Outline

1) “Synthetic Biology”/iGEM background
2) Penn State team project idea
3) System requirements/approach to problem
4) Strategies
5) Subtasks
 • Microfabrication
 • Circuit design
 • DNA construction
 • Strain construction
 • Modeling/Parameter estimation
 • Construct testing
6) Initial Results
7) Future
8) Conclusions
Background

Standardization is a critical part of Synthetic Biology

Comparing Synthetic Biology to Electrical Engineering

A Cell or System of Cells \leftrightarrow Electrical circuit
DNA, RNA, Proteins \leftrightarrow Electrical components, signals
Registry of Standard Biological Parts (“Biobricks”) \leftrightarrow TTL data book
BIOSPICE \leftrightarrow SPICE

iGEM competition instructions:
Use these concepts to build something cool

Effect: Creates shared standards, worldwide!
Building With Biobricks

Suffix Insertion

PstI+SpeI
PstI+XbaI

Biobrick

EcoRI XbaI SpeI PstI

Part

Prefix Insertion

EcoRI+XbaI EcoRI+SpeI

Ligation

Transformation

Mini-prep, restrict, sequence, iterate

Spe I

5′...ACTAGT...3′
3′...TGATCA...5′

Xba I

5′...TCTAGA...3′
3′...AGATCT...5′

Complementary sticky ends
Idea: Build a bacterial relay race

- motile bacteria move along a channel carrying a signal
- encounters a second stationary bacteria
- turns on a switch controlling the latter’s motility

Why?
- Great for lab downtime (during restriction digests?)
- Fun to bet on
- Just need bacterial high jump & pole vault to start bacterial Olympics;
- Programmable control of motility;
- Future device for information transportation (a new Pony Express)?
How?

Needs

• **Device to control movement**
• System to direct movement

Options to control movement

• The Che transduction system?
 • knocking out parts of the system creates tumbling/running mutants
 – but we want stationary cells

• Flagellar protein?
 • Blair and Berg\(^1\) showed that flagellar rotation could be restored in MotB K/O cells by complementing with a functional copy on a plasmid
 • rotation restored on average in 10 min

System requirements (cont.)

How? (cont.)

• Need:
 • Device to control movement
 • System to direct movement

Chemotaxis-create and maintain chemical gradient
 • However, adds chemical engineering challenges to already complex project

Instead:

• Microchannels
 • Offer facile method for guiding bacteria
 • No gradient necessary-Whitesides & Berg\(^2\)
 • Optimal environment constraining/directing quorum signal

Microchannel fabrication

Reactive-ion etched/photolithography w/mask

Pour PDMS, spin coat
At 200 rpm for 20 sec,
cure 4 hrs
@ 70 °C

Fluid-filled microchannels

Peel off PDMS, place feature-side down on agar (eiken) plate
Microchannel pictures

60 um

10 um

60 um
Signal representation & transfer

Sender cells

Quorum signal (AHL)

Immotile, receiver cells

Strategy 1
• Sender cells continuously produce AHL.

Strategy 2
• Conjugation event mediates signal, subsequent amplification via quorum molecules.

Eiken agar

PDMS-housed microchannels

10 μm

Sender cells

Conjugation event
Strategy 1

Sender cells continuously produce AHL

Advantages
Diffusible quorum signals have been functional activators in previous synthetic networks with luxR/AHL-controlled promoter

Potential drawbacks
Inadequate production of AHL for activation?
Leaky expression from p_{luxR}
Strategy 2

Conjugation event mediates signal, subsequent amplification via quorum molecules

Advantages
AHL doesn’t outpace sender bacteria

Potential drawbacks
Leaky expression of LuxI in receiver cells causes premature motility
Increased time required
F⁺ plasmid needed (additional DNA needed)
Quorum Sensing

acyl homoserine lactone (AHL)

- Diffuses freely across cell membrane
- Can act in a positive feedback loop causing exponential growth
Genetic control mechanism

Cell 2

Receiver
LuxR

Switch
Cl

Motility/Reporter
MotB
GFP

Cell 1
What About the Cell?

- **Knock out MotB (ASKA Library)**
 - Put MotB on our plasmid, under CI control

- **Knock out RecA**
 - RecA will delete multiple copies of genes

- **Knock out LacI**
 - Preventing interference with our process

Initial Results

Swarming Cells: grew swarming wild type (RP437) cells on Eiken agar plates
Initial Results

• Test for ability to control motility
 • Placed under control of BBa_R0010 (LacI promoter) induced with IPTG
Initial Results/Progress

Testing fluorescence by induction with AHL:

Using flowcell cytometry to measure fluorescence
Varied AHL concentrations from 10^{-6} M to 10^{-11} M
After one hour up to 17% of the cells were fluorescing
Modeling

Cell 1

\[\frac{dLac}{dt} = k_2[R_{LacI}][r] - k_d[LacI] \]
\[\frac{dR_{LacI}}{dt} = k_3[N][L_{PT}][P] + k_1[N][P] - k_2[R_{LacI}][r] - k_d[R_{LacI}] \]

Cell 2

\[\frac{dCI}{dt} = k_4[R_{CI}][r] + k_R[CI_2] - k_d^{CI}[CI] \]
\[\frac{dR_{CI}}{dt} = kCI[P][N_{CI}] - k_1[R_{CI}][r] - k_d^{CI}[R_{CI}] \]
\[\frac{dL_{CI}}{dt} = k_2[I]^4[N_{CI}] - k_3[L_{CI}] \]
\[\frac{dM}{dt} = k_M[R][N] - k_d^{M}[M] \]
\[\frac{dR}{dt} = k_n[P][N] - k_b[r][R] - k_d^{R}[R] \]
\[\frac{dN}{dt} = k_1[N][CI_2] - k_n[P][N] - k^{+1}[N][CI]^2 \]
Theoretical Curves

GFP vs Time

LuxR vs Time

*Simulated using Matlab’s stiff differential equation solver ode15s.
Future Modeling Considerations

• Sensitivity analysis so that experiments can be performed that target the most sensitive components of the system.

• Stochastic modeling - how noisy is the system? Some molecular species may be low in number (e.g. promoters), so this is an important question.
Future

• Model-parameter estimation, sensitivity analysis
• Continue DNA construction
• Optimize microfabrication for delivery & placement of cell 2
• Build and implement feedback circuit in cell 1
• Biobrick conjugation machinery
• Clone, clone, clone
Conclusions

Learning Experiences:
- Modeling offers important insight into function
- Laboratory organization is crucial
- As are teamwork and communication!

Scientific Progress:
- Added a new part to the registry
 - We “biobricked” motB, and now it is available for all teams to use
- Some subassemblies work, several are being tested
- Ready to parameterize model

Athletic Goal:
- Ready to Race - Beijing 2008!
Acknowledgments

MIT for hosting 2005 iGEM Jamboree

We have been supported by:
• Dean of Undergraduate Research’s Office
• Huck Institute of the Life Sciences
• The departments of Agricultural & Biological, Chemical, and Bio-Engineering
• Eberly College of Science
• Center for Nanoscale Science NSF MRSEC
• Materials Research Institute
• Penn State Nucleic Acid Facility for providing PCR primers

Departments:
Biochemistry & Molecular Biology
Bioengineering
Chemical Engineering
Agricultural & Biological Engineering
Computer Science & Engineering
Civil & Environmental Engineering
Chemistry
Science Technology & Society

Faculty Advisors: