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Abstract
We report the unexpected finding that slowing video playback decreases perception of the McGurk
effect. This reduction is counter-intuitive because the illusion depends on visual speech influencing
the perception of auditory speech, and slowing speech should increase the amount of visual infor-
mation available to observers. We recorded perceptual data from 110 subjects viewing audiovisual
syllables (either McGurk or congruent control stimuli) played back at one of three rates: the rate used
by the talker during recording (the natural rate), a slow rate (50% of natural), or a fast rate (200% of
natural). We replicated previous studies showing dramatic variability in McGurk susceptibility at the
natural rate, ranging from 0–100% across subjects and from 26–76% across the eight McGurk stim-
uli tested. Relative to the natural rate, slowed playback reduced the frequency of McGurk responses
by 11% (79% of subjects showed a reduction) and reduced congruent accuracy by 3% (25% of sub-
jects showed a reduction). Fast playback rate had little effect on McGurk responses or congruent
accuracy. To determine whether our results are consistent with Bayesian integration, we constructed
a Bayes-optimal model that incorporated two assumptions: individuals combine auditory and visual
information according to their reliability, and changing playback rate affects sensory reliability. The
model reproduced both our findings of large individual differences and the playback rate effect. This
work illustrates that surprises remain in the McGurk effect and that Bayesian integration provides a
useful framework for understanding audiovisual speech perception.
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1. Introduction

The McGurk effect is a striking demonstration of visual influence on auditory
speech perception in which pairing incongruent auditory and visual sylla-
bles create a different, fusion percept (e.g., auditory ‘ba’ + visual ‘ga’ =
‘da’; McGurk and MacDonald, 1976). Studies have demonstrated large inter-
participant (Basu Mallick et al., 2015; Strand et al., 2014), and inter-stimulus
differences in perception of this effect (Basu Mallick et al., 2015; Jiang and
Bernstein, 2011; MacDonald and McGurk, 1978; Magnotti and Beauchamp,
2015). Some subjects almost never perceive the effect and some almost always
do, regardless of the stimulus being viewed; similarly, there are consistent
differences across stimuli, with some stimuli more effective at evoking the
illusion.

Talkers vary widely in their natural speech rate, and these rate differences
could contribute to efficacy differences across McGurk stimuli. To test this
idea, the effect of talker speed could be examined with several possible ex-
perimental methods. McGurk stimuli created by talkers with naturally differ-
ent talking speeds could be tested. However, this approach would confound
talker speed with other inter-talker differences. Another method would be
to record multiple stimuli from the same talker instructed to talk at differ-
ent rates (Fixmer and Hawkins, 1998; Munhall et al., 1996). However, this
approach confounds rate changes with other changes that occur when talk-
ers consciously slow their speech, such as the exaggerated auditory and vi-
sual speech features produced during infant directed speech (Golinkoff et al.,
2015). A third method, used in the present study, is to computationally manip-
ulate playback rate. By slowing or speeding the playback rate, talker speed can
be changed arbitrarily without changes in any other auditory or visual speech
feature. Modern software tools allow for increasing and decreasing the play-
back rate of auditory stimuli while maintaining acoustic similarity with the
natural rate.

To provide a theoretical basis for our behavioral observations, we turned to
the framework of Bayesian inference, the most influential model in the field
of multisensory integration (Ernst and Banks, 2002; Seilheimer et al., 2014).
Bayesian models of multisensory integration have proven useful in under-
standing audiovisual speech perception under conditions in which the auditory
and visual speech are either offset in time (i.e., temporal disparity; Magnotti et
al., 2013) or contain incongruent speech features (i.e., content disparity; Mag-
notti and Beauchamp, 2017). Adopting a similar approach, we examined how
well perception at different playback rates could be fit by a Bayesian model
that assumed changes in sensory noise across playback rate.
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2. Method

2.1. Participant Recruitment and Testing Environment

Participants (n = 110) were recruited, consented, tested, and compensated
using the Amazon Mechanical Turk (MTurk) service, following a protocol ap-
proved by the Rice University Institutional Review Board. Amazon MTurk is a
web-based platform that provides services for participant recruitment, testing,
and payment. Registered users of Amazon MTurk browse a list of available
tasks and view a description of the work and compensation before selecting
a particular task to complete. All participants in our study received $3.00;
median time of completion was 15 minutes. To validate this approach, in a
previous study we compared McGurk perception tested in the laboratory and
using Amazon MTurk and found similar results (Basu Mallick et al., 2015).

Prior to the experiment, participants answered demographic questions re-
lating to gender: female (n = 46), male (n = 60); ages within a range: 18–25
(n = 25), 26–35 (n = 56), 36–45 (n = 19); proficiency with the English lan-
guage: yes (n = 107), no (n = 0); English is first language: yes (n = 98), no
(n = 9). Of 110 participants, three did not answer any questions; one addi-
tional participant did not answer the gender question.

2.2. Stimuli

The stimulus set consisted of eight different McGurk syllables (auditory
‘ba’ + visual ‘ga’ recorded from eight different talkers) and three congru-
ent audiovisual syllables (audiovisual ‘ba’, ‘da’, and, ‘ga’) recorded from a
separate talker. The McGurk stimuli were the same as the ones used in experi-
ment 2 of Basu Mallick et al. (2015). These stimuli were originally created by
dubbing an auditory ‘ba’ over the video of a congruent visual ‘ga’ for each of
the eight talkers.

The stimuli were sped up and slowed down in real-time by modifying the
JavaScript playbackRate value. The syllables were played back at three differ-
ent rates: natural, slow and fast. The slow rate was set to 50% natural speed
by adjusting the video playback rate (JavaScript playbackRate attribute set to
0.5); the fast rate was set to 200% natural speed (playbackRate = 2.0). Stimuli
at each playback rate may be viewed at: mcgurkplaybackrate.herokuapp.com.

Changing the playback rate of the stimuli also modifies the asynchrony
between the mouth movements and the voice. To ensure the playback rate
manipulation was not merely enhancing talker-specific differences in natural
mouth movement/voice asynchrony, we calculated a measure of asynchrony
for each talker in the natural rate condition. We measured asynchrony using
a time-lag correlation method: the time lag that produced the largest Pearson
correlation between visual change in the movie and the auditory volume enve-
lope was used as the mouth/voice asynchrony.

http://dx.doi.org/10.1163/22134808-00002586
http://mcgurkplaybackrate.herokuapp.com
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2.3. Procedure

After completing the demographic questionnaire, participants viewed a con-
gruent syllable video and were asked to adjust the size and volume so that they
could both see and hear the talker. The participants were giving the instruc-
tions: “You will see videos and hear audio clips of a person saying syllables.
Please watch the screen at all times. After each video, press a button to indicate
what the person said. If you are not sure, take your best guess.”

To reduce experimental time, only four of the eight McGurk syllables were
viewed in a single group of participants. In the first group (n = 60), subjects
viewed 10 repetitions of each of four McGurk syllables at each of the three
playback rates, plus two repetitions of each of the three congruent syllables
at each playback rate, for a total of 138 trials. In the second group (n = 58),
subjects viewed 10 repetitions at each playback rate of the other four McGurk
syllables and two repetitions of the three congruent syllables at each playback
rate (138 total trials). Each set of stimuli were randomized across talkers and
playback rates. The same randomized set of stimuli was presented to all par-
ticipants. Eight subjects were members of both groups (total unique n = 110).
Two participants completed the experiment twice and we excluded their sec-
ond set of results (leading to n = 58 for group 2).

2.4. Responses and Scoring

Following the presentation of each audiovisual syllable, subjects clicked a
button to indicate their percept. A forced-choice response format with three
choices was used (‘ba’, ‘da’, ‘ga’). For McGurk (auditory ‘ba’ + visual ‘ga’)
syllables, ‘da’ responses were scored as McGurk responses, ‘ba’ as auditory,
and ‘ga’ as visual. On congruent trials, responses were scored as either correct
or incorrect.

2.5. Subject Grouping Based on Unisensory Response Type

After plotting individual subject response data for the McGurk stimuli, we no-
ticed that two groups of participants could be discerned — those that made
predominantly visual responses to McGurk stimuli and those that made pre-
dominantly auditory responses. We did not expect such a grouping, as we
and others find visual responses to McGurk stimuli to occur infrequently
(Strand et al., 2014). To understand if this subject-level difference could ex-
plain some of the variability in our results, we classified each subject into VIS
and AUD groups, based on whether they had more visual or auditory responses
to McGurk stimuli.

2.6. Data Analysis

We used a linear mixed effects (LME) analysis (R package lme4; Bates et al.,
2015) to assess changes in McGurk perception across playback rate. Playback
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rate (categorical levels: natural, slow, fast) was treated as a fixed factor; subject
and subject-by-stimulus interactions were treated as random effects. To assess
how the playback rate effect varied across stimuli, we also included stimulus
and stimulus-by-playback rate interactions as fixed effects (including stimu-
lus as a fixed effect in addition to its interaction with playback rate makes the
interaction coefficients easier to interpret, but does not affect the overall fit
of the model). The dependent measure in the LME was the average McGurk
response for each stimulus at each playback rate for each subject. The LME
analysis provides an effect estimate (in units of % McGurk response), its stan-
dard error, and an estimated p-value for each categorical level of the fixed
factors and their interactions. The estimated p-values were obtained using the
R Package lmerTest (Kuznetsova et al., 2016). Because all variables are cat-
egorical, we chose the baseline condition to correspond to stimulus 1 at the
natural playback rate.

To assess the grouping of subjects into AUD and VIS, we created a new
LME model that added group (AUD vs. VIS) and group-by-playback rate
interactions as fixed effects. We also considered adding group-by-stimulus
interactions, but such a model did not increase the model fit sufficiently to
offset the increase in degrees of freedom, as judged by Bayesian Information
Criterion (BIC), which considers model fit and number of parameters (BIC
increased by 98 for the model with more parameters). Because the original
model already included subject-by-stimulus interactions, group-by-stimulus
interactions were not necessary.

To assess the effect of playback rate on congruent syllable perception, we
calculated a single accuracy score per playback rate for each subject by com-
bining responses to the three congruent syllables ‘ba’, ‘da’, and ‘ga’. We used
an LME analysis with accuracy as dependent measure, playback rate as a fixed
effect, and subject as a random effect. The baseline condition corresponded to
estimated accuracy in the natural playback rate condition.

2.7. Bayes-Optimal Inference Model: Construction

We created a one-dimensional Bayes-optimal model of speech perception to
test if the large individual differences in perception across playback rates were
consistent with subjects following an optimal integration rule (Bejjanki et al.,
2011; Ma et al., 2009). In our model, multisensory speech syllables are repre-
sented as a point along a single axis. This axis represents a low-dimensional
projection of the high-dimensional audiovisual word space (Ma et al., 2009).
We placed the syllables along this axis such that ‘da’ is located halfway be-
tween ‘ba’ and ‘ga’. The actual values used (we picked 0, 5, and 10) are
not important except to set the relative scale. The relative distance is critical
for obtaining accurate fits. Placing ‘da’ intermediate to ‘ba’ and ‘ga’ accords

http://dx.doi.org/10.1163/22134808-00002586
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with both their visual feature information (e.g., place of articulation) and au-
ditory feature information (e.g., the second formant transition) and has been
used by other models of the McGurk effect (Magnotti and Beauchamp, 2017;
Olasagasti et al., 2015). The location of the syllables is fixed across playback
rates, estimating changes in prototype location caused by changing playback
rate is not possible because of the low number of conditions tested.

On each trial, the model assumes subjects encode the auditory and visual
speech cues with unbiased noise and that the sensory noise follows a Gaus-
sian distribution (Andersen, 2015; Bejjanki et al., 2011; Ma et al., 2009) with
zero mean, and variance fitted per subject and condition: XA ∼ N(μba, σ

2
A);

XV ∼ N(μga, σ
2
V). After encoding the separate cues, the unisensory represen-

tations are integrated according to Bayes’ rule to produce a multisensory repre-
sentation: xAV = σ 2

AV( xA
σ 2

A
+ xV

σ 2
V
); σ 2

AV = ( 1
σ 2

A
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σ 2
V
)−1. This final representation

is a linear combination of each unisensory cue, with the weights given to each
cue determined by their relative variance. The multisensory representation is
then classified using a linear decision rule to determine the syllable most likely
to have generated the encoded multisensory representation. Because the linear
combination of Gaussians results in another Gaussian: XAV ∼ N(μAV, σ 2

AV);
μAV = σ 2

AV(
μba

σ 2
A

+ μga

σ 2
V

), predictions from the model (proportion of ‘ba’, ‘da’,

and ‘ga’ responses for each playback rate) can be calculated analytically using
the area under the Gaussian curve, rather than via simulation.

In the current model, sensory noise represents the trial-to-trial variability in
the neural response to a fixed stimulus that leads to perceptual variability and
contributes to response variability. Sensory noise is thus distinct from changes
in a response criterion or a guessing strategy, but rather controls the relative
weighting of the auditory and visual cues in the calculation of the location of
the multisensory representation.

2.8. Bayes-Optimal Inference Model: Fitting

The Bayes-optimal model was instantiated in R (R Core Team, 2016). Best-
fitting variance parameters were found for each subject data using an exhaus-
tive search method. Source code for model fitting is available at the authors’
public website: openwetware.org/wiki/Beauchamp:DataSharing.

To set a scale for the representational space, we fixed syllable locations at
three specific points, such that ‘da’ was midway between ‘ba’ and ‘ga’ (we
used the values 0, 5, and 10). The same representational space was used for
each subject and each playback rate; we did not optimize the locations to the
current data.

For our one-dimensional model, we needed two variance parameters per
playback rate: one for the auditory modality and one for the visual modality.

http://openwetware.org/wiki/Beauchamp:DataSharing
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Because the final multisensory representation is determined only by the rela-
tive sensory noise in each modality and we did not independently manipulate
auditory or visual sensory noise, we fixed the auditory variance at 0.5 and fit a
single parameter that adjusted the visual variance, reducing the number of free
parameters to 1 per subject per condition. In total, we fit three free parameters
per subject to explain responses in the three categories (‘ba’, ‘da’, and ‘ga’)
across the three playback rates (natural, slow, and fast).

Because the parameter search space for the visual sensory noise was small
(a parameter range from 0.02 to 12.2 was adequate for the range of possible
behavioral data), we used an exhaustive search method rather than a stochastic
optimization technique. In our method, we pre-calculated the predicted re-
sponses rates for a range of sensory noise ratios (determined by ex, where
x took on 100 000 values evenly spaced from −4 to 2.5, inclusive) and then
matched subject response rates to these pre-calculated values. This approach
allows us to find an optimal parameter value without multiple restarts or other
techniques designed to avoid fitting to local optima.

2.9. Bayes-Optimal Inference Model: Validation

The goal of the current model is to understand whether changes in McGurk
perception caused by changes to playback rate are consistent with an optimal-
integration model. The standard method for determining if behavior is Bayes-
optimal is to compare multisensory behavior with predictions obtained by
fitting to unisensory data (Ernst and Banks, 2002). Because of differences
across McGurk stimuli, this validation method requires obtaining auditory-
only and visual-only recognition performance for each playback rate for each
stimulus for each subject: a prohibitive amount of trials for our on-line data
collection method that is optimized for many subjects rather than many trials.
We consider total fit error as measure of model suitability, noting that with-
out unisensory data other suboptimal integration models will explain the data
equally well. In summary, a small model error suggests that optimal integra-
tion is a plausible explanation, but does not rule out other models.

3. Results

Changing the playback rate had a pronounced effect on frequency of the
McGurk effect (Fig. 1A). At the natural playback rate, McGurk responses av-
eraged 53% ± 3% (standard error of the mean, SEM) which decreased to
42% ± 2% with slow playback, but remained unchanged for fast playback
(53% ± 3%). We used a linear mixed effects (LME) model to estimate how
playback rate affected McGurk response, with fixed factors of playback rate,
stimulus, and their interactions; subject and subject-by-stimulus interactions

http://dx.doi.org/10.1163/22134808-00002586
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Figure 1. Effect of playback rate on perception of McGurk stimuli. (A) Grand mean McGurk
response percentages at each playback rate (N: Natural, S: Slow, F: Fast) averaged across all
presentations of all stimuli across all subjects. Error bars are standard error of the mean (SEM)
across subjects. (B) Mean McGurk response percentages at each playback rate for each of the
eight stimuli. (C) Mean response percentages (averaged across stimuli) for individual subjects
at the natural playback rate. (D) Relationship between mean McGurk response percentages in
the natural playback rate (x-axis) and the fast (y-axis, purple +) or the slow (y-axis, orange
open circles) playback rates. The black solid line indicates equal McGurk perception between
the natural playback rate and the fast/slow rate.

were random factors. The estimated effect of slow playback was −10% ±
3%, p = 0.004; compared with 2% ± 3%, p = 0.49 for fast playback.

For congruent syllables, there was little effect of playback rate, with high
accuracy across rates (natural, mean = 95% ± 1% standard error of the mean,
SEM; slow = 92% ± 1%; fast = 97% ± 1%). An LME model on congruent
stimuli estimated the change in accuracy for slow playback at −3% ± 1%,
p = 0.006; no change for fast playback (estimate = 1% ± 1, p = 0.23). Con-
trol analyses (described in detail below) suggest that the change in congruent
accuracy was not strongly related to the change in McGurk responses.

Consistent with previous studies, there was substantial variability in
McGurk responses at both the stimulus level and the subject level. Even at
the natural playback rate, individual stimuli varied in their ability to evoke the
McGurk effect, ranging from 24% for the weakest stimulus to 76% for the
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strongest stimulus. Looking across stimuli, the LME estimated that slowed
playback reduced McGurk frequency all eight stimuli (considering main ef-
fects of stimulus and playback rate, and stimulus by playback rate interactions,
collapsing across subjects; estimate range from −4% to −28%), consistent
with the aggregated behavioral data (Fig. 1B). Although the overall estimated
effect for fast playback was small (and positive), the model did estimate a
significant stimulus-by-playback rate interaction for stimulus 7 in the fast
playback rate (estimate = −13%, p = 0.006). For individual subjects, the
frequency of the McGurk effect, averaged across stimuli, ranged from 0% in
the least susceptible individual to 100% in the most susceptible individual
(Fig. 1C). Slow playback rate evoked less or equal McGurk responses in 79%
(87/110) of subjects (Fig. 1D).

A related question is the percept reported by subjects when they do not re-
port the McGurk effect. Across rates, each individual subject tended to make
either auditory or visual responses when they did not the report the illusion,
rather than a mixture (Fig. 2A). Guided by this observation, we split partici-
pants into a group of subjects with mainly visual responses on trials on which
they did not perceive the illusion (VIS group; n = 58) and another group with
mainly auditory responses (AUD group; n = 52). This division accounted for
94% of all responses (i.e., on only 6% of McGurk trials did a VIS subject
report an auditory percept or vice versa).

To assess the suitability of this visually prominent distinction, we expanded
our LME model with additional fixed factors of group (AUD vs. VIS) and
group-by-playback rate interactions. The model yielded a main effect of group
(effect estimate = 27% ± 5%, p = 10−7), as McGurk susceptibility was
higher for the VIS subjects than the AUD subjects (61% vs. 37%), in part re-
flecting the broader range of susceptibilities in AUD subjects (0% to 99% for
AUD vs. 19% to 100% for VIS; averaged across stimuli and playback rates;
Fig. 2B). The model did not show an overall effect of slow (estimate = −4% ±
3%, p = 0.24) or fast playback rate on McGurk responses (estimate = 1% ±
3%, p = 0.67), but a more complex picture emerged when considering group-
by-playback interactions and stimulus-by-playback interactions. The model
showed a significant interaction with slow playback rate for the VIS group
(estimate = −12% ± 2%, p = 10−6) but no interaction with fast playback
(estimate = 2% ± 2%, p = 0.46), indicating the effect of slow playback was
stronger in the VIS group than AUD group and that the effect of fast play-
back was similar. The model also showed significant stimulus-by-playback
rate interactions for stimulus 6 in the slow condition (estimate = −17% ±
5%, p = 0.0002) and for stimulus 7 in the fast condition (estimate = −13% ±
5%, p = 0.006). Although complex, the results from the LME analysis sug-
gest the reduction in McGurk responses was confined to the slow playback

http://dx.doi.org/10.1163/22134808-00002586
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Figure 2. (A) Mean auditory vs. visual response percentages across all playback rates. Each
point represents a single subject. Most points lie close to an axis, indicating a preference for
either auditory or visual responses, rather than along the line of equality (dashed line). Subjects
are classified into the VIS Group if they have equal or more visual than auditory responses
(above the gray line; n = 58) or into the AUD Group if they have less visual responses than
auditory responses (below the gray line; n = 52). (B) Mean McGurk response percentages for
individual subjects, averaged across stimuli and playback rates. VIS Group is plotted as blue cir-
cles. AUD Group is plotted as brown circles. (C) Relationship between McGurk and unisensory
responding. Slowing the playback rate resulted in fewer McGurk responses, shown as negative
values along the x-axis, and a corresponding increase in unisensory responses, shown as pos-
itive values along the y-axis. For each subject, two symbols are plotted: blue symbols show
the visual response percentages and red symbols show the auditory response percentages. For
VIS subjects, visual responses increased strongly in tandem with McGurk response decreases
(Spearman correlation r = −0.95) while auditory responses did not (r = −0.11). (D) For AUD
subjects, auditory responses increased as McGurk responses decreased (r = −0.70) while vi-
sual responses did not (r = −0.25).
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rate (except for stimulus 7), and was larger for subjects in the VIS group, per-
haps caused by a floor effect in the AUD group, which had substantially lower
overall McGurk responses.

Because the LME analysis focused solely on the change in McGurk re-
sponses, we conducted a complementary analysis to show that the change
in McGurk responses corresponded to an increase in a preferred responses
modality. We sorted subjects in each group by how much the slow play-
back rate influenced their McGurk perception, and compared this value with
their change in auditory and visual responses at slow playback rate vs. nat-
ural rate (Fig. 2C and 2D). Subjects in the VIS group who experienced
less McGurk percepts at slow rates increased their report of visual percepts
(Spearman rank correlation, r = −0.95) more than their auditory percepts
(r = −0.11; comparison of correlations using Fisher r-to-z transformation:
z = 8.8, p = 10−18). Conversely, in AUD subjects, decreases in McGurk fre-
quency at slow playback rates corresponded more strongly to increases in the
frequency of auditory percepts (r = −0.70) than visual percepts (r = −0.25;
z = 3.0, p = 0.002).

3.1. Control Analyses

3.1.1. Effect of Non-Perceivers
In the primary analysis, we retained subjects that perceived 0% McGurk in the
natural playback rate (n = 13) because our initial prediction was the slowed
playback rate would increase rates of the McGurk Effect. We ran an addi-
tional post hoc LME analysis without these subjects; the main effects were
unchanged (reduction of McGurk responses for slow playback, estimate =
11%, p = 0.003; no change for fast playback, estimate = 3%, p = 0.49), and
similar stimulus-by-playback rate interactions were observed.

3.1.2. Effect of Congruent Trial Performance
We found that slowed playback caused a numerical reduction in congruent ac-
curacy for 25% of subjects. To assess if this reduction in accuracy was related
to the change in McGurk effect, we first correlated the change in congruent
accuracy and the change in McGurk perception, which yielded no signifi-
cant correlation, r = −0.01, p = 0.99. Second, we re-ran the LME analysis
only on the subjects that had at least 83% accuracy (corresponding to getting
only one trial incorrect) for the congruent stimuli in each condition (n = 87).
This analysis produced the same qualitative result, with a negative effect of
slowed playback (estimate = −9.4%, p = 0.01), no effect of fast playback (es-
timate = 0.4%, p = 0.91), and stimulus-by-playback rate interactions showing
varying effect estimate magnitudes across stimuli.

We also considered congruent trial performance separately for AUD
and VIS subjects. Overall accuracy was similar across playback rates for

http://dx.doi.org/10.1163/22134808-00002586
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AUD subjects (mean and standard error for natural rate: 93% ± 2%;
slow: 96% ± 1%; fast: 97% ± 1%) and VIS subjects (natural: 91% ± 2%;
slow: 95% ± 1%; fast: 97% ± 1%). An LME on congruent accuracy with
subject as random factor and fixed factors of playback rate (natural rate was
baseline), subject group (AUD group was baseline), and their interactions (nat-
ural rate for AUD group was baseline) yielded no significant effects for the
VIS group parameter (estimate = −3% ± 2%, p = 0.16) or any VIS group
by playback rate interactions (VIS-slow: estimate = 1% ± 2%, p = 0.63;
VIS-fast: estimate = 3% ± 2%, p = 0.27). No large effects for congruent
accuracy were found for slow playback (estimate = 3% ± 2%, p = 0.12)
or fast playback (estimate = 3% ± 2%, p = 0.06) relative to natural play-
back.

3.1.3. Effect of Audiovisual Asynchrony
Although we experimentally manipulated the playback rate of the stimuli,
this manipulation also affects the onset asynchrony between the mouth move-
ments and the speech sounds. To assess if the playback rate effect was driven
largely by a change in asynchrony, we correlated the measured asynchrony in
each stimulus (which varied across stimuli due to talker idiosyncrasies) with
the change in McGurk response (from natural to slow). We did not find a
strong linear relationship between asynchrony and the effect of slowed play-
back (Pearson correlation, r = −0.01, p = 0.99).

3.1.4. Effect of Voice Onset Time
We also considered natural variation across stimuli in voice onset time (VOT).
We found no correlation between VOT and overall McGurk effect (r = −0.26,
p = 0.54) nor between VOT and the change in McGurk responses from natural
to slowed playback (r = −0.12, p = 0.78), suggesting that VOT is not a major
contributor to overall McGurk perception or the playback rate differences in
the McGurk effect for these stimuli.

3.2. Bayes-Optimal Inference Model

A striking feature of our data was the presence of large individual differences
observed at multiple levels: how often each subject perceived the illusion, what
subjects perceived when they did not perceive the illusion, and how much
playback rate changed their perception. Current thinking suggests that Bayes-
optimal integration is a common feature of multisensory integration, but can
these individual differences be explained using Bayesian inference?

To answer this question, we constructed a Bayes-optimal integration model
and fit it to our data. The model assumes that subjects vary in how precisely
they encode auditory and visual speech at each playback rate. Figure 3 illus-
trates the application of the model to one subject from the VIS Group and
one subject from the AUD Group. The model uses three steps to explain how
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McGurk stimuli are perceived. First, the individual modalities are encoded
with unbiased Gaussian sensory noise. For the VIS Group Subject (Fig. 3A),
the visual modality has lower sensory noise than the auditory modality; for the
AUD Group Subject (Fig. 3D), the visual modality has higher sensory noise
than the auditory modality. Second, the encoded unisensory representations
are integrated according to their relative sensory noise (higher weight given
to the cue with less sensory noise) to produce a multisensory representation.
For the VIS Group Subject, the multisensory representation is closer to the
unisensory visual representation; for the AUD Group Subject, the multisen-
sory representation is closer to the unisensory auditory representation. Finally,
the multisensory representation is categorized as either ‘auditory’, ‘McGurk’
or ‘visual’ based on its location in the representational space. Across many tri-
als, the multisensory representations will have a Gaussian distribution, located
closer to the more reliable modality (the modality with less sensory noise)
and with a variance lower than the variance of either modality alone. We can
use the location and variance of the multisensory representations to directly
calculate the probability of a given response option across many trials — the
model’s prediction of that subject’s mean response proportions across trials.
For the VIS Group subject, the multisensory representations at the natural
playback rate are located on the border of the visual and McGurk regions,
producing a mixture of visual and McGurk responses; for the AUD Group
subject, the multisensory representations are located on the border of the au-
ditory and McGurk regions, producing a mixture of auditory and McGurk
responses.

The model assumes that changing the playback rate changes the relative
precision of the visual and auditory encoding with only a single parameter
fit to the ratio (for simplicity, Fig. 3 figure shows the model with a fixed au-
ditory precision and variable visual precision). For the VIS Group Subject,
the slow playback rate led to reduced visual sensory noise, leading to mul-
tisensory representations closer to the unisensory visual representation, less
frequent McGurk percepts, and more frequent visual percepts (Fig. 3B, 3C).
For the AUD Group Subject, the slow playback rate led to increased visual
sensory noise (equivalent to decreased auditory sensory noise because the two
are modeled as a ratio), multisensory representations that were closer to the
unisensory auditory representation, less frequent McGurk percepts, and more
frequent auditory percepts (Fig. 3E, 3F). Fast playback rates lead to only mi-
nor changes in sensory noise and little difference in predicted percepts for both
subjects.

Across all subjects, the model performed well at describing behavior, with
mean prediction error (average root mean squared error across conditions and
subjects) of 4.0% ± 5.2% (standard deviation across subjects). The best-fitting
parameters for all subjects produced a two-response solution: ‘ba’ and ‘da’ for
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Figure 3. Bayes-optimal model of playback rate. (A) Model representation across playback
rates. The model assumes the three response categories (auditory, McGurk, and visual) can be
represented as points along a single axis. When presented with a McGurk stimulus, subjects
encode the auditory and visual cues with noise (Gaussians labelled A and V, centered over
auditory and visual, respectively). The amount of sensory noise determines the variance
of the Gaussian. For a subject from the VIS Group, the sensory noise is lower (narrower
Gaussian) for the visual modality than for the auditory modality. After integrating the unisen-
sory cues, the distribution of multisensory representations (Gaussian labeled AV) is closer
to the visual syllable than to the auditory syllable because the cues are weighted by their
relative variance. The area under the AV Gaussian within each response region (separated
by the vertical dashed lines) determines the predicted response proportions (percentages
labelled with same color as response option). In the slow playback rate, the sensory noise
for the visual modality is reduced, pulling the AV representation even more into the visual
region than in the natural playback rate. In the fast playback rate, the sensory noise for
the visual modality is similar to the natural playback rate, leading to a similar location for
the AV representations and similar predicted percepts. (B) Model predictions of response
percentages for each playback rate. For the natural playback rate, the VIS Group Sub-
ject is predicted to have a mixture of McGurk (green) and visual responses (blue). For the
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AUD subjects or ‘da’ and ‘ga’ for VIS subjects. The prediction error reflects
the small number of trials in which subjects chose a third response (‘ga’ for
AUD subjects or ‘ba’ for VIS subjects).

4. Discussion

Our results replicate previous studies showing dramatic individual differences
in the McGurk effect: some subjects never perceived the illusion while others
always did, and different McGurk stimuli showed large variations in their abil-
ity to elicit the illusion (Basu Mallick et al., 2015). In the present study, we
found an unexpected relationship between playback rate and McGurk percep-
tion. Slow playback rates reduced the frequency of the McGurk effect while
leaving the perception of congruent syllables largely unaffected. 79% of sub-
jects showed a reduction in McGurk responses and these subjects could be
classified into two groups. On trials in which they did not perceive the McGurk
effect, VIS subjects reported primarily visual percepts and AUD reported pri-
marily auditory percepts.

To provide an explanatory framework for these results, we applied a Bayes-
optimal integration model of speech perception. The model assumes that sen-
sory noise varies across playback rates, and that the sensory noise in each
modality determines the weight of that modality in the final percept. Fitting
the model allowed us to estimate the relative sensory noise in each condition
for each subject. For VIS subjects, slow playback rate decreased the relative
sensory noise in the visual modality, pulling the integrated representation into
the visual region of perceptual space, resulting in more visual responses and
fewer McGurk percepts. Conversely, for AUD subjects, slow playback rate
decreased the relative sensory noise in the auditory modality, pulling the in-
tegrated representations into the auditory region of perceptual space, resulting
in more auditory responses and fewer McGurk percepts. The McGurk effect
demonstrates the influence of visual mouth movements on speech percep-
tion. Therefore, slow playback rates might be expected to make speechreading

slow playback rate, there is still a mixture, but visual responses have increased and McGurk
responses decreased. For the fast playback rate, the predictions are largely unchanged from
the natural condition. (C) Actual subject responses for each playback rate. The subject behavior
closely matches the model predictions in (B). (D) For the AUD Group Subject, the sensory noise
for the auditory modality is lower than for the visual modality. This difference causes the AV
representations to be pulled closer to the auditory syllable than to the visual syllable. In the slow
playback rate, the sensory noise for the auditory modality is reduced, leading to more auditory
responses. In the fast playback rate, the sensory noise is shows a small change from the natural
playback rate, leading to small changes in response levels. (E) The model predicts a mixture of
auditory and McGurk responses across playback rates, with the fewest McGurk responses for
the slow playback rate. (F) The subject’s response pattern matches the model predictions (E).
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(decoding of visual speech information) more accurate, leading to increased
frequency of the effect. Our model suggests that speechreading was in fact
more accurate for subjects in the VIS group, but that if the brain applies
Bayesian inference, this sensory noise decrease leads to more visual responses
rather than more McGurk responses. Bayes-optimal integration has been re-
peatedly shown to be a key feature of many multisensory behaviors (Alais and
Burr, 2004; Angelaki et al., 2009; Ernst and Banks, 2002; Ma et al., 2006;
Seilheimer et al., 2014). The present finding adds to previous work showing
that Bayesian perceptual models can explain how human speech perception
is modified by different kinds of disparity between the auditory and visual
speech streams, including temporal asynchrony (Magnotti et al., 2013), con-
tent disparity (Magnotti and Beauchamp, 2017), and are flexible enough to
manage interindividual, interstimulus, and intergroup differences (Magnotti
and Beauchamp, 2015; Stropahl et al., 2015).

4.1. Sources of Individual Differences

A natural question is the source of the individual variation that leads VIS sub-
jects to report visual percepts and AUD subjects to report auditory percepts
when they do not perceive the McGurk effect. When viewing static faces, some
subjects look more at the mouth of the talkers and others look more at the eyes
of the talker (Mehoudar et al., 2014; Peterson and Eckstein, 2013). The same
holds true for subjects viewing talking faces, with the additional result that
subjects who preferentially fixate the talker’s mouth are more susceptible to
the McGurk effect (Gürler et al., 2015). In the absence of eye tracking data
in the present study, we speculate that AUD subjects correspond to subjects
who mainly fixate the eyes, placing the talker’s mouth in the visual periph-
ery and lowering the quality of the visual speech information available to
the subject. Conversely, VIS subjects mainly fixate the mouth, resulting in
higher precision visual speech information. The playback rate manipulation
enhanced the subject’s dominant, or preferred modality, leading to increased
visual percepts in the VIS group and increased auditory percepts in the AUD
group.

Although grouping subjects based on their preferred non-McGurk response
is not common in studies of the general population, studies with clinical groups
have often reported such differences. For instance, individuals with cochlear
implants report far more visual percepts than individuals with typical hearing
for McGurk stimuli (Rouger et al., 2008; Stropahl et al., 2015). Such group
differences are consistent with Bayesian integration, as more weight is given
to the modality with the higher precision; for most subjects this will be the
auditory percept (Basu Mallick et al., 2015; McGurk and MacDonald, 1976;
Strand et al., 2014; van Wassenhove et al., 2007).



Multisensory Research (2017) DOI:10.1163/22134808-00002586 17

4.2. Role of Asynchrony

One possible explanation for our results is that slowing the playback rate cre-
ated a noticeable mismatch between the visual mouth movements and the
auditory speech sounds (as in a dubbed foreign movie) reducing integration
and the McGurk effect. To test this idea, we measured the temporal asynchrony
between the auditory and visual speech onsets in the slow playback condition,
finding a mean of 184 ms (visual ahead of auditory). However, a previous
study by van Wasenhove et al. (2007) reported no effect on McGurk percep-
tion for visual-leading asynchronies up to 267 ms. Additionally, slowing the
playback rate in our study resulted in an increase in visual responses (from
19% to 31%) rather than the increase in auditory responses observed with
large asynchronies (Magnotti et al., 2013). Finally, we found no significant
correlation (r = −0.01) between a stimulus’ asynchrony and the reduction in
McGurk responses caused by slowed playback. Taken together, these findings
suggest that the effect of playback rate is not attributable solely to changes in
asynchrony.

4.3. Relationship to Previous Studies

Two previous studies have considered how speech rate impacts McGurk re-
sponses (Fixmer and Hawkins, 1998; Munhall et al., 1996). In these studies,
speech rate was manipulated by instructing talkers to alter their speech rate by
talking clearly, talking naturally, or talking quickly. Fixmer and Hawkins re-
ported greater McGurk responses when talkers were instructed to talk clearly
compared with talking quickly (70% vs. 59%; their Fig. 5). Munhall et al.
also found greater McGurk responses when talkers were instructed to talk
clearly, compared with talking naturally or talking quickly (48.2% vs. 44.7%
vs. 36.1%; their Table 3). At first glance, these results seem discordant with
the results of the present study, in which slowing speech decreased McGurk
responses. However, instructing talkers to talk clearly can change a variety
of speech properties in addition to speech rate. For instance, Munhall et al.
show that when instructed to talk clearly, talkers open their mouth about 30%
wider (1996; their Fig. 3). This contrasts with our stimuli, in which the phys-
ical properties of the stimulus (such as mouth aperture) are identical between
conditions: only the timing of the changes differs.

4.4. Role of Speech Rate in Unisensory Perception

The model we developed fit the data well under the assumption that chang-
ing playback rate changed only the relative sensory noise in each unisensory
modality, keeping category boundaries fixed. Are the data also consistent with
playback rate affecting category boundaries? Port (1979) found that increased
speech rate (asking people to speak more quickly) can shift the auditory-
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only perceptual boundary between voiced /b/ and unvoiced /p/ (faster /b/ can
be perceived as /p/) using words embedded in a fast/slow sentence context,
consistent with other findings that speech rate can have strong effects on per-
ceived voice onset time (Miller, 1981; Summerfield, 1981). In the current
study, stimulus differences in voice onset time were not predictive of the play-
back rate effect, likely because we used only voiced syllables (ba, da, and
ga) and our forced-choice response setup required subjects to choose amongst
voiced syllables. Any changes in perceived voicing could not be assessed. As
in the previous studies of speech rate on audiovisual speech perception, these
auditory-only studies manipulated speech rate by asking individuals to speak
more quickly or more slowly, which leads to changes in the acoustic signal
beyond just its duration. Unlike these auditory-only studies, we found striking
differences across subjects in how they responded to the playback rate ma-
nipulation — some perceiving more visual ‘ga’ and some perceiving more
auditory ‘ba’. Combined with the lack of relationship between congruent-
trial performance and playback rate effect, we think it is unlikely the play-
back rate effect is causing a shift in category thresholds, although explicit
category-threshold testing would be needed to definitively rule out this pos-
sibility.

4.5. Conclusions and Future Directions

Our study shows that, in isolation, slow speech rates decrease McGurk per-
ception. The studies of Fixmer and Hawkins (1998) and Munhall et al. (1996)
suggest that this effect can be countered by the exaggerated mouth movements
and other speech modifications that occur when talkers consciously slow their
speech. An important natural example of this is infant-directed speech. When
adults talk to language learners, they slow their talking speed and exaggerate
both visual and auditory speech features (Bortfeld et al., 2013). This exagger-
ation can lead to different behavior on the part of the perceiver. For instance,
Lewkowicz and Hansen-Tift (2012) reported that infants look longer at the
talker’s mouth when viewing infant-directed speech but look longer at the
talker’s eyes when viewing adult-directed speech.

A counter-example of isolated changes in speech rate (without changes in
any other speech features) is the ability to change the playback rate in online
video services (e.g., YouTube) and computer-based learning environments.
This ability is popular with content viewers because it allows them to dy-
namically calibrate the speed at which material is presented: slowing to allow
for easier following of materials, or speeding to increase the amount of con-
tent viewers can watch in a fixed amount of time. Our results are relevant
to this situation because the playback rates used for our stimuli are similar
to those available in online environments. Our results suggest that if content
viewers slow the content considerably, this may decrease some of the benefits
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of multisensory integration for speech perception. Conversely, we did not find
any impairment in multisensory integration for speeded playback (although of
course comprehension and retention may be affected).
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