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What is synthetic biology?

O
O

Biology: Science of life

Synthetic: Said from a product produced by
industrial methods

Produce life using Produce a part of a biological
artificial methods system by artificial methods

http://www.syntheticbiology.org

Synthetic Biology is
&) the design and construction of new biological parts, devices, and systems, and
B) the re-design of existing, natural biological systems for useful purposes.
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Synthetic Biology History

1953 —DNA discovery by Watson and Crick
1961 — Discovery of mathematical logic in gene regulation
1970 — First gene synthesized from scratch (alanine tRNA)

1978 — Nobel prize awarded to Werner Arber, Daniel Nathans and
Hamilton Smith for the discovery of restriction enzymes

1978 (Boyer at UCSF) — A synthetic version of the human insulin
gene was constructed and inserted into the bacterium E. cali.

O 1980 — Kary Mullis invents PCR
o 1991 — Affymetrix chip-based oligonucleotide synthesis
O 2003 - Creation of standardized parts libraries at MIT
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What is engineering?

Engineer Engine Ingenious

A model is not true or false, a model is
more or less useful
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What is engineering?
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Advances in engineering

O The first change in engineering was the scientific
methods and the development of basic science.
O The three basic changes which allows the industrial

revolution and the increase in complexity of the
different engines were:

= Standardization

= Decoupling

= abstraction
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Standaritzation
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Abstraction/modularity

o Biology is one of the most complicated
machinery that we know

o Synthetic biology applies all this procedures
to biology.

o Mechanical Engineering, Electrical
Engineering and electronics were all at the
stage where they were “too complicated”.

Science Engineering




Why now?
\

Recombinant DNA High throughput technologies
Cloning-Directed evolution (NMR, microarrays, automation)
DNA sequencing Computational
DNA synthesis Modelling
Protein Tissue
engineering engineering
Genetic Metabolic
engineering engineering o




Metabolic
engineering

Protein Synthetic Tissue

engineering biology engineering

Genetic
engineering

Systems

‘Can | have
three inverters?’

Lo L

‘Here’s a set of PDP

inverters, 1—N, that each
- send and receive via a
PoPS
PoPS NgT 1 PoPS Devices fungible signal carrier, PoPS.

‘I need a few DNA
binding proteins.

——p— ] e

‘Here’s a set of DNA binding
proteins, 1N, that each

recognlze a unlque cognate
Parts -

DNA site, choose any.’

‘Get me this DNA.

Zif268, Paveltich & Pabo c. 1991 Ill III

TAATACGACTCACTATAGGGAGA DIMNA

‘Here’s your DNA.’

D. Endy o
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Devices

Lacl — Cl inverter

—
Device-Level System Diagram
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Parts- and Device-Level System

Diagram
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Standariztion

o Standard cell host

o Standard culture conditions

o Standard measurement

o Standard functional composition
o Standard DNA composition
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Can we work in such a way?

1- Biology is hierarchical

Cell to organism hierarchy organism to ecosystem hierarchy
_——> organism L~ _yecosystem
organ systehs envirenmen h?ome
rgans e
tissuis community
organism

organelles  cytoplasm

2- Biology is Modular

Reticula

Membeana celulac e P

Vesicula
Dobra remporaria
de membrana

jeelular




Hierarchy and Modular (recurrent) organization
in some standard way allows biology to be
understandable and synthetic biology to be
possible.

In some way some process of evolution are
based on this: adding properties to a system
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Applications

o Biofuels

o Biomaterials

O Biosensors

o Drug development
o Nanotechnologies.
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IGEM

iIGEM - The international Genetically Engineered
Machine competition

9 iGEM addresses the question: Can simple hiological systems be built from standard, interchangeable parts and operated in living
& cells? Or is biology simply too cormplicated to be engineered in this way?

Pure engineering approach

SHed 0 $Afd e+ AaD

R — i T e

It began in 2003 with several student from MIT
trying to play with an oscillator

Last year more than 50 teams from universities all over
the world participate in that competition

-—

And sometimes they can purely engineer biology
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Differences with standard engineering

Evolution and
mutation

Death

Noise interference
cross talk

If we can solve this problems we can have the
most powerful chemical factory
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Chassis

All this machinery is going to be inserted in a living
organism

Plasma membrane . _

C}‘lnplasm\

Cell wall

To insert a system inside an
organism could produce an
undesired interference between

Jj;/; e 2 both

Madigan, M.T. Martinko, and J. Parker. 2003.
Biology of Microorganisms.
Prentice Hall Upper Saddle River, NJ o

———
Systems Biology

Life not depend only on
the expression of a

Attempts to describe the single gen but also in

living systems as a hole. the combination of
expressions of different
gens.

As we increase the
complexity of a system
it depends more in the
protocols of its
interactions than on its
individual components

Life is a very complex
machine




Systems biology has developed several mathematical tools
in order to be able to improve the knowledge of biological
systems

It is useful for synthetic biology

It “understand” the chassis Model biological systems

Databases and information

S
Models in systems biology
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Steuer R. 2007, Photochemistry.




Network analysis
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Structural kinetic models

O describes the possible dynamics of metabolic systems, as well
as the stability and robustness of metabolic states, and
concomitantly identifies the relevant interactions and
parameters governing the dynamic properties of the system.

models and dynamic models

I Bridge between structural
h ——————»
4
-5

2z

Steuer R. 2007, Photochemistry

————————
Kinetic Models

o They need more parameters than the other
approach.

o Nowadays it is not possible to use them to
describe the whole system, but they could
give accurate information of a part of the
system.
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Kinetic Models

The basic models are based on non linear diferential
equations.

Hypotesis:
*The diffusion is not importat (not explicit spatial
dependence)
*The variables are a continuous functions on
time (no stochasticity).

S
Regulatory model

Sn
Kn
1 Sn
K

*M has a value of 0 or 1

K the Hill constant (the value of the signal that yield
50% response)

n the Hill coefficient (the slope of the response)
*Beta is the decay constant of the reporter protein
*Gamma is the basal gene expresion

*Alpha sigma dependent gene expresion (gamma=a

alpha) =
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Computer tools

o A common lenguage has been developed to
be able to make the work reusable allowing
the comunication between research groups:

%f' :; M L http://www.sbml.org

;%LE IIN"_ http://www.cellml.org
hinlogy, math,

data. knowledye.

Functions

0 Document and store the structure of physiological
and biochemical reaction networks

O Store values and math associated with the network
dynamics

0 Do not provide commands or instructions for
building, simulating, or analyzing networks.

0 As mozillais able to read html, there are several
programs able to read these languages (mark-up
languages).
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Example (in SBML)

< reaction id="R1" reversible="false" >
< listOfReactants >
< speciesReference species="Sout" />
</ listOfReactants >
< istOfProducts >
< speciesReference species="Sin" />
</ listOfProducts >
< kineticLaw >
<math xmlIns=http://www.w3.0rg/1998/Math/MathML >
<ci>v_1</ci>
</ math >
< listOfParameters >
< parameter id="v_1" value="100" />
</ listOfParameters >
</ kineticLaw >
</ reaction >

————
Characteristics of SBML

o Many top-level types, little nesting

= Units, Compartment, Species, Parameter, Reaction, Rule,
Function, Event

o Non-modular structure
= Next SBML ‘Level’ (3) will introduce modularity
O Emphasis on reactions
O Some math implicit
= Explicit rate equations; implicit integration
= Implicit concentration conversion between compartments

o Compartments are physical containers for species
m Spatial dimensions (volume, surface)
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Characteristics of CellML

O Few top-level types, extensive nesting
= Units, Component, Connection, Group, Import

o Highly modular structure
= Nesting of components in groups

0 Emphasis on model organization
o All math explicit

= Explicit rate equations; explicit integration

= Explicit concentration conversion in transport processes
O Groups may specify physical or conceptual

containment
= No spatial dimensions
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Cell designer

————————
Databases

BRENDA

% | United States o
- National Library of Medicine
I

LM | National Institutes of Health

swissprot

niProt * 2
. Single Nucleotide Polymorphism P
g

i TJohns N, .
OMIM ... @R, @EMETACYC
Online Mendelian Inheritance in Man % =2 University .
ety

http://www3.oup.co.uk/nar/database




Regulatory networks

Modeling life as an information system

http://www.ee.princeton.edu/people/Weiss.php

How Intel Engineers Cope

Complex man-made devices are modeled and designed

on multiple levels, each level may use different modeling
techniques:

Transistor Characteristics Fundamental Protein Chemistry

l

Basic Logic Gates Basic Enzyme Rate Characteristics

Small Gate Modules Small Enzyme Motifs

l

Hierarchy of functional modules Hierarchy of functional modules

Top Level Module Top Level Module




Functional Motif Identification
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Two steps cascade

Characterize the
| "— behaviour R,/P,
P R(1) @

PR ~

P,

Rosenfeld et al. Science 307 2005
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Pulse generating network

BUS
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) P12 Reporter
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Basu et al. PNAS 2004




Concentration band detector

g

r(1) Py @ @
r(2) r(3) reporter
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Bistable Network

r(1) |:’. I
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g 102
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Oscilatory networks

} iy L_' ll_'r-_

Elowitz et al, Nature 2000 o

P Hooshangi et al PNAS 2005
P R(1)

1 R(2)
D

E R(3)
Ps reporter
The Hill coeficient of the
system increases as we » | Increase the sensitivity to
increase the numer of the input signal
cascade systems




Oscilatory networks

}7 1V ll*—b—

I P2 1) Ps vy
R,
« [i"
dM] K" dm K
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dt 1.3 ] dr Lr] M
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dt tr dt I
Separation of transcription and
translation introduces response
delays O

Robust oscillatory networks

% 1
TR I R

1

Vilar et al. PNAS 2002

Think about this...




Science Engineering
Biological systems are very Some of the engineering
complex. knowledge is present on simple

Study of simple parts of that biological systems.

systems and increase difficulty Be able to design and build simple
gradually. machines with a desired function.
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