Anatomy of a Neuron

* Figure 1.1 of Purves, p. 2

Key Points

- Neurotransmitter release at chemical synapses
- Ion conductances at chemical synapses change the cell's membrane potential, V_m
- A's in V_m may initiate action potentials that propagate through the axon.
Membrane Potential

- V_m is the electrical potential difference across the cell membrane. The sign reflects the inside absolute potential relative to the outside of the cell.

- The cell's lipid membrane is an insulator.

- Resting V_m: in absence of input, V_m = negative, often ~ -50 or -100 mV but varies by cell type.

- V_m is set up by charged molecules:

 - $\text{Na}^+, \text{K}^+, \text{Cl}^-, \text{Ca}^{2+}$

 $\text{Na}^+ \sim 140 \text{ mM}$
 $\text{K}^+ \sim 5 \text{ mM}$
 $\text{Cl}^- \sim 110 \text{ mM}$
 $\text{Ca}^{2+} \sim 1 \text{ mM}$

- Other proteins:

 - $\text{Na}^+, \text{K}^+, \text{Cl}^-, \text{Ca}^{2+}$

 $\text{Na}^+ \sim 5 \text{ mM}$
 $\text{K}^+ \sim 140 \text{ mM}$
 $\text{Cl}^- \sim 5 \text{ mM}$
 $\text{Ca}^{2+} \sim 0.1 \mu\text{M}$

- Other anions:

 - net - charge
Electrochemical Gradients are stored energy. They are maintained by active ion pumps (cells must do work to create these).

Equilibrium Potential of an ion:

Concentration Gradient

\[
\begin{array}{c}
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O}
\end{array}
\]

\[
\begin{array}{c}
\text{O} \\
\text{O}
\end{array}
\]

Electric Gradient

\[
\begin{array}{c}
++ \\
++ \\
++
\end{array}
\]

\[
\begin{array}{c}
+ \\
+
\end{array}
\]

Charged Molecule

\[
\begin{array}{c}
+ \quad + \\
+ \quad + \quad + \quad + \quad + \\
Chem. \downarrow \quad Electrical \downarrow \\
- \quad + \\
+ \quad +
\end{array}
\]

\[
\begin{array}{c}
(+) \\
(+) \\
(+) \\
(+) \\
Chem. \downarrow \\
- \\
(+) \\
(+) \\
(+) \\
(+) \\
Electrical \uparrow
\end{array}
\]

If a channel were to open for that molecule, which direction would the charged ion flow?

Equil. Pot: is the \(V_m \) for which the net flow of charged ion is 0. The chemical gradient is perfectly balanced by the electrical gradient of the membrane potential.
\[E_{\text{ion}} = \frac{RT}{zF} \ln \frac{[\text{ion}]_{\text{out}}}{[\text{ion}]_{\text{in}}} \]

\[E_{K^+} = \frac{RT}{(+1)F} \ln \left(\frac{5\text{mM}}{140\text{mM}} \right) \]

\[\ln x \]

\[< 1 \text{ so } E_{K^+} = - \]

\[\ln x \text{ for } x > 1 \text{ is } + \]
\[\text{for } x \leq 1 \text{ is } - \]

\[z \text{ could be } + \text{ or } - \]

\[E_{\text{Net}} \text{ is Positive} \]

\[(V_m - E_{\text{ion}}) \text{ therefore reflects the driving force on the ion when a channel for that ion opens} \]

\[\text{Ion conductances, } g \]

\[g = \frac{1}{R} \text{ units in Siemens, S.} \]

\[\text{Protein channels create selective conductances, ie allow selective flow of ions across their membrane} \]
- The direction and magnitude of the flow depends upon $V_m - E_{ion}$.

 if $V_m = E_{ion}$, then no net flow occurs.

- Because ions carry charge, their flow is a current and therefore changes V_m.

- Note: takes relatively few ions to move to change V_m.

- An inward current: cations in or anions out

- Ion channels/conductances may be gated by chemicals or V_m itself.

- Probability that the channel is open can be a function of V_m or Conc.
Neurotransmitter Induced Conductances at a Chemical Synapse, Figure 5.3 pg 88

Excitatory - Na⁺, K⁺/Ca²⁺ flow into the cell, depolarize, i.e. \(\uparrow V_m \)

Inhibitory - Cl⁻ flow into the cell \(\downarrow V_m \)

- \(V_m \) changes due to synaptic currents can generate an action potential via voltage-dependent Na⁺ + K⁺ channels.

Action Potentials

- at rest, Na⁺ + K⁺ channels are closed.
- depolarization above a threshold induces opening of Na⁺ & K⁺ channels but Na⁺ more quickly
- Na⁺ open 1st, Na⁺ flows in, \(V_m \rightarrow E_{Na⁺} \)
 - the K⁺ channels open, K⁺ flows out, + starts to oppose Na⁺ current
 - Na⁺ channels naturally inactivate due to prolonged depolarization
 - K⁺ current pulls \(V_m \rightarrow E_{K⁺} \)
 - K⁺ channels close b/c \(V_m \) has decreased
- Cell returns to rest state
 - threshold + a long or short path return to a stable state were the 2 features of
 our 1st neuronal model