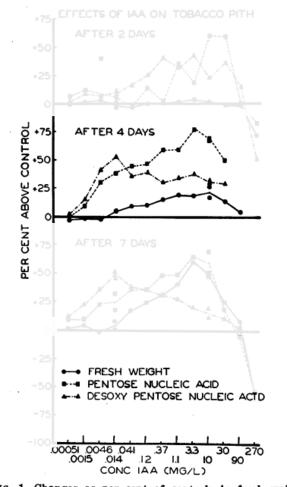
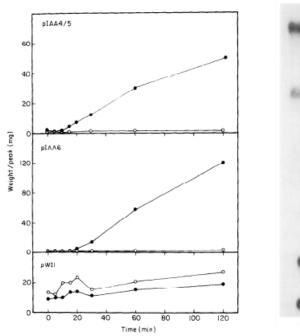


Fig. 1. Changes as per cent of controls in fresh weight, DNA content, and PNA content in excised tobacco pith tissue disks cultured on a sucrose agar medium with serial concentrations of IAA for 2, 4, and 7 days.

Gene activation hypothesis: Auxin regulates the synthesis of specific RNAs required for cell growth

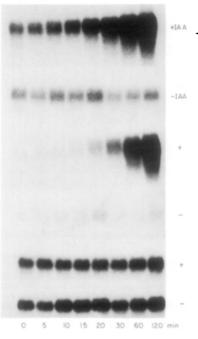

Auxin History III - 1935-1985

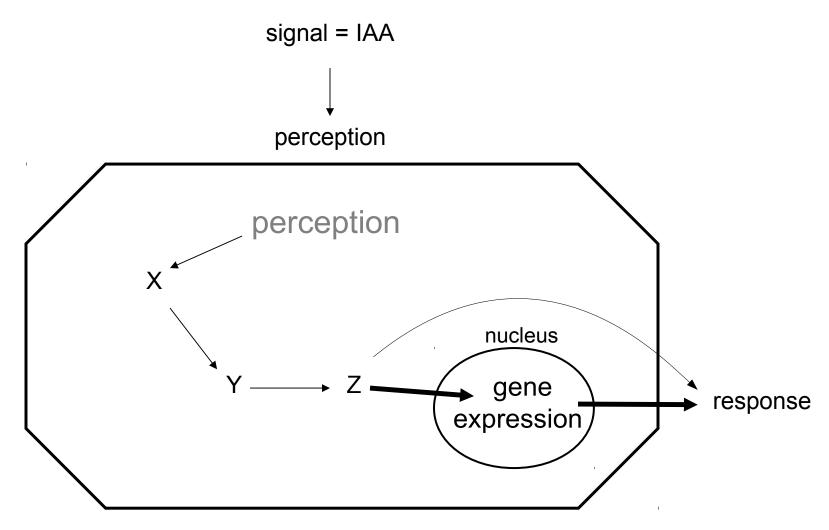
J. Mol. Biol. (1985) 183, 53-68

Rapid Induction of Specific mRNAs by Auxin in Pea Epicotyl Tissue

Athanasios Theologist, Thanh V. Huynh and Ronald W. Davis

Department of Biochemistry Stanford School of Medicine Stanford University, Stanford, CA 94305, U.S.A.




Figure 3. Induction kinetics of the IAA-inducible mRNAs. Endogenous IAA-depleted pea segments were treated with or without 20 μm·IAA. Poly(A)* RNA was isolated at various time intervals from 2 g fresh weight (100 segments) of control or IAA-treated tissue: 20 μg of poly(A)* RNA from 0. 5, 10, 15, 20, 30, 60 and 120 min incubations were electrophoretically separated and transferred to aminophenyithioether paper as described in Materials and Methods. Time-points are indicated at the bottom of respective lanes on the right-hand side of the Figure. Two RNA papers were prepared, one contained the IAA mRNAs (+IAA) and the other the control mRNAs (-IAA). The filters were successively hybridized to ³²P-labeled pIAA4/5, pIAA6 and pWI1 plasmid DNAs (top, middle, bottom right) after previous removal of the radioactive probe as described in Materials and Methods. The autoradiograms of these papers are shown on the right-hand side of the Figure, and were scanned in a Joyce-Loebl recording densitometer. The areas under the curves were quantitated by weighing, and the results are shown on the left-hand side of the Figure. (●) With IAA: (○) without IAA.

Rapid induction of mRNAs after 10-15 min of IAA application

The most likely scenario: Auxin regulates cell growth

indirectly by controling *de novo* expression of genes required for that process.

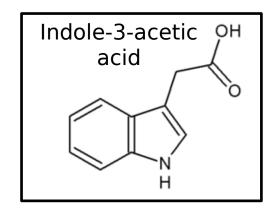
Black box of signaling

Gene activation hypothesis suggests the 'nuclear route'

Arabidopsis thaliana

Small size (30 cm)

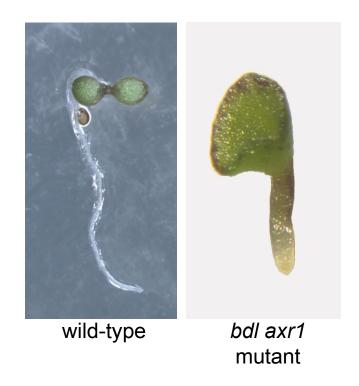
Rapid life cycle (6-8 weeks)


Prolific seed production (5000 seeds/plant)

Sequenced genome (125 Mb; ~28,000 genes)

Easily transformable

Tremendous community resources

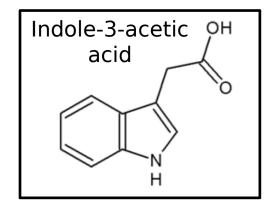

A power multicellular eukaryotic model system

Embryonic patterning

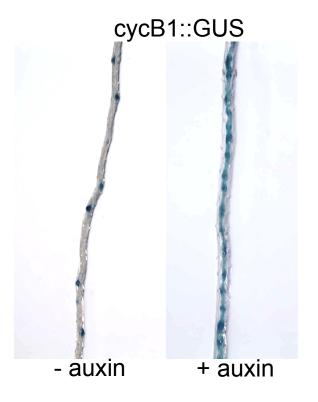
Growth & Apical dominance

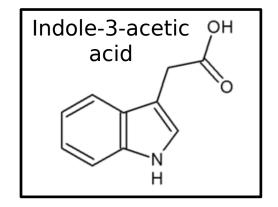
Root development

Embryonic patterning


Growth & Apical dominance

Root development

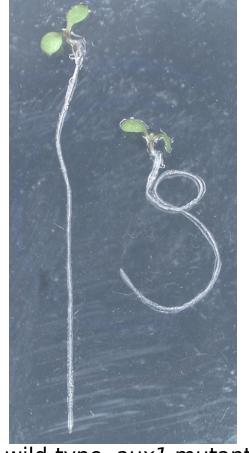

axr6-3 mutant



Embryonic patterning

Growth & Apical dominance

Root development



Embryonic patterning

Growth & Apical dominance

Root development

wild-type aux1 mutant

Auxin-resistant mutants of *Arabidopsis thaliana* with an altered morphology

Mark A. Estelle * and Chris Somerville

MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA

Aim:

- Isolation of mutants with increased auxin resistance
- Identification of signaling elements that regulate auxin response

What was known?

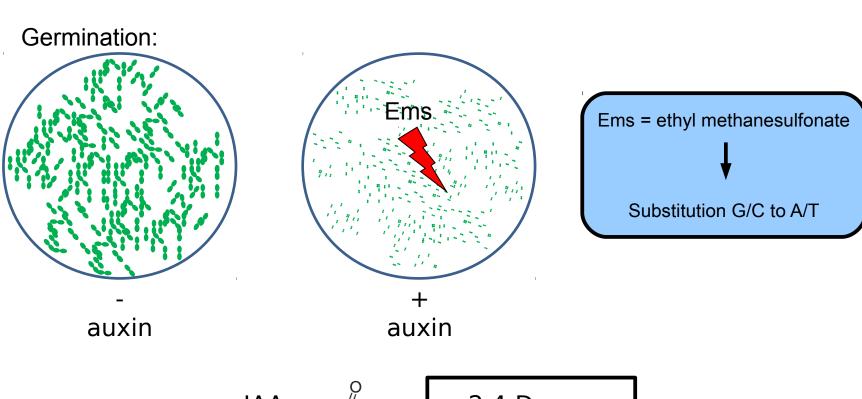
- Auxin induces cell extension
- Auxin induces cell division
- Auxin induces cell differentiation

Depends most likely on *de novo* gene expression/protein synthesis

What was NOT known?

- enzymes of auxin biosynthesis
- auxin transport facilitators
- auxin signaling elements
- Arabidopsis genome sequence

Black box of signaling

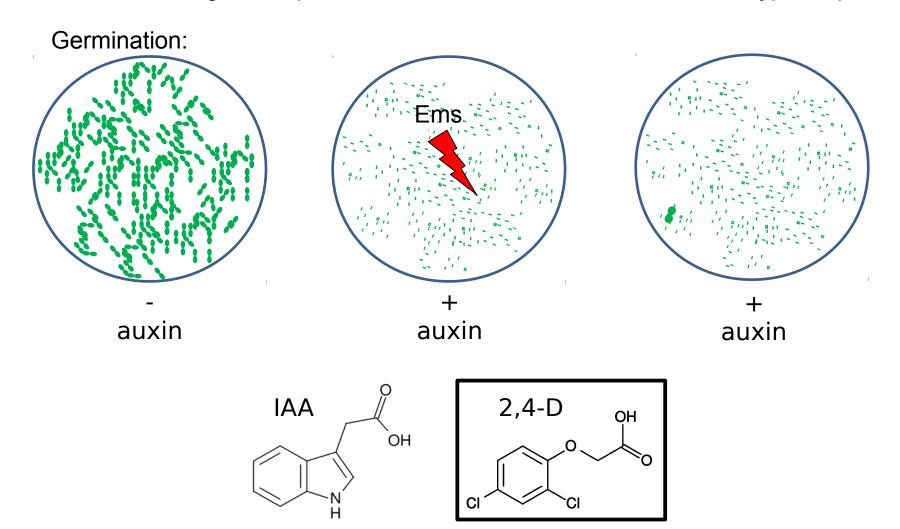

Genetic approach?

Mutagenesis

Prerequisite:

- Phenotype associated with trait of interest

Seedling development → screen for mutants defect in wild-type response



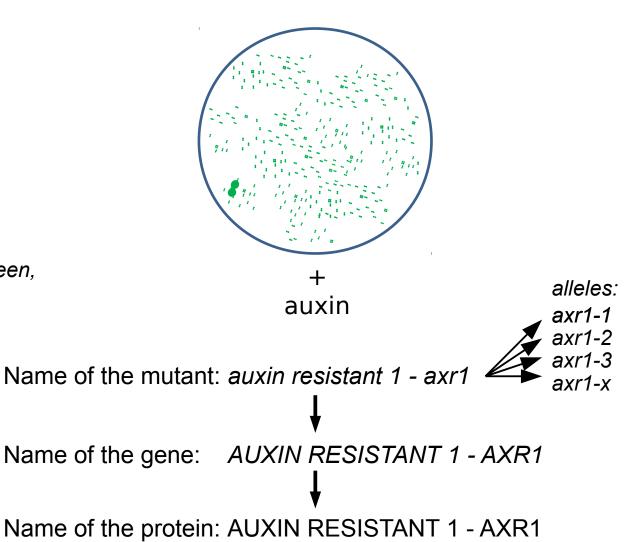
Mutagenesis

Prerequisite:

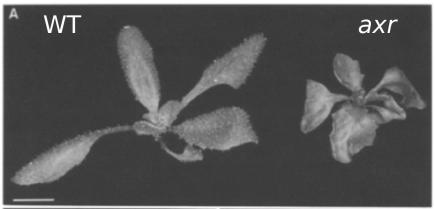
- Phenotype associated with trait of interest

Seedling development → screen for mutants defect in wild-type response

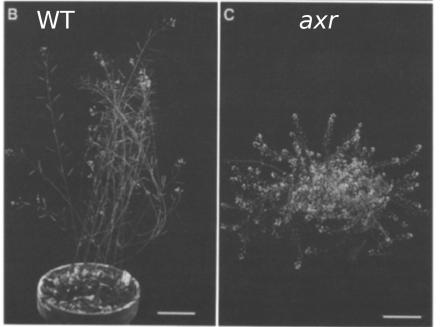
Mutant/Gene nomenclature

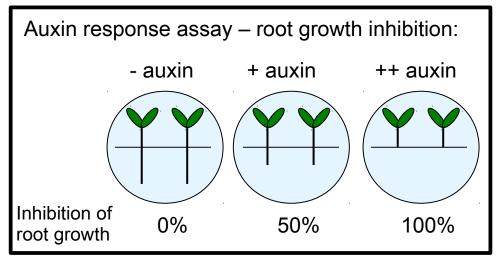

Same mutant screen,

different genes:


axr1 axr2

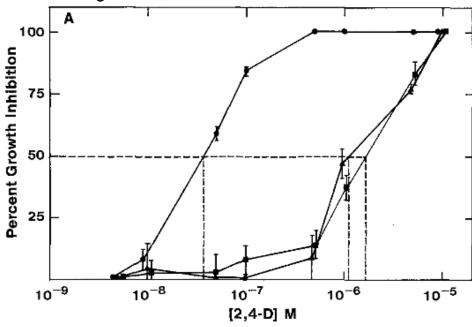
axr3


axrx



Phenotypes

- rosette smaller, short petioles, crinkled leaves
- roots thinner, not as highly branched
- 25-30 inflorescences compared to 1-5 in WT
 → apical dominance
- pollen fertility reduced \rightarrow stamen shorter


Phenotypes

B WT c axr

- rosette smaller, short petioles, crinkled leaves
- roots thinner, not as highly branched
- 25-30 inflorescences compared to 1-5 in WT → apical dominance
- pollen fertility reduced \rightarrow stamen shorter

Root growth inhibition on auxin media:

Auxin-resistant mutants of *Arabidopsis thaliana* with an altered morphology

Mark A. Estelle * and Chris Somerville

MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA

Conclusion:

- Defects associated to auxin action at every developmental stage
- → AXR1 must be elemental for auxin response across tissues and developmental stages
- → but mutants viable → loss-of-function, not null alleles!

"...An attractive possibility is that the AXR1 gene codes for an auxin receptor..."

The Plant Cell, Vol. 2, 1071-1080, November 1990 © 1990 American Society of Plant Physiologists

Growth and Development of the axr1 Mutants of Arabidopsis

Cynthia Lincoln, James H. Britton, and Mark Estelle¹

Department of Biology, Indiana University, Bloomington, Indiana 47405

Aims:

- Further characterization of axr mutants
- Genetic mapping of the underlying gene

Isolation of additional mutants with *axr1*-like phenotype:

Table 1. Recovery of axr1 Mutants^a

M2 population	Mutagen	Selection	Mutants recovered
A ^b	EMS	2,4-D	axr1-1
			axr1-2
			axr1-3
			axr1-4
			axr1-5
			axr1-6
B ^b	EMS	2,4-D	axr1-7
			axr1-8
			axr1-9
			axr1-11
			axr1-12
			axr1-15
C°	EMS	2,4-D	axr1-16
			axr1-17
			axr1-18
			axr1-19
			axr1-20
			axr1-21
C ^c	EMS	IAA	axr1-22
Dc	γ	2,4-D	axr1-23

 $^{^{\}circ}$ A total of 470,000 seeds from four distinct M2 populations was screened for mutants that were able to elongate roots on either 5 μM 2,4-D or 50 μM IAA.

^b Estelle and Somerville (1987).

[°] This study.

Isolation of additional mutants with *axr1*-like phenotype:

Table 1. Recovery of axr1 Mutants^a

M2 population	Mutagen	Selection	Mutants recovered
A ^b	EMS	2,4-D	axr1-1
			axr1-2
			axr1-3
			axr1-4
			axr1-5
			axr1-6
B ^b	EMS	2,4-D	axr1-7
			axr1-8
			axr1-9
			axr1-11
			axr1-12
			axr1-15
C°	EMS	2,4-D	axr1-16
			axr1-17
			axr1-18
			axr1-19
			axr1-20
			axr1-21
C ^c	EMS	IAA	axr1-22
De	γ	2,4-D	axr1-23

 $^{^{\}circ}$ A total of 470,000 seeds from four distinct M2 populations was screened for mutants that were able to elongate roots on either 5 μM 2,4-D or 50 μM IAA.

Segregation analysis:

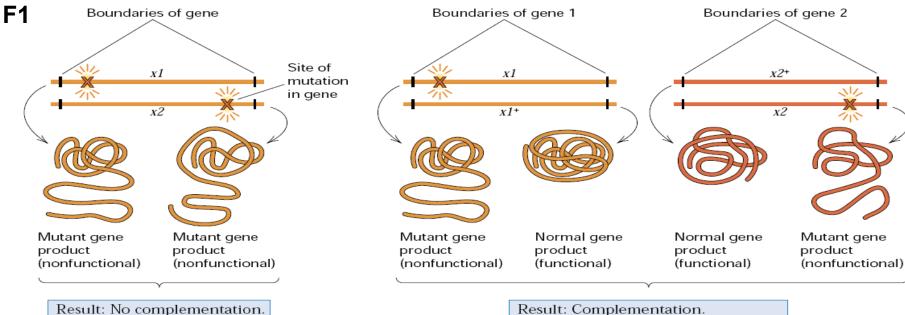
Table 2. Genetic Segregation of 2,4-D Resistance in axr1 Lines

	Number of Plants		
Cross	Resistant	Sensitive	χ ^{2 #}
axr1-19 × wild-type F1	0	23	
F2	186	493	2.07⁵
axr1-21 × wild-type F1	0	51	
F2	82	281	1:12 ^b
axr1-22 × wild-type F1	0	22	
F2	56	216	2.83 ^b
axr1-23 × wild-type F1	0	33	
F2	117	383	0.683°

 $^{^{\}rm a}\,\chi^2$ was calculated based on an expected ratio of three sensitive to one resistant.

^b P > 0.05.

axr1-like mutant phenotypes are inherited recessively
 → typical for loss-of-function alleles


b Estelle and Somerville (1987).

^c This study.

axr mutations in the same gene?

P

Result: No complementation. No functional gene product, therefore mutant phenotype.

Result: Complementation. Functional product from both genes, therefore wildtype phenotype.

Mutant phenotype

→ same gene/allelic

WT phenotype
→ different genes

Complementation test

Table 3. Complementation Analysis of axr1 Lines

	Number of Plants		
Cross	Resistant	Sensitive	
axr1-12 × axr1-3	33	0	
axr1-19 × axr1-3	21	0	
axr1-20 × axr1-3	13	0	
axr1-22 × axr1-3	24	0	
axr1-23 × axr1-3	39	0	

→ axr1-x mutations are alleles in the same gene

Morphology:

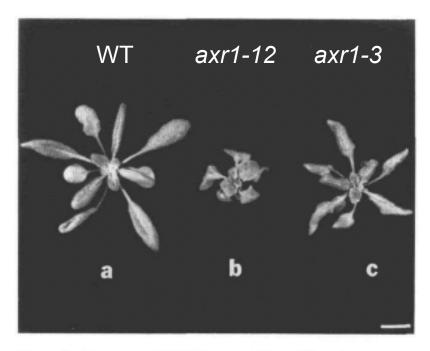


Figure 1. Phenotype of Wild-Type and Mutant Rosettes.

Rosettes were photographed when the plants were 3 weeks old.

- (a) Wild type.
- (b) axr1-12/axr1-12.
- (c) axr1-3/axr1-3.

Bar = 1 cm.

→ Allelic differences also in root growth assays

Alleles show different expression of morphological and response defects

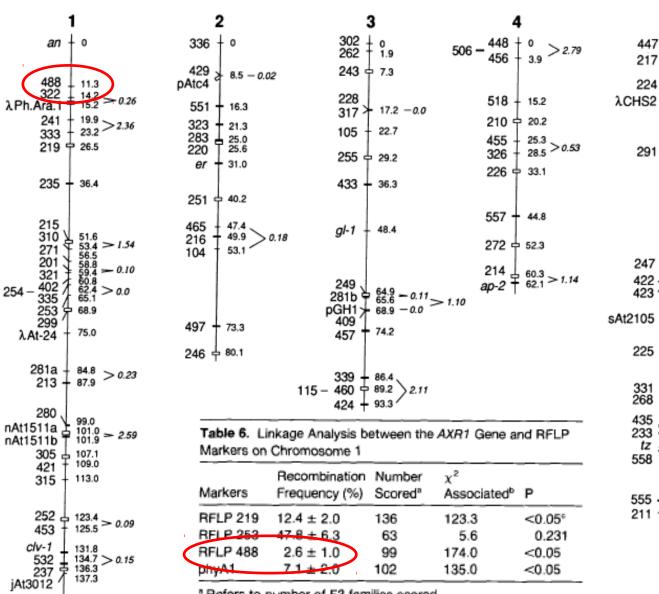


Figure 2. Comparison of Mature Wild-Type and Mutant Plants.

Wild-type and mutant plants were photographed when 7 weeks old.

- (a) Wild type.
- (b) axr1-12/axr-12.
- (c) axr1-3/axr1-3.

Bar = 3 cm.

Refers to number of F3 families scored.

132

144.4

224

291

247 4 57.7

62.6

71.2

79.4

90.0 90.5

98.7 100.7

555 + 118.2 211 + 121.3 > 0.17

104.3 105.3 - 0.05

> 0.85

422

423

225

331 268

435 233

tz

558

11.1

14.8

27.8

b χ² associated is the total χ² adjusted for deviations of each individual marker from Mendelian segregation.

[°] P value < 0.05 indicates deviation from nonlinkage (i.e., linkage).</p>

The Plant Cell, Vol. 2, 1071-1080, November 1990 © 1990 American Society of Plant Physiologists

Growth and Development of the axr1 Mutants of Arabidopsis

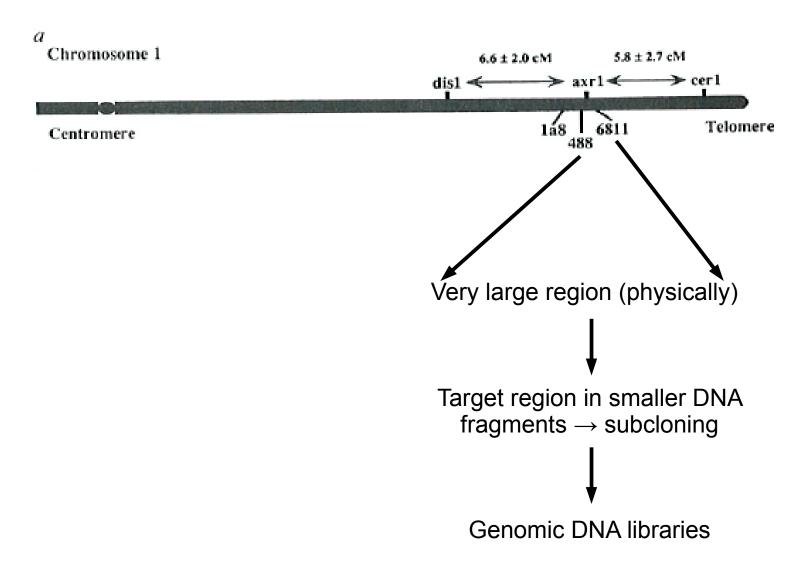
Cynthia Lincoln, James H. Britton, and Mark Estelle¹

Department of Biology, Indiana University, Bloomington, Indiana 47405

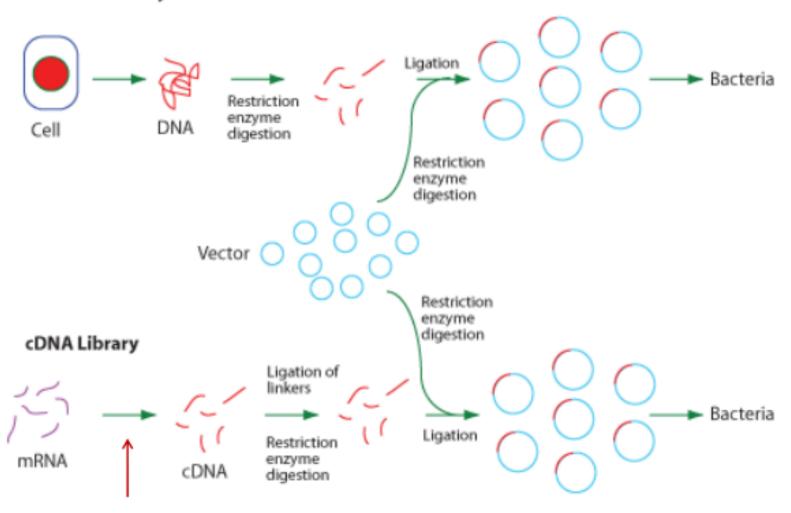
Conclusion:

- axr1 mutants represent different alleles in the same gene
- 'weak and strong' alleles
- essential function in growth related processes throughout developmental stages is confirmed
- AXR1 gene maps to the top of chromosome 1

Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1


H. M. Ottoline Leyser, Cynthia A. Lincoln*, Candace Timpte, Douglas Lammer, Jocelyn Turner & Mark Estelle†

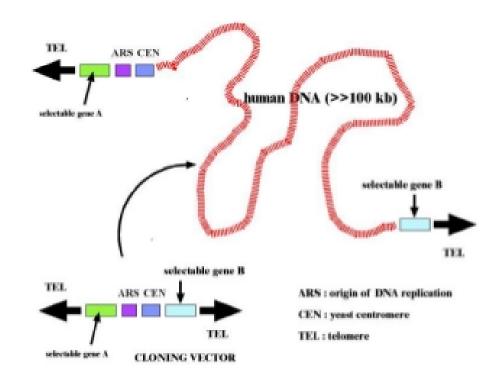
Department of Biology, Indiana University, Bloomington, Indiana 47405, USA


Aim:

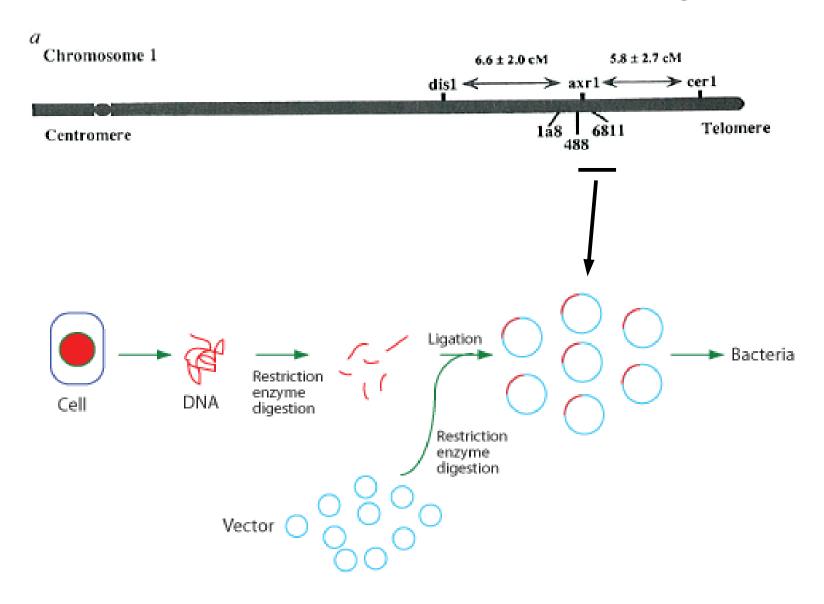
- Fine-mapping and cloning of AXR1

AXR1 - Chromosome Walking

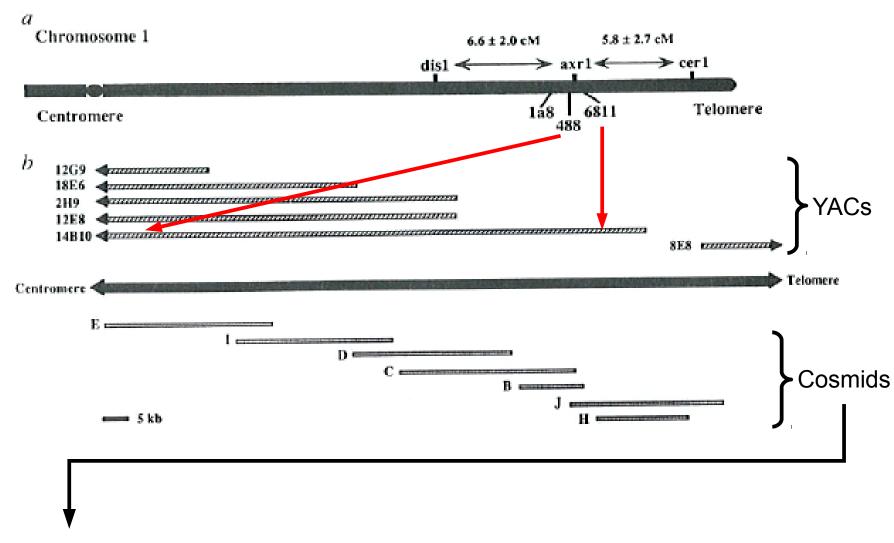
Genomic Library



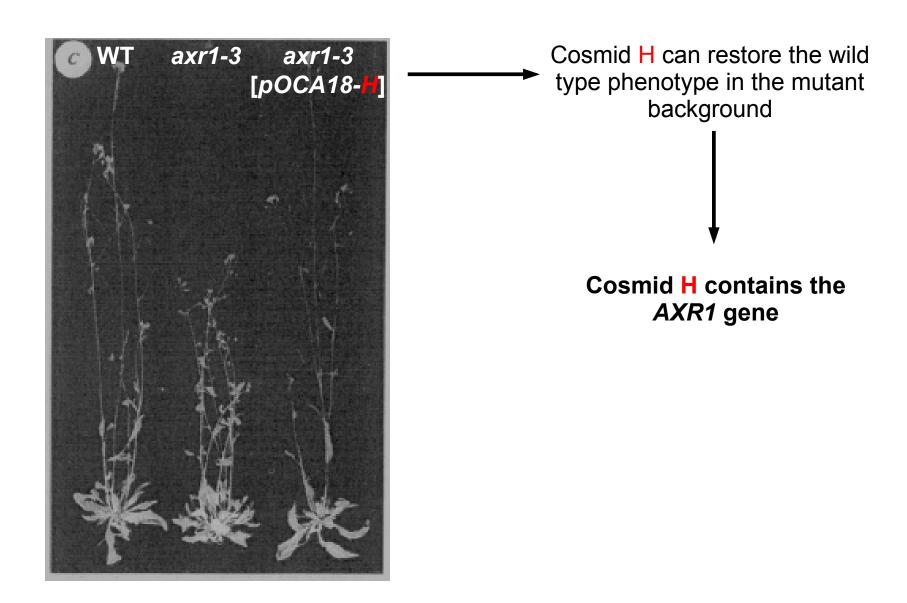
Reverse Transkription

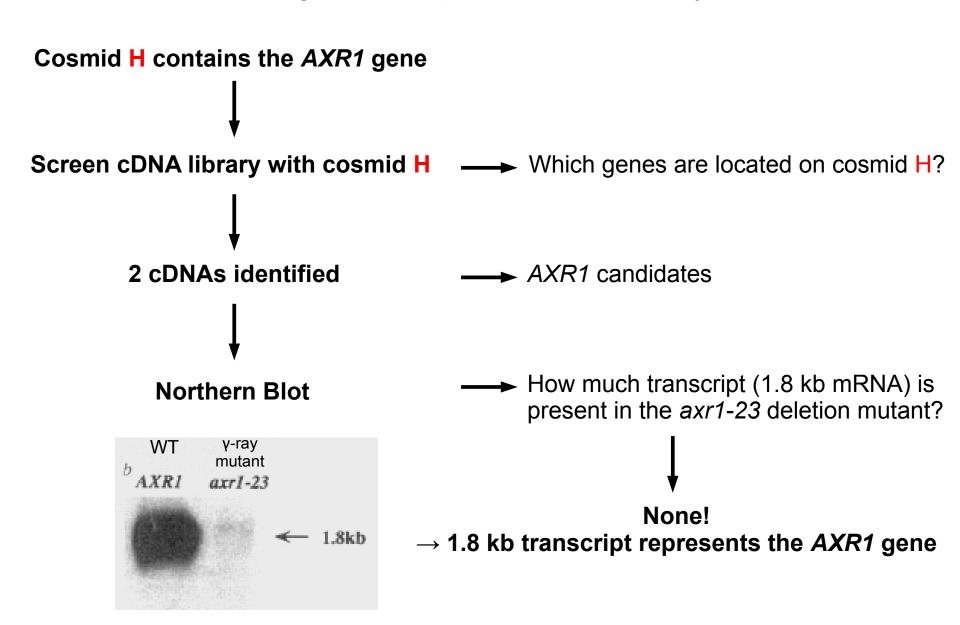

Vectors for cloning of large DNA fragments – YACs, cosmids, ...

Approximate maximum length of DNA that can be cloned into vectors

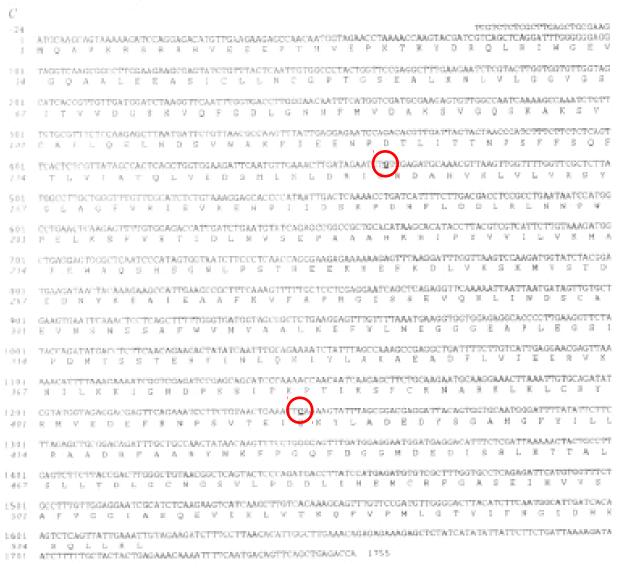

Vector type	Cloned DNA (kb)
<u>Plasmid</u>	20
lambda phage	25
Cosmid	45
BAC (bacterial artificial chromosome)	300
YAC (yeast artificial chromosome	1000

AXR1 - Chromosome Walking


AXR1 - Chromosome Walking


Transform cosmid clones E – H by agrobacterium transformation into *axr1-3* mutants

Check for restoration of the WT phenotype


Transgenic complementation analysis

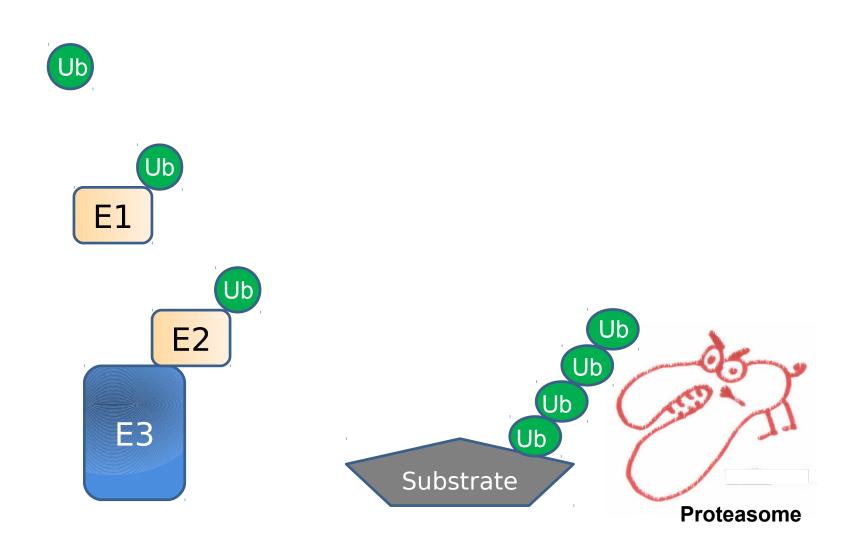
Transgenic complementation analysis

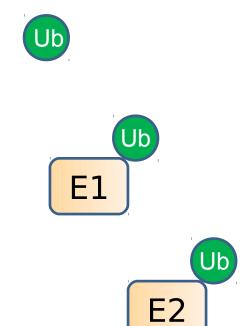
Sequencing of the AXR1 gene in axr1-3 and axr1-12 mutants

axr1-3 = G461A Cysteine → Tyrosine

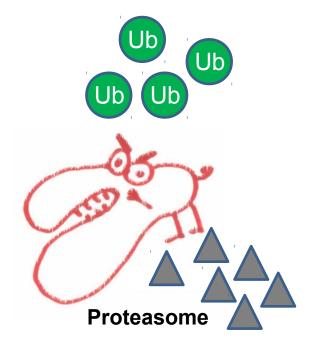
axr1-12 = C1246TGlycine \rightarrow STOP

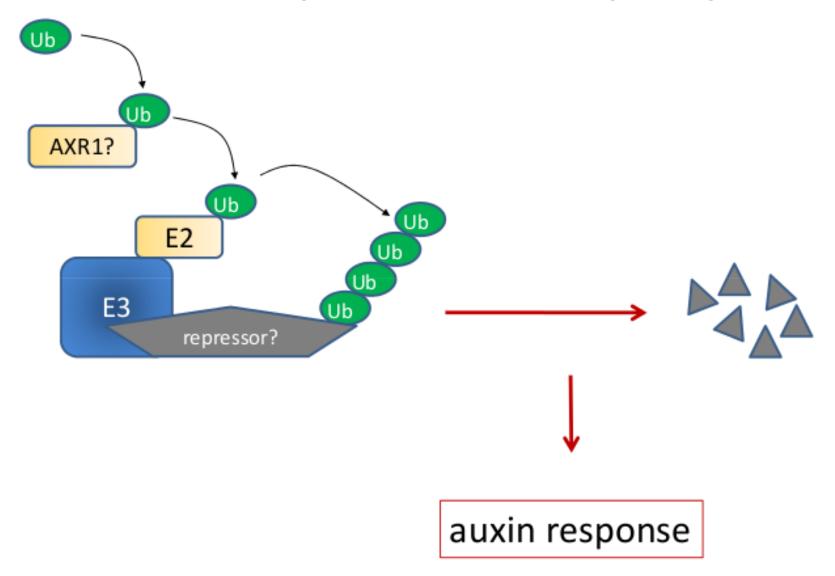
AXR1 function?

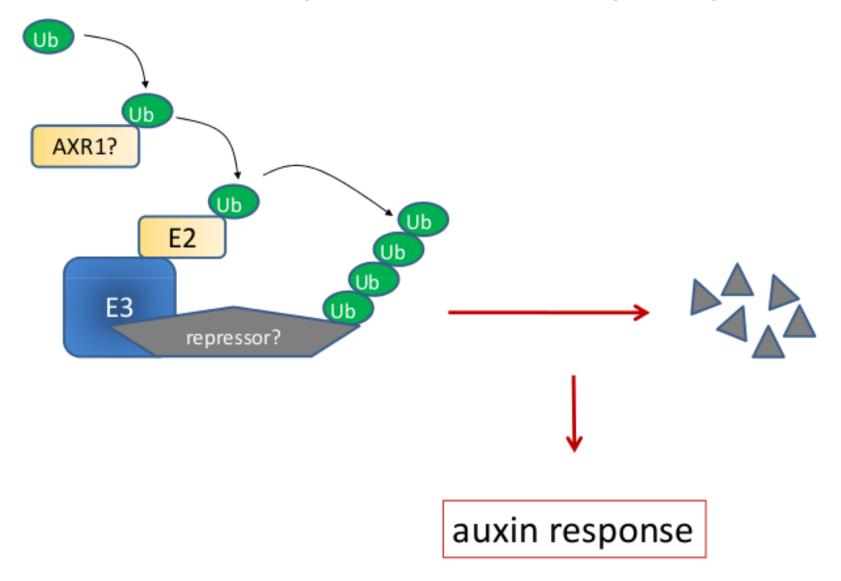

Sequence similarity searches with Genbank database:


AXR1 Protein: 540 AS, ca. 60 kD

➤ Similarity to human and yeast E1 ubiquitin activating enzymes


The ubiquitin system


The ubiquitin system


E3

Preliminary model of auxin signaling

Preliminary model of auxin signaling

How could protein degradation be associated with the gene activation hypothesis?

Allgemeines zur Struktur von Papers + Wie präsentieren?

Wie ist ein Paper strukturiert?

- Abstract
 - Zusammenfassung
- Introduction
 - > Einleitung und State of the art
 - Zielstellung der Arbeit
- Results
- Discussion
 - Ergebnisse werden evaluiert und in Zusammenhang mit Daten aus der Literatur gebracht
 - Conclusions = Big picture
- Material and Methods
 - Was wurde womit wie gemacht
- References
 - Zitierte Literatur

Allgemeines zur Struktur von Papers + Wie präsentieren?

Wie ist ein Paper strukturiert?

- Abstract
 - Zusammenfassung
- Introduction
 - Einleitung und State of the art
 - Zielstellung der Arbeit
- Results
- Discussion
 - Ergebnisse werden evaluiert und in Zusammenhang mit Daten aus der Literatur gebracht
 - Conclusions = Big picture
- Material and Methods
 - Was wurde womit wie gemacht
- References
 - Zitierte Literatur

Wie präsentiere ich ein Paper?

- Hintergrund/Einleitung mit Ausgangsmodel
- Zielstellung
- Ergebnisse (anhand der Abbildungen)
 - > Wenn nötig, neue Methoden erklären
- Diskussion
 - Big picture
- Fazit
 - Welche Erkenntnisse sind hinzugekommen
 - Model erweitern

Termine

datum	autoren	titel	link	wer stellt vor?
08.05.	Estelle and Somerville (1987)	Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology	Mol Gen Genet 206:200 full text pdf	marcel pdf
	lincoln et al. (1990)	Growth and development of the axr1 mutants of Arabidopsis	Plant Cell 2:1071 full text pdf& + glossar	marcel
	leyser et al. (1993)	Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin- activating enzyme E1	Nature 364:161 abstract修 + glossar	marcel
15.05.	Abel et al. (1994)	Early auxin-induced genes encode short-lived nuclear proteins.	PNAS 91:326-330 & + glossar	carolin
	Ballas et al. (1993)	Identification of the Auxin-responsive Element, AuxRE, in the Primary indoleacetic Acid-inducible Gene, PS-IAA4/5, of Pea (Pisum sativum)	J Mol Biol 233:580 & + glossar	luz
22.05.	Ulmasov et al. (1997)	ARF1, a transcription factor that binds to auxin response elements.	Science 276:1865 & + glossar	x + y
29.05.	Ruegger et al. (1998)	The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p	Genes & Development 12:198 full text pdf & + glossar	x + y
05.06.	Gray et al. (1999)	Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana	Genes & Development 13:1678 full text pdf& + glossar	x + y
12.06.	Gray et al. (2001)	Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins	Nature 414:271 abstract & + glossar	x + y
19.06.	Hamann et al. (1999)	The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo	Development 126: 1387-1395 abstract &	x + y
	Hamann et al. (2002)	The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning	Genes Dev 16: 1610-1615 &	x + y
25.06.	Kepinski and Leyser (2005)	The Arabidopsis F-box protein TIR1 is an auxin receptor	Nature 435:446 abstract & + glossar	x + y
	Callis (2005)	news and views zu den beiden papers (= kommentar)	news and views &	
03.07.	Dharmasiri et al. (2005)	Plant development is regulated by a family of auxin receptor F box proteins	Dev Cell 9(1):109-119 abstract &	x + y
10.07.	Tan et al. (2007)	Mechanism of auxin perception by the TIR1 ubiquitin ligase	Nature 446:640 abstract &+ glossar	x + y
	Guilfoyle (2007)	news and views zum paper (= kommentar)	news and views ଔ	
17.07.	Calderon- Villalobos et al. (2012)	A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin	Nat Chem Biol. 8(5):477-85 &	x + y dazu pizza und schlussbesprechung
	Vanneste and Friml (2012)	news and views zum paper (= kommentar)	news and views ₺	