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Abstract: Active contours is a powerful image segmentation 

technique based on simultaneously optimizing the overlap of a 

surface contour with the intensity image (external energy) on the one 

hand, and a constraining image-independent penalty based on the 

first and second derivatives of the contour (internal energy) on the 

other. Although the above form is applicable to a wide class of 

images, including prior information about the topology and 

smoothness as well as insights from physical theories regarding 

specific material properties of the object under study are expected to 

result in faster and more accurate segmentations. 

In this work we extend the formulation of the active contour internal 

energy for the common case of 3D-imaging lipid-bilayer membrane-

bound objects of topological genus zero. Examples include 

organelles, cells and artificial vesicles. In the non-supervised method 

presented here, the internal energy takes into account membrane 

bending elasticity as well as constraints imposed by the fact that the 

two bilayer leaflets are allowed to slide relative to each other. An 

additional topology constraint is implicitly accounted for by using a 

spherical harmonics parametric contour representation. The balance 

between internal and external energies (i.e. the regularization 

parameter) is determined using the L-curve method. 

To ensure convergence and numerical stability a good starting guess 

for the contour is essential. We show in detail a method, that also 

makes use of the L-curve, for calculating this guess, and apply the 

complete procedure to a representative synthetic data set using 

realistic physical quantities based on membrane biophysical theories 

and known experimental results. 

1 Introduction 

Active contours [1] have been used extensively as a means for automatic and accurate 

image segmentation. The main idea is to allow a contour that is superimposed on the 

image to change shape until it minimizes a cost functional (E) that takes the form 
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with 
internalE  a shape prior that enforces smoothness constraints and typically depends 

on the first and higher derivatives of the contour, 
externalE a quantity sensitive to the 

amount of overlap of the contour with the intensity values of the image, and ! a 

parameter that balances the relative importance of the two terms. Equation 1 is 

generally applicable in 2 and 3 space dimensions. Implementations of the method 

differ in the choice for !, the exact forms for 
internalE  and 

externalE , and the 

mathematical description of the contour. Subjective choices of ! and physically 

unrealistic forms for 
internalE  result in convergence to suboptimal shapes. This 

problem has partially been alleviated by the introduction of statistical shape models 

(see for example [2]), which constrain the contour search to a subset of the shapes 

allowed by the shape description. However, statistical shape models require a training 

set and may impose constraints that are too stringent for detecting significant 

variations in shape. Most importantly, they generally do not provide a natural 

connection to the underlying biophysics that gave rise to a particular shape. Therefore 

we will address the issue of segmenting 3D intensity images in the context of 

Equation 1, when the object under study has —at least partially —known mechanical 

properties.  

1.1 Incorporation of Prior Information into the Active Contour Procedure 

In this paper, we focus on objects that are bounded by lipid membrane bilayers. 

Examples include organelles, cells and artificial bilayer vesicles (liposomes). For 

these objects biophysical theories [3] and experimental mechanical measurements [4-

6] provide prior information that can be incorporated into our edge-finding procedure. 

The theoretical predictions alone are already able to reproduce shapes that closely 

resemble experimental observations both qualitatively [7] and quantitatively [8] in 

cases where the membrane bilayer is expected to primarily determine the morphology 

(Fig.1a).  

internalE of Equation 1 is an appropriate vehicle for incorporating such prior 

information [9], which primarily depends on the membrane bending elasticity and the 

resistance of the area difference between the bilayer leaflets to deviate from some 

preferred value (Fig.1b). Fig.1a shows some of the “default” shapes that the active 

contour will tend to when such an internalE  is minimized on its own.  

Moreover, the topology of such biological objects is often restricted to that of the 

sphere. This piece of prior information we implicitly include by using a spherical 

harmonics parameterization (SHP) of the surface [10]. The spherical harmonics are 

the 3D equivalent of the Fourier series defined on the surface of a sphere (see below).  



1.2  Other Issues: Regularization and the Starting Shape 

To avoid artificially favoring 
internalE over 

externalE or vice versa, we use an objective 

way for determining the regularization parameter$!$in Equation 1, namely the L-curve 

method [11], which determines ! as the point of maximum curvature on the curve 

obtained when plotting  the logarithm of 
internalE  vs. the logarithm of 

externalE  when 

performing the optimization for a series of values of the regularization parameter. 

However, before optimizing Equation 1, we need a good starting set of shape 

coefficients to improve convergence and numerical stability. To obtain such a set we 

map an initial surface triangulation (obtained for instance by using a marching cubes 

algorithm) to the unit sphere [12, 13]. In this article we introduce a method of 

spherical mapping that also benefits from the objectivity of the L-curve procedure. 

Our complete method is illustrated on a noisy synthetic 3D intensity data set that 

simulates 3D fluorescence microscopy images of a human red blood cell discocyte. 

To our knowledge, this is the first demonstration of 3D active contours based on 

membrane biophysics. 

2  Theory 

2.1  Membrane-biophysics-derived (internal) Energies 

Here we give the expressions used to calculate the internal (image-independent) 

energy of the contour, when we know that the observed object is bounded by a lipid-

bilayer membrane. Theoretically the shape of a membrane bilayer contour is assumed 

to minimize an energy functional (E) that –among other possible contributions–

includes the bending energy of the membrane (Eb) [14], and the area difference 

elasticity energy (EADE), which is the resistance of the area difference between the 

outer and inner leaflets (%A) to deviations from some preferred value (%Ao)[15-18].  
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The first term is given by, 
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where 
b&  (~25x10-20J [5]) is the bending modulus, H is the local curvature, and oC  

is the preferred curvature. oC  is a local term that depends on the local lipid 

composition and lipid molecule geometry (Fig.1b). The second term in Equation 1 is 

given by 
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where A is the total surface area of the contour, D is the separation between the two 

bilayer leaflets and &  is a global elastic modulus. The relative importance of Eb vs. 

EADE is controlled by the ratio / 2 /b, & & +" "  [7]. Equation 4 constitutes a global 

term, justified by the fact that the two bilayer leaflets are allowed to slide relative to 

each other, so the effect of –for example- adding lipid molecules to one of the leaflets, 

would be an instantaneous redistribution of this perturbation over the whole shape 

(Fig.1b). In the preceding Equations, all integrations are performed over the closed 

surface S
#

. oC  and oA% cannot be independently determined and are mathematically 

not separable [19]. They enter the calculation through a unitless effective preferred 

area difference parameter / /o o b oa A A DC& +&% " % # . Typically oa%  varies between 

0.2 and -0.2, and considerably influences the default shape (see [7] and Figure 1a).   

 

 

 
Fig.1. Shape energy and typical predicted shapes. (a) Theoretically predicted minimum 

energy shapes considering bending and area difference elasticities under constraints of total 

surface area and volume. Going from contour I to III, 
oa%  the parameter responsible for the 

preferred curvature and preferred area difference between the two bilayer leaflets is increased, 

while keeping the area and volume constraint the same. Contour IV shows that the theory can 

also predict nearly spherical shapes given the appropriate ratio of area to volume. Images 

shown in the bottom row are reproduced from [3] (b) Schematic of lipid bilayer showing the 

two main energy contributions entering the calculation of shape energy; bending and area 

difference elasticities. 

2.2  External energy 

Our external energy term follows the Chan et Vese formulation [20] based on the 

Mumford-Shah approach [21] 
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where I is the image intensity, V  the volume, cin and cout are the average intensities 

inside and outside the contour respectively, and !in and !out are hyperparameters. 

2.3  Spherical harmonics surface parameterization 

A function r of the spherical coordinates (- ,.)  may be represented as a series 

expansion, 
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where 0<- <$+ and 0<. <2+1$2he LKC s are the expansion coefficients, indexed by 

the integers L and K with L K L' 3 3  and 0 L3 3 / . ( , )LKy - .  are the 

spherical harmonics basis functions defined by 

 

,( , ) (cos )cos( )LK LK L Ky N P K- . - ."  when 0K 4 ,  (7) 

and 

,( , ) (cos )sin( )LK LK L Ky N P K- . - ."  when  0K 5 ,  (8) 

 

where 
, (cos )L KP -  are the associated Legendre polynomials and LKN  are 

normalization constants. The ( , )LKy - . s form a complete othogonal basis set of 

well known properties [22]. The above representation is limited to surfaces (described 

as stellar surfaces) that contain an interior point that can be connected to every point 

on the surface by a straight line without intersecting the surface. We represent a 

general (stellar or non-stellar) surface S
#

 that is topologically equivalent to the sphere 

parametrically by expanding its individual Cartesian coordinates using spherical 

harmonics series, 
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where ( , )X - . , ( , )Y - .  and ( , )Z - . are  individually expanded using Equation 6,  

giving three sets of expansion coefficients (
X

LKC ,
Y

LKC ,
Z

LKC ) which completely 

define the shape. The numerical implementation of SH calculations necessitates 

choosing a series truncation (Lmax).  Also, given a set of data points, the CLKs are 

calculated according to, 
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 with similar equations for ( , )Y - .  and ( , )Z - . . It should be noted that the SHP is 

particularly economical and is not confined to any particular symmetry. 

2.4  Balancing internal and external energies: the L-curve method 

The regularization parameter ! in Equation 1, determines the balance between our 

prior information about the observed object (usually a smoothing function), expressed 

through the internal energy, on the one hand, and fitting of the contour to the image 

data (also called the residual function), our external energy, on the other. An objective 

procedure for choosing ! is the L-curve method [11]. It is constructed by plotting the 

logarithm of the residual function vs. the logarithm of the smoothing function for a 

sufficiently large range of !$values. The optimal regularization parameter value 

corresponds to the point of maximum curvature on this usually L-shaped curve, which 

we determine graphically (Fig.3b). If an L-curve calculation does not give the proper 

vertical part of the “L”, then the series is artificially (implicitly) over-truncated and 

the series truncation must be relaxed to include higher order coefficients. On the other 

hand, if the L-curve is missing the horizontal part then the theoretical prediction 

(encoded in Einternal) coincides with the actual contour, and one could conclude that the 

shape is accounted for completely by the theory. 

Note that we also use the L-curve method in this work in the context of finding the 

optimal spherical mapping for the determination of a starting guess (Fig.2f) (see 

Section 3.2). 

3  Computational Methods 

3.1  Method Overview 

We begin by generating a starting guess of our surface contour, where the 3D 

fluorescence image is thresholded using Laplacian-of-Gaussian zero-crossing edge 

detection [23]. From the resulting point-cloud a surface triangulation is generated that 

must not contain small handles or holes.  This is followed by uniformly mapping the 

surface to a unit sphere so that Equation 10 can be applied, to calculate three series 

expansions corresponding to the individual x, y and z coordinates. The coefficients of 

these expansions form the starting parametric approximation of the surface, which is 

then refined by iteratively minimizing the energy expression of Equation 1. We 

assume that changes to the coefficients introduced throughout the fitting are small 

enough so a modification of the initial spherical mapping is not necessary. The 

minimization is repeated for a sufficient range of ! values and an L-curve is 

constructed. Our final surface is the one fitted with the ! value that corresponds to the 

corner of the L-curve, which we determine graphically. The calculation of the internal 

energy necessitates evaluation of A, V, and H of the surface, for which we use the 

expressions in [24]. Our formula for calculating the external energy is given in the 



Appendix. For the minimization of Equation 1 we used the downhill simplex 

(Simplex) algorithm [25]. Below we provide details regarding the spherical mapping. 

3.2  The Spherical Mapping Step 

Starting with the surface triangulation, each surface point (x, y, z) must be mapped 

onto a point (-<$.) on the surface of the unit sphere, while maintaining connectivity 

and nearest neighbors, preserving relative triangle areas and minimizing triangle shear 

deformation. We demonstrate our procedure for accomplishing this on the spherical 

mapping of the triangulated surface of a letter E (Fig.2a). 

The first step in the topological mapping is a rough mapping of surface points to 

the unit sphere conserving connectivity. We follow the method of [10] after 

modifying it for surface triangulations. In short, two poles (vertices) are chosen on the 

surface mesh. One is identified as the "North pole" (-N) and the second as the "South 

pole" (-S). For assigning a (latitude) - value, a Laplace equation 2 0-= " , with 

Dirichlet conditions N 0- "  and S- +"  is solved, (a stationary heat diffusion 

equation) (Fig.2b). To calculate (longitude) ., a date line is introduced along which . 

is incremented or decremented by 2+, and the cyclic Laplace equation is then solved 

(Fig.2c). Now each vertex has associated with it a unique ( , )- .  coordinate and can 

be placed on the unit sphere (Fig.2d).   

For a proper final shape representation the vertices must be uniformly distributed 

on the unit sphere. As a starting point, we use a modified version of equation 6 in 

[12]. The problem is to minimize 
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where 
p,ia  is the geodesic area of triangle i = 1, 2, …, m, on the parametric sphere, 

o,ia  is the area of triangle i on the original object, 
i?  is the measure of shear 

deformation of triangle i when mapping from object to parameter space, calculated 

from the local principal stretches !i<1 and !i<2 [26], 2

,1 ,2 ,1 ,2( ) 2i i i i i? ! ! ! !" ' , and > is a 

scaling factor that controls the linear combination and is in essence a regularization 

parameter. The first term in Edquation 11 drives the optimization to equate the 

relative triangle areas in both object and parameter spaces. The second term measures 

the extent of deformation of individual triangles relative to their undeformed state, 

which is the configuration in object space. The optimization of Equation 11 is 

performed for a series of >$ values and an L-curve is constructed (Fig. 2f). The 

resulting mapping, when > is chosen properly, is uniform (Fig.2e), and is used to 

calculate the coefficients according to Equation 10 (Fig.2g middle). Non-optimal 

choices of > result in deformed surfaces that are unrealistic and unsuitable as starting 

shapes (see Figure 2g left and right).  



 

 
 
Fig.2. Spherical Mapping. Parameterization of the letter E by minimization of the balance 

between area dilation and shear deformation. (a) Surface triangulation of the capital letter E, 

(b) assignment of values for longitude (-) and (c) latitude (.) to the vertices by solving the 

stationary heat equation, which provides the initial mapping of the vertices onto the unit sphere, 

(d) -,$. configuration in parameter space before performing the mapping optimization (e) -,$. 

configuration in parameter space after performing the mapping optimization for the >$value 

corresponding to the corner of the L-curve in (f),  (f) L-curve for finding the optimal > value 

(Equation 11) that balances area preservation F (first term in Equation 11) and polygon 

deformation ? (the second term), (g) shape models constructed by expanding the Cartesian 

coordinates in SH at an expansion truncation of Lmax = 10, after optimization of Equation 11 for 

three different values of > (corresponding to marked positions on the L-curve in (f)), number 2 

is the one with the best >. 



4  Results and Discussion 

We demonstrate our proposed scheme for biophysics-guided 3D global parametric 

active contours on a synthetic 3D fluorescence microscopy data set.  

4.1  Recovery of a known Shape from noisy 3D Pseudo-image Data  

We constructed a noisy 3D synthetic intensity data set that mimics imaging a 

membrane bilayer-labeled discocytic surface under conditions typical for confocal 

fluorescence microscopy (Fig.3a). The discocyte surface was originally generated 

with Lmax = 3. This surface is of minimum (internal) energy at 
oa% = 0.00143, for 

typical values of bending and area difference moduli (see Section 2.1) and under the 

constraints A = 140 Fm2 and V = 100 Fm3.  

To test the consistency of our method, we applied it to the recovery of the 

discocyte shape from the noisy data set. We allowed spherical harmonic coefficients 

up to order Lmax = 22 as free parameters to be fitted, and repeated the optimization for 

decreasing values of ! ranging from 104 to 10-1. At high ! the optimization finds 

coefficients that minimize the overlap of the contour with the noisy image, resulting 

in an unrealistic bumpy surface (Fig.3 b contour I). As ! decreases the surface 

gradually gets smoother (Fig.3 b contour II) until the corner of the L-curve is reached 

(Fig.3 b contour III).  

When we performed these calculations with the correct (to us known beforehand) 

oa% value of 0.00143, all further points on the curve coincided with the (now) corner 

point shown and no L-shaped curve was obtained. This is expected because with the 

correct biophysical parameters the shape will converge to the discocyte, driven by the 

internal energy alone, independent of the image, which in this case happens to be the 

image of the same shape, so no further degradation of the image term occurs. 

However, in the general case 
oa% is not accurately known, so in order to test whether 

our method is robust against deviations of 
oa% from its true value, we repeated the 

calculation with 
oa% = 0.0005, obtained the L-curve shown, and  registered a clear 

corner that corresponds to the (smooth) discocyte. Further decrease in !, led to the 

appearance of an elongated shape that minimized the internal energy under the given 

(guessed) 
oa% . 

 

 

5. Conclusion 

In this work we extended the applicability of the method of biophysically-based 

active contours to image segmentation of membrane bilayer-bound objects into three 

space dimensions using the spherical harmonics parametric shape description. The 



prior information about shape contour topology is incorporated implicitly in our 

choice of shape description. Our prior information about the mechanics of the 

membrane and its smoothness is explicitly formulated in an image-independent 

internal energy term that incorporates principal results from membrane biophysics 

theories and experimental membrane mechanics measurements. We also introduced a 

method for the step of initial spherical mapping. The regularization parameter needed 

for both the active contours and the spherical mapping optimizations was determined 

using the L-curve method. We demonstrated the applicability of our method using a 

realistic synthetic 3D image data set.  

 

 

 
 
Fig.3. Recovery of a discocyte from noisy synthetic data. (a) Synthetic noisy image stack 

based on a slightly tilted discocyte surface (Lmax= 3) (shown in the inset), convolved with a 

theoretically calculated point spread function. (b) L-curve for a range of ! values (from 1x104 

to 1x10-1.0). The starting shape was obtained by spherical mapping with Lmax= 22, numbers next 

to the data points represent log10(!). To obtain this L-curve, 
oa%  of 0.0005 was used instead of 

the true value 0.00143. At small !$ values the discocytic shape changes to an elliptocyte (the 

default shape at this 
oa%  value). At high !$ the external energy dominates and because high 

expansion orders were allowed, the surface tries to fit the noise, and becomes irregular. The 

optimal surface is found at the corner of the L-curve. 

 

 

Acknowledgements This work was funded by the Max-Planck Society. J. Pecreaux’s 

work was also funded by the Human Frontier Science Program Organization. 

References 

1. Kass, M., A. Witkin, and D. Terzopoulos, Snakes: active contour models. 

International Journal of Computer Vision, 1988. 1: p. 321-331. 

2. Cootes, T., et al., Active shape models - their training and application. 

Computer vision and image understanding, 1995. 61: p. 38-59. 

3. Lipowsky, R., The conformation of membranes. Nature, 1991. 349: p. 475-

481. 



4. Waugh, R. and R. Bauserman, Physical measurements of bilayer-skeletal 

separation forces. Ann Biomed Eng, 1995. 23(3): p. 308-21. 

5. Strey, H., M. Peterson, and E. Sackmann, Measurement of erythrocyte 

membrane elasticity by flicker eigenmode decomposition. Biophys J, 1995. 

69(2): p. 478-88. 

6. Scheffer, L., et al., Atomic force pulling: probing the local elasticity of the 

cell membrane. European Biophysics Journal, 2001. 30(2): p. 83-90. 

7. Lim, H.W.G., M. Wortis, and R. Mukhopadhyay, Stomatocyte-discocyte-

echinocyte sequence of the human red blood cell: evidence for the bilayer- 

couple hypothesis from membrane mechanics. Proc Natl Acad Sci USA, 

2002. 99(26): p. 16766-9. 

8. Doebereiner, H.G., et al., Mapping vesicle shapes into the phase diagram: A 

comparison of experiment and theory. Phys. Rev. E, 1997. 55(5): p. 4458-74. 

9. Pecreaux, J., C. Zimmer, and J. Olivo-Marin. Biophysical Active Contours 

for Cell Tracking I: Tension and Bending. in ICIP 2006. 2006. Atlanta, 

USA. 

10. Brechbühler, C., G. Gerig, and O. Kuebler, Parametrization of closed 

surfaces for 3-D shape description. Comput Vision Image Und, 1995. 61(2): 

p. 154-170. 

11. Hansen, P.C., Rank-deficient and discrete ill-posed problems: numerical 

aspects of linear inversion. 1997, Philadelphia: SIAM. 

12. Quicken, M., et al. Parameterization of Closed Surfaces for Parametric 

Surface Description. in IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition CVPR 2000. 2000: IEEE Computer Society. 

13. Shen, L. and F. Makedon, Spherical mapping for processing of 3D closed 

surfaces. Image and vision computing, 2006. 24: p. 743-761. 

14. Deuling, H.J. and W. Helfrich, Red blood cell shapes as explained on the 

basis of curvature elasticity. Biophys J, 1976. 16(8): p. 861-8. 

15. Sheetz, M.P. and S.J. Singer, Biological membranes as bilayer couples. Proc 

Natl Acad Sci USA, 1974. 71: p. 4457-4461. 

16. Seifert, U., K. Berndl, and R. Lipowsky, Shape transformations of vesicles: 

Phase diagram for spontaneous- curvature and bilayer-coupling models. 

Phys Rev A, 1991. 44(2): p. 1182-1202. 

17. Heinrich, V., S. Svetina, and B. Zeks, Non-Axisymmetric Vesicle Shapes in a 

Generalized Bilayer-Couple Model and the Transition between Oblate and 

Prolate Axisymmetric Shapes. Phys Rev E, 1993. 48(4): p. 3112-3123. 

18. Miao, L., et al., Budding transitions of fluid-bilayer vesicles: The effect of 

area-difference elasticity. Phys Rev E, 1994. 49(6): p. 5389-5407. 

19. Mukhopadhyay, R., H.W.G. Lim, and M. Wortis, Echinocyte shapes: 

bending, stretching, and shear determine spicule shape and spacing. 

Biophys J, 2002. 82(4): p. 1756-72. 

20. Chan, T.F. and L.A. Vese, Active Contours without edges. IEEE 

Transactions on image processing, 2001. 10(2): p. 266-277. 

21. Mumford, D. and J. Shah, Optimal Approximations by Piecewise Smooth 

Functions and Associated Variational-Problems. Communications on Pure 

and Applied Mathematics, 1989. 42(5): p. 577-685. 



22. Hobson, E.W., The theory of spherical and ellipsoidal harmonics. 1955, 

New York: Chelsea. 

23. Marr, D. and E.C. Hildreth, Theory of edge detection. Proc R Soc Lond Ser 

B, 1980. 207: p. 187-217. 

24. Julicher, F., Die Morphologie von Vesikeln. 1993, University of Cologne. p. 

131. 

25. Nelder, J.A. and R. Mead, A simplex method for function minimization. 

Comput J, 1965. 7: p. 308. 

26. Evans, E.A. and R. Skalak, Mechanics and Thermodynamics of 

Biomembranes. 1980, Boca Raton, FL: CRC. 

  

Appendix: Calculation of Eexternal 

In analogy with electrostatics, one can write an “electric” field inE
#

and outE
#

 

corresponding to a distribution of charge 
2

in( )I c'  and 
2

out( )I c' . Using  the 

Gauss theorem, 
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where 
S S

dN
- G
H H

" I
H H

#
 is the local surface normal. 

This approach would necessitate a careful and precise solution of the Poisson 

equations for the potential from which inE
#

 and outE
#

are derived. Such a treatment is 

beyond the scope of this paper, so for the sake of practicality we compute the value of 

the image at the contour positions by an integration of the functional derivative of the 

external energy, 

external
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surface surface
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This only requires the computation of the surface normals using the image value on 

the surface only, which makes the computation more efficient. 

 


