
Exact Methods for Computing Biological System Dynamics

Drew Endy (http://mit.edu/endy/)

Goals Covered Last Time

A. When to use computational methods?

B. When to use exact methods?

Goals for Today

C. What is the underlying physics models used by exact methods?

D. How can we use this model to compute when a reaction will take place?

25. Question C. To develop an exact discrete reaction even method we need to con-
sider the underlying physics model that might be used to represent individual reactions 
events inside cells [the method we’ll consider was developed by Daniel T. Gillespie and 
published in Journal of Computational Physics v22 p403-434 in 1976; you can find a 
one hour video of Dan talking about his work online, the structure of this lecture is 
based directly on his presentation. Here’s the URL: 
http://streaming1.osu.edu/ramgen/media/mbi/mbi302.rm ]

26. What sort of system are we talking about?  Let’s define a volume (V) containing N 
different types of molecules S (aka, species), with X number of molecules for each spe-
cies. 

27. How does the system change over time?  They change via elementary chemical re-
actions.  What is an elementary chemical reaction?  An elementary chemical reaction is 
a single instantaneous physical event.  Only three such events are really likely.  (i) from 
nothing comes a molecule (i.e., spontaneous generation), (ii) one molecule changes 
into another molecule(s), and (iii) two molecule collide and react to produce something 
(or nothing).  

28. How could we determine what reactions occur when?  Well, we can consider all 
sorts of information.  For example, the 3D position and velocity of all the molecules.  
This might lead us to use molecular dynamics.  I.e., follow every molecule in the system 
of interest as it moves about, bumping into other molecules, changing course, reacting 
every now and then.  This would be great except that it’s computational impractical for 
most systems of interest.  One reason for this is that most molecule-molecule collision 
events are non reactive.  

29. So, what if we didn’t keep track of the non-reactive (i.e., bounce off) collisions?  
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30.  Well, if most collision events are non-reactive then it becomes possible to consider 
an accepting an important assumption, that our system is spatially homogeneous.  In 
other words, the jostling of the non-reactive collisions keeps everything well-mixed (on 
the time scales of the elementary reaction events that we care about).  

31.  As a result, we no longer need to keep track of the individual positions and veloci-
ties of molecules.  Thus, our system is now defined as having N chemically active spe-
cies, S in volume V, with X being the number of molecules for each species.  Or, S_i in 
V, for i=1..N, w/ X_i = current numbers of molecules for each S_i.  Thus, the state of the 
system is defined by the value of the array X and the behavior of the system is repre-
sented by how the values in X change over time. 

32. Another consequence of the above is that we only have to compute chemical reac-
tion events, and not the non-productive molecular collisions that are going on all the 
time. 

[imagine modeling everybody in a business reception jostling about, when all you really 
care about is keeping track of whether or not two people exchange business cards or if 
somebody enters or exits the room].  

33. Fine.  So, how are we going to compute the events?  It turns out that we need some 
model for telling us two things.  First, what’s the chance (or, probability) that a particular 
reaction will take place?  Second, what’s the consequence of a reaction taking place.  

34. How do we model the probability, a, that a particular reaction will take place?  We 
need to compute (i) the chance that any individual reactions of a particular type will take 
place, c, and (ii) the number of unique reactant combinations for each reaction type, h. 

35. How do compute c?  We need to use some physics.  For example, for a second-
order elementary reaction, we first determine the the chance that two molecules will col-
lide and then we multiple this value by the chance that a reaction event will take place 
given a collision.  This can be described via the equation on the next page:
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where: 

C = average probability that a particular combination of molecules, u, will react
δt = time interval until the next reaction event occurs
V = volume of the system
d = effective collision diameter between molecules 1 and 2, equal to (d1+d2)/2
(8kT...) = average apparent molecule-molecule velocity via Maxwell-Boltzman
u = activation energy for reaction u

36. Basically, the above equation “says” that two molecules are moving about, that there 
is some “collision volume” over some infinitely small time slice (small enough so that the 
probability of more than one reactive collision is negligible), that the ratio of a the colli-
sion volume to the total system volume defines the chance of a collision, and then a 
standard Arrhenius term (having to do with the chance that the collision energy is above 
some level required to the reaction to take place).  

[Aside: Note that the above assumes a sort of hard-sphere gas approximation for the 
inside of a cell?  Is this what the inside of a cell is like?  Such issues can be considered 
here by changing the above collision model].

37. Next, how do we determine the number of unique reactant combinations, h, for any 
given type of reaction?  Well, this depends on the type of the reaction. If the reaction is 
a first order reaction then the number of unique reactant combinations is equal to X, the 
number of molecules of that particular reactant in the system at the time.  If the reaction 
is heterogeneous second order (A+B -> something), then the number of unique reactant 
combinations is the product of X_A and X_B.  If the reaction is a homogeneous second 
order (A+A -> something), the it’s X*(X-1)/2.  And so on.  Finally, if the reaction is a zero 
order (e.g., spontaneous generation) then h equals 1 (everything will depend on the 
chance that a reaction happens as there is no formal accounting for the substrate). 

38. Finally, how do we model the consequence of a reaction taking place?  Easy!  We 
use the reaction stoichiometry.  For example, if the reaction is A turns into B then every 
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time this reaction occurs we decrease the number of A by one and increase the number 
of B by one, and so on.

39. OK, so now we have some way of computing that a reaction event will take place in 
some very small slice of time.  Or, in Gillespie’s notation... a = c*h, as defined above.  
Or, borrowing from one of his slides:

40. Question D. Finally, how can we use this model to compute when a reaction will 
take place?  

41. We’ve some probability that a particular reaction will take place over time.  This 
leads to an exponential distribution for the time at which a reaction will take place.  I.e., 
the reaction is likely to take place at some point in time, if it does great, if it doesn’t then 
the probability that it will take place in the future is the chance that it’s not yet taken 
place multiplied by the chance that it will happen now, and so on.  

42. From this exponential, if we want to compute one instance of a time that a particular 
reaction will next take place, we can use the following equation...

τ = (1/a)*ln(1/r)

where  τ is a randomly sampled time that a reaction next takes place

  a is the reaction propensity (chance of reaction)

  r is a random number drawn from a unit uniform distribution 

43. Say what?  OK.  I’m sure a mathematician somewhere is screaming but here’s how 
I think about this.  Solve the above equation for r.  You get...

r = exp[-a*τ]

The, graphically, what this leads to is, first sample along the Y-axis of an exponential 
probability density function using a uniform distribution scaled to max. PDF value at τ = 
0.  Then, lookup the value of τ for any value of r.  See the example on the next page.
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44. Big picture, what does this mean.  It means that each run of our computational 
method will be unique, because we are sampling a uniform PDF to calculate the times 
that reactions will next occur.

45. Next time we’ll think about how to wrap all this math up into a useful computational 
algorithm.  This turns out to be pretty easy and will give us a chance to revisit the es-
sentials of the material from the first two classes.  Have a great Thanksgiving if that’s 
your thing.
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