Finding graphical correlations between Θ and CD4 T-cell levels in different HIV-1 progressor groups

Jenny Chua and Nick Yeo
BIOL 368
Biology Department
Loyola Marymount University
February 27, 2020
Markham et. al. (1998) found that higher levels of genetic divergence in HIV-1 variants were associated with greater declines in CD4 T-cell levels.

Θ and CD4 T-cell levels were plotted against each other within each progressor group.

No groups had “strong” correlations, except Subject 14, who had a “relatively strong” correlation.

Non-progressor group data showed a direct relationship, rather than an inverse relationship.

The data was supported by our model, with the exception of non-progressors who show sustained CD4 T-cell levels.
As genetic divergence increases, CD4 T-cell levels decrease.

- Those in the rapid progressor group lost, on average, 349 T-cells per year (Markham et al., 1998).
- High mutation rates allow for fast adaptation in a host, which makes the HIV-1 virus hard to “cure.”
- \(\Theta \) represents genetic divergence, or how clones have changed through time.
- With more genetic variability comes more immediate T-cell loss.
Ultimate Goal

CD4 T-Cell

Graphical correlation?
Hypotheses

- **Null**: There is not an inverse relationship between Θ vs. CD4 T-cell levels in the HIV-1 patients in the study.
- **Alternate**: There is an inverse relationship between Θ vs. CD4 T-cell levels in the HIV-1 patients in the study.
- If the p-value ≤ 0.05, we will reject the null hypothesis.
Markham et. al. (1998) found that higher levels of genetic divergence in HIV-1 variants were associated with greater declines in CD4 T-cell levels.

θ and CD4 T-cell levels were plotted against each other within each progressor group.

No groups had “strong” correlations, except Subject 14, who had a “relatively strong” correlation.

Non-progressor group data showed a direct relationship, rather than an inverse relationship.

The data was supported by our model, with the exception of non-progressors who show sustained CD4 T-cell levels.
Comparing Θ and CD4 T-cell levels

- Created scatterplots of Θ vs. CD4 T-cell levels in Microsoft Excel and placed regression lines and R^2 on each graph.
- Deleted data points in which Θ values were not recorded.
- Clustered sequence alignment and phylogenetic tree created for Subject 14.
- Utilized LINEST and FDIST on Excel for statistical analyses of linear regressions.

<table>
<thead>
<tr>
<th>Θ</th>
<th>CD4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.980</td>
<td>749</td>
</tr>
<tr>
<td>6.445</td>
<td>768</td>
</tr>
<tr>
<td>8.535</td>
<td>648</td>
</tr>
<tr>
<td>4.305</td>
<td>552</td>
</tr>
<tr>
<td>2.980</td>
<td>698</td>
</tr>
<tr>
<td>2.828</td>
<td>405</td>
</tr>
<tr>
<td>2.121</td>
<td>223</td>
</tr>
<tr>
<td>3.867</td>
<td>351</td>
</tr>
<tr>
<td>5.031</td>
<td>387</td>
</tr>
<tr>
<td>7.777</td>
<td>471</td>
</tr>
<tr>
<td>8.837</td>
<td>399</td>
</tr>
<tr>
<td>8.463</td>
<td>556</td>
</tr>
<tr>
<td>9.898</td>
<td>1072</td>
</tr>
<tr>
<td>8.095</td>
<td>740</td>
</tr>
<tr>
<td>5.302</td>
<td>333</td>
</tr>
<tr>
<td>7.070</td>
<td>273</td>
</tr>
<tr>
<td>8.484</td>
<td>312</td>
</tr>
</tbody>
</table>
Outline

- Markham *et. al.* (1998) found that higher levels of genetic divergence in HIV-1 variants were associated with greater declines in CD4 T-cell levels.
- Θ and CD4 T-cell levels were plotted against each other within each progressor group.
- No groups had “strong” correlations, except Subject 14, who had a “relatively strong” correlation.
- Non-progressor group data showed a *direct* relationship, rather than an *inverse* relationship.
- The data was supported by our model, with the exception of non-progressors who show sustained CD4 T-cell levels.

Gaardbo et. al., 2012
Non-progressor data indicates a slight direct relationship.

P-value = 0.936

P>0.05, so we fail to reject the null. There is not significant statistical evidence to say that there is an inverse relationship.
Moderate progressors show no correlation between variables.

P-value = 0.903

P>0.05, so we fail to reject the null. There is not significant statistical evidence to say that there is an inverse relationship.
A weak correlation between Θ and CD4 T-cell values exists in rapid progressors.

P-value = 0.007

P<0.05, so we reject the null and accept the alternate. There is significant statistical evidence to say that there is an inverse relationship.
Though, for all subjects and their data, there is a weak correlation and an inverse relationship.

P-value = 6.57x10⁻⁵

P<0.05, so we reject the null and accept the alternate. There is significant statistical evidence to say that there is an inverse relationship.
Subject 14’s data showed the strongest correlation between Θ and CD4 T-cell levels...

P-value = 0.027

P<0.05, so we reject the null and accept the alternate. There is significant statistical evidence to say that there is an inverse relationship.
...but it is best represented visually when scaled down.
Markham et al. (1998) found that higher levels of genetic divergence in HIV-1 variants were associated with greater declines in CD4 T-cell levels. Θ and CD4 T-cell levels were plotted against each other within each progressor group. No groups had “strong” correlations, except Subject 14, who had a “relatively strong” correlation. Non-progressor group data showed a direct relationship, rather than an inverse relationship. The data was supported by our model, with the exception of non-progressors who show sustained CD4 T-cell levels.
Non-progressors do not necessarily need to show a decrease in CD4 T-cell levels.

- The graphs for non-progressors and moderate progressors revealed slight positive slopes for the best fit line between variables.
 - Need virus replication for genetic diversity and divergence (Gaardbo et. al., 2012)
- Our data supports the model proposed by both Markham et. al. (1998) and Nowak et. al. (1991) for the relationship between Θ and T-cell depletion in all subjects.
 - \uparrow divergence \rightarrow \downarrow CD4 T-cell levels
- While statistically insignificant, data for all progressor groups followed predicted trends.

Gaardbo et. al., (2012); Markham et. al., (1998); Nowak et. al., (1991)
What can be improved?

- Repeat experiment, but make sure to sequence DNA at every visit
 - More data points, more correlation if there is one

- Now that we know there is a correlation, we can develop a drug that can be used to target a wider range of genetic divergence → more effective treatment plans
Acknowledgments

- We would like to thank...
 - Professor Dr. Dahlquist,
 - TA Alice Finton,
 - our fellow BIOL 368 classmates,
 - Markham *et. al.* (1998),
 - and the Loyola Marymount University Biology department!
References

Thank you for listening!

Questions? Comments?