Standards in Scientific Communities II; Cell Viability

Module 3, Lecture 4

20.109 Spring 2011
Lecture 3 review

- What can you learn from a confidence interval? A t-test?

- What are three general engineering principles that might help make biology more “engineerable”?

Topics for Lecture 4

• Standards in tissue engineering
 – introduction
 – writing exercise
 – discussion

• Cell viability
 – your data
 – relation to diffusion
How valued are TE standards?

- 2007 strategic plan for TE clinical success by 2021
 - 24 int’l leaders in TE listed high-priority areas
 - 1/3 named standards
- Analysis
 - concept dominance
 - progress so far
 - standards 7th of 14

<table>
<thead>
<tr>
<th>Concept Dominance</th>
<th>O/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiogenic control</td>
<td>3.3</td>
</tr>
<tr>
<td>Stem cell science</td>
<td>3.2</td>
</tr>
<tr>
<td>Immunologic understanding and control</td>
<td>2.0</td>
</tr>
<tr>
<td>Manufacturing/scale-up</td>
<td>1.1</td>
</tr>
<tr>
<td>Regulatory transparency</td>
<td>1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concept Dominance</th>
<th>O/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical understanding/interaction</td>
<td>2.2</td>
</tr>
<tr>
<td>Immunologic understanding and control</td>
<td>2.0</td>
</tr>
<tr>
<td>Manufacturing/scale-up</td>
<td>1.1</td>
</tr>
<tr>
<td>Regulatory transparency</td>
<td>1.1</td>
</tr>
</tbody>
</table>

7 (tie). Standardized models.

<table>
<thead>
<tr>
<th>Concept Dominance</th>
<th>O/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidisciplinary understanding/cooperation</td>
<td>0.8</td>
</tr>
<tr>
<td>Expectation management/communication</td>
<td>0.4</td>
</tr>
<tr>
<td>Pharmacoeconomic-commercial pathway</td>
<td>0.3</td>
</tr>
<tr>
<td>Multilevel funding</td>
<td>0.0</td>
</tr>
</tbody>
</table>

- 2007 US govt. strategic plan
 - standards listed as part of “implementation strategy”
How useful are TE standards?

• See 2005 editorial by A. Russell
 – proposes need for standards
 – in data collection and sharing
• Choose and respond to a student excerpt (~10’)
• Pros/cons/etc… ?

Can we standardize this TE construct?
Module progress: week 2

- **Day 3: viability/cytotoxicity testing**
- Groups generally found
 - mostly live
 - mostly round
 - not much clustering
- How can we improve the assay?
- What conditions killed cells?
- Other interesting findings?
- How do we explain the results?

Image from W/F Orange
Factors affecting cell viability

• Cell-related
 – density
 – interactions

• Cytokine-related
 – proliferative
 – apoptotic

• Materials-related
 – bulk permeability
 – macro-porosity
 – toxicity
Diffusion in 3D constructs

- Nutrients, O_2
- Affected by:
 - construct size R
 - cell density ρ
 - diffusivity D
 - conc. in medium $[O_2]_{\text{bulk}}$
- Concentration profile:
 - can be solved (DE)
 - $[O_2]$ \downarrow toward center
 - steepness $= f(D, \rho, ...)$
Significance of diffusion in TE

- Characteristic limit $\sim 100 \, \mu m$
- Diffusion and viability profiles correlated
- How can we make thick tissues?
 - *in vitro*: dynamic/perfusion culture
 - *in vivo*: promote rapid angiogenesis
Modeling cell viability in TE constructs

- Porous PLGA scaffolds
- Seeded cells as in (A) or (B)
- Observed after 10 days
- Model includes
 - Diffusion
 - O_2 use
 - Cell growth
- Model assumes
 - $[\text{O}_2]_{\text{bulk}}$ is constant
 - Quasi-steady state

Dunn et al. results for cell viability

• A more uniform than B
• Cell growth matches O₂ tension
• Claim of predictive capability
Lecture 4: conclusions

- Strategies besides standardization may take precedence in some BE fields.

- Cell viability in TE constructs is affected by cell, material, and soluble factors.

- Modeling can elucidate nutrient diffusion and cell viability profiles.

Next time: transcript and protein assays, imaging.