

Overview

- Introduction-Modelling
- Basic concepts to understand an ODE.
- Description and properties of ODE.
- Solving ODE.
- Vector spaces.
- Dynamic systems.

Modelling

Modelling

- Describing the behavior of a system.

Understand it.

Predict its future behaviour.
Be able to manipulate the system

What to take into account and what not.
How to do this?

Simulation

-A simulation is a set of equations that describes a system

- They do not need to have a solid conceptual background.
-The grade of trust of a simulation is not known when you try to apply it to different conditions

Modelling

- By using some knowledge of physical processes involved in the system, a modeling strategy tries to describe the system.
- Could be less exact than a simulation.
- It is adaptable to different situations

$$
F=m y \rightarrow y(t)=x_{0}+v_{0} t+\frac{g t^{2}}{2}
$$

Why is a model useful?

- It allows a better understanding of a system.
- It makes a system more predictable
- It allows engineering the system
- It could drive the experiments
- It allows the control of a system.

Introduction

Why should we use differential equations?

Whenever a deterministic relationship involving some continuously changing quantities (modeled by functions) and their rates of change (expressed as derivatives) is known or postulated.

Previous concepts

What is a function?
A function is a relation between two sets of elements

How is it represented in math?

$$
f: x \rightarrow f(x)
$$

Functions of several variables

- It is a function which depends on several variables:
- Scalar: $\mathrm{z=F}(\mathrm{x}, \mathrm{y})$
- Vectorial: $y_{i}=F_{i}\left(x_{j}\right)$

Linear function

- A linear function is a function which fulfills:

$$
\begin{array}{|llll}
\hline f(a x & b y) & a f(x) & b f(y) \\
\hline
\end{array}
$$

What is a derivative?

Having two variables, related by a function, the derivative gives the variation of one of them when the remaining is changed

Taylor series development

- A serie is a summation of terms.
- The Taylor serie development of a function $f(x)$ is the approximation of this function by a power serie:
$f(x) \quad f(a) \quad \frac{f_{a}^{\prime}(t)}{1!}(t \quad a) \quad \frac{f_{a}^{\prime \prime}(t)}{2!}\left(\begin{array}{lllll}t & a)^{2} & \ldots & \frac{f_{a}^{n^{\prime}}(t)}{n!}\left(\begin{array}{lll}t & a)^{n} & \left(t^{n 1}\right.\end{array}\right)\end{array}\right.$
The error of a function is of $n+1$ order if we develop the power serie up to the n power.

- Remark

$$
e^{i \alpha}=\cos \alpha+i \sin \alpha
$$

The Taylor development makes to conclude that the complex exponential is equivalent to the sum of a sinus and a cosinus.

What is a differential equation?

Having a variable x , an equation
What is an equation? express a mathematical relation between that variable and some other which are known.

Equation which relates a function with its derivates.
t: variable
x : variable dependent
λ_{i} : parameters of the function

If the function f depends on more than one variable then the differential equation is called partial differential equation(PDE)

In order to solve a differential equation, we should transform the problem in a problem in which we can integrate a function.

Integration is the opossite to derivation. If we substract infinitesimal terms in a derivative we perform sum of infinitesimal terms in an integral .

When we solve an indefined integral, there is a costant of integration that we should fix using the conditions of the defined problem:

$$
f(x) d x \quad g(x) \quad K
$$

The solution of an ODE is a function $\mathrm{x}(\mathrm{t})$ which is defined but a constant and is unique.

Solution of a differential equation

- The solution of a differential equation is an equation which allows to know the value of the dependent variable as a function of the independent ones given the value of the dependent variable for a defined value of the independent one.
- Initial conditions of the problem: the independent variable is the time.
- Contour conditions of the problem: the independent variable is another one.

Simple examples

$$
\begin{aligned}
& \frac{d f}{d t} \\
& \longrightarrow f(t) \quad t \quad K \\
& \frac{d f(t)}{d t} \quad f(t) \longrightarrow f(t) \quad e^{t} K \\
& \frac{d^{2} f}{d t^{2}} \quad f(t) \longrightarrow f(t) \quad K_{1} \sin \left(w t \quad K_{2}\right) \\
& \frac{d f}{d t} \frac{f(t)}{(1 \quad-\quad)^{2}}
\end{aligned}
$$

Types of differential equations

$$
\begin{array}{ll|ll}
\frac{d x}{d t}=k x & \text { 1st order } & \frac{d x}{d t}=k x & \text { Linear } \\
\frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}=k x & \text { 2nd order } & \frac{d x}{d t}=k x^{2} & \text { Non linear } \\
\frac{d x}{d t}=k x & \text { Autonomous } & \frac{d^{2} x}{d t^{2}}+\frac{d x}{d t}=k x & \text { ODE } \\
\frac{d x}{d t}=k x+\operatorname{sen}(t) \text { Non Autonomous } & \frac{\partial^{2} y(x, t)}{\partial t^{2}}-c^{2} \frac{\partial y(x, t)}{\partial x}=k y & \text { PDE }
\end{array}
$$

How to solve a differential equation?

- In some cases there is a possibility of solving analytically the differential equation.
- In most of the cases this is not possible and several techniques have been developed to solve the problem in an approximated way.
- Some of these techniques are included in the branch of mathematics known as numerical methods

Linear diferential equations

\circ A linear differential equation is:
$a_{n} \frac{d^{n} f(t)}{d t} \quad a_{n 1} \frac{d^{n 1} f(t)}{d t^{n 1}} \quad \ldots \quad a_{0} f(t) \quad g(t)$
Linear \longrightarrow Superposition principle

Linear diferential equations

The problem is reduced to solve the characteristic equation

$$
a_{n} z^{n} \quad a_{n 1} z^{n 1} \quad \ldots \quad a_{0} z \quad 0
$$

The general solution of the system will have the form:

$$
f(t) \quad e^{z_{i} t}
$$

Linearization method

A function $f(x)$ could be approximated by:
$f(x) \quad f(a) \frac{f_{a}^{\prime}(t)}{1!}(t \quad a) \frac{f_{a}^{\prime \prime}(t)}{2!}(t a)^{2} \quad \ldots \quad \frac{f_{a}^{n \prime}(t)}{n!}(t a)^{n} \quad\left(t^{n^{1}}\right)$
First order approximation or linearization:

$$
f(x)=f(a)+\frac{f_{a}^{\prime}(t)}{1!}(t-a)+\theta\left(t^{2}\right)
$$

Based on this there is a procedure to obtain a linear equation which has a similar behavior to the equations we want to solve, around some special points.

Practical issues of the LP

- The working point should be close to an equilibrium point in such a way that the first order derivatives will be 0 .
- The linear model will be more accurate near the equilibrium point.
- The equilibrium point should be selected as close as possible to the working point.

Numerical solution of ODE

- We have come to know that there are solutions just for a few ODE.
- The meaning of a derivative is the substraction of very close terms.
- If we do not have an exact solution of a differential equation, we can try to obtain an approximated solution of it, substracting by hand these terms time and again.

Very stupid devices can perform very stupid operation but with an incredible speed

Numerical solution of ODE

- Later on an example of a very simple algorithm to solve numerically an ODE is given

$$
y^{\prime}(t)=f(t ; y(t)) \quad y\left(t_{0}\right)=y_{0}
$$

We substitute the derivative term by its approximated value:

$$
y^{\prime}(t) \approx \frac{y(t+h)-y(t)}{h} \rightarrow y(t+h) \approx y(t)+h f(t, y(t))
$$

Selecting a proper value for h, we have a time step with the value $\mathrm{t}_{0}=\mathrm{t}_{0}, \mathrm{t}_{1}=\mathrm{t}_{0}+\mathrm{h}, \ldots, \mathrm{t}_{\mathrm{n}}=\mathrm{t}_{\mathrm{n}-1}+\mathrm{h}$

$$
y_{n+1}=y_{n}+h f\left(t_{n} ; y_{n}\right)
$$

Numerical solution of ODE

- This method is called explicit Euler method and it is one of the simplest methods to obtain the solution of ODE.
- The obtained solution is only an approximation to the real solution, and the goodness of the solution depends on the kind of the problem and on the selection of the different model parameters like h.
- Although the power of computing has increased a lot in the last years, there are too many problems which require many computing time to be solved.
- Always you should take care when you solve a problem numerically!!

Usefulness of differential equations

- When describing systems, it is usually very useful to know not only the value of the variable but also the evolution of it.

$$
\operatorname{Div} \mathbf{E}=4 \pi \rho
$$

Div $\mathbf{B}=0$
$\operatorname{Rot} \mathbf{E}=-\frac{\mathbf{1}}{c} \frac{\partial \mathbf{B}}{\partial \mathrm{t}}$
$F \quad m \frac{d^{2} x}{d t^{2}}$

$$
i \hbar \frac{\partial \Psi(t, \vec{r})}{\partial t}=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \Psi(t, \vec{r})+V(\vec{r}, t) \Psi(t, \vec{r})
$$

An introduction to vectors and matrix

- What is a vector?

1. Any mathematic set of "things" whose sum gives us another "thing" of the set.
2. It is defined multiplication property between these "things" and numbers.

In a more rigurous way $\longrightarrow \quad V_{3}$ $v_{1} \quad v_{2}$

Matrix

Roughly, it is a set of numbers

3	2	1
1	3	2
2	1	3

3 \& 1 \& 2\end{array}\right)\)

Determinant of a square matrix

$$
|A|=\varepsilon_{i j k} a_{1}^{i} a_{2}^{j} a_{3}^{k}
$$

Some matrix properties

$$
\begin{aligned}
& \begin{array}{llll}
a & b & a & b \\
c & d & c & d
\end{array} \\
& \left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)+\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
e+a & f+b \\
g+c & h+d
\end{array}\right) \\
& \begin{array}{llllllll}
e & f & a & b & e a & f c & e b & f d \\
g & h & c & d & & g a & h c & e b \\
& f d
\end{array}
\end{aligned}
$$

Linearity

$$
\begin{array}{lllll}
a & b & x & a x & b y \\
c & d & y & c x & d y
\end{array}
$$

Eigenvalues and eigenvectors

$$
\begin{array}{llllll}
a & b & x & x & & 0 \\
c & d & y & y & 0 &
\end{array}
$$

Calculation of eigenvalues

$$
\begin{gathered}
A \vec{\nu}=\lambda \vec{\nu} \rightarrow(A-\lambda I) \stackrel{\rightharpoonup}{\nu}=0 \\
\operatorname{det}[A-\lambda I]=0
\end{gathered}
$$

Systems of linear diferential equations

- As in standard algebraic equations, there can be problems in which instead of a ODE we have a system of differential equations.
- If the system is linear we can apply all the developed algebraic methods for vectorial spaces.
- A system of n ODE of n order is equivalent to a system of $n+1$ ODE of $n-1$ order

Example

Dynamical system

- A system that evolves with time is a dynamical system.
- State variable: magnitudes whose evolution in time we want to know.
- Evolution variable: the state variables evolution as a function of them.
- Parameters: constant magnitudes of the system under certain conditions
- Evolution laws: the relation between the state variables and the evolution variables.

Example

$$
\frac{d[Y]}{d t}=\alpha \frac{1}{1+\left(\frac{[U]}{K}\right)^{n}}-\beta[Y]+\gamma
$$

Dynamical systems

- We are going to describe autonomous systems, which fulfill the following form:

$$
\frac{d f_{i}}{d t} \quad F_{i}\left(f_{i} ; \quad{ }_{i}\right)
$$

Autonomous means not explicit dependence in time

Any ODE of order higher than 1 can be changed in an equivalent system of equations of first order

$$
k_{2} \frac{d^{2} y}{d t^{2}}+k_{1} \frac{d y}{d t}+k_{0} y=C
$$

Change of variables

$$
\begin{array}{ll}
x_{1}(t)=y & \frac{d x_{1}}{d t}=x_{2}(t) \\
x_{2}(t)=\frac{d y}{d t} & \frac{d x_{2}}{d t}=\frac{C-k_{0} x_{1}(t)-k_{1} x_{2}(t)}{k_{2}}
\end{array}
$$

Stability

-At this point a fundamental concept is the fix point or equilibrium point

$$
\frac{d f_{i}}{d t}=0 \rightarrow F_{i}\left(f_{i} ; \alpha_{i}\right)=0
$$

Stability \qquad If all the solutions of a dynamical system which start out near an equilibrium point x_{e} remain near x_{e}, then $x e$ is Lyapunov stable. Even more, if all the solutions which start out near xe converge to $x e$, then $x e$ is asymptotically stable .

Stability

Linear systems

$\operatorname{Re}(\lambda)_{i}>0$: The system

$$
\frac{d f_{i}}{d t}=A f_{i} \longrightarrow \text { Obtain eigenvalues }
$$

will be not stable
$\operatorname{Re}(\lambda)_{i}<0$: The system will be stable

Stability

Linearizable systems

$$
\begin{aligned}
& \frac{d f_{i}}{d t} \quad F_{i}\left(f_{i} ; \quad{ }_{i}\right) \quad \longrightarrow \quad \frac{d f_{i}}{d t}=F\left(f_{i e} ; \alpha\right)+J \Delta f_{i} \rightarrow \Delta f_{i}=f_{i}-f_{i e} \\
& J=\left(\begin{array}{ccc}
\frac{\partial F_{1}}{\partial f_{1}} & \cdots & \frac{\partial F_{1}}{\partial f_{n}} \\
\frac{\partial \vec{F}_{n}}{n} & \cdots & \frac{\partial F_{n}}{\partial f_{n}} \\
\frac{\partial}{\partial f_{n}}
\end{array}\right) \longrightarrow \text { Jacobian matrix }
\end{aligned}
$$

As we are in a stable point $F=0$, the equation could be written as
$\frac{d f_{i}}{d t}=J \Delta f_{i} \quad$ The criteria are the same ones as for

Stability

- All these procedures are quite simple but here they are explained for very particular cases.
- An study of the stability of a system is usually not so simple.
- Several mathematically more accurate definitions have been done by mathematicians:
- Stability in the sense of Liapunov
- Stability in the sense of Lagrange
- If we are working with nonlinear systems, the analysis turns into a more complicated one.

Sensibility

- Sensibility analysis is related not only to the dependence of the results of the model in the initial conditions but also in the value of the parameters.
- A sensitive analysis of a problem could give us information about:
- The influence in the system of the different parameters.
- The care we should take when determining the initial conditions of a problem.
- If a model of a system is useful to predict it or not.
- The influence of external perturbations.

Non linearity and Chaos

Why could Non linear systems be so complicated?
The linear property $\longrightarrow f\left(\begin{array}{ll}a x & b y\end{array}\right) \quad a f(x) \quad b f(y)$
This property states that if we introduce a small variation in the system the system, in principle, do not change too much

But if we introduce other kind of dependences like product or power laws, this property is not valid. Consequently, small changes could produce very different behaviours of the system.

Non linearity and Chaos

Chaos does not mean randomness in a system, chaos means a determined system but very difficult to be predicted.

```
dx/dt = s(y-x)
```

$d y / d t=r x-y-x z$
$d z / d t=x y-b z$

http://to-campos.planetaclix.pt/fractal/lorenz_eng.html

Bibliography

- Elementary Differential equations. CH Edwards, DE Penney. Prentice hall.
- Introduction to dynamical systems: Theory, models and applications. DG Luenberger. Wiley.
- Calculus, Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra. T Apostol. Wiley

