Module Overview

Day	Lecture	Lab		
1	Introduction	DNA library synthesis (PCR)		
2	SELEX I: Building a Library	DNA library purification (agarose gel electrophoresis)		
3	SELEX II: Selecting RNA with target functionality	RNA library synthesis (In vitro transcription = IVT)		
4	SELEX III: Technical advances & problem-solving	RNA purification and heme affinity selection		
5	Characterizing aptamers	RNA to DNA by RT-PCR		
6	Introduction to porphyrins: chemistry & biology	Post-selection IVT Journal Club 1		
7	Aptamer applications in biology & technology	Aptamer binding assay		
8	Aptamers as therapeutics	Journal Club 2		

SELEX I

Building a Library

20.109 Lecture 2

8 February, 2011

Last time ...

Defined RNA-small molecule interactions

23S rRNA: erythromycin

Unique RNA-protein interactions

tRNA (1) aaRS (1)

tRNA (2) aaRS (2)

tRNA (3) aaRS (3)

tRNA (4) aaRS (4)

. . . .

Last time ...

Can we discover novel RNA molecules that interact with any target of interest?

23S rRNA: erythromycin

tRNA::aaRS

- In Nature, RNA interacts with both small molecules and proteins
- The 3D structure of the RNA permit stabilizing atomic contacts to be made
- Subtle differences in RNA 3D structure can lead to distinct binding partner interactions

Today's Objectives

- Better conceptualize the SELEX process for selecting RNA aptamers with desired binding affinity
- Understand some basic principles influencing RNA library design
 - Appreciate how practical issues shape library architecture
 - Understand the concept of library diversity
 - Appreciate the limitations in building an ideal library

1. Design-oriented approach

2. Selection-based approach

"Design-oriented approach"

Decide on target function

Design specific RNA to meet function

Requires

- 1. A priori knowledge of target RNA structure required for function
- 2. Ability to predict RNA structure based on simple inputs (e.g. sequence)

Challenges

- Difficult to predetermine the RNA structure required for function
- 2. Cannot robustly use linear RNA sequence information to completely infer:
 - Structure
 - Function

"Selection-oriented approach"

Requires:

- 1. Access to a sufficiently diverse RNA pool
 - Increased probability that the desired activity is present
- 2. Effective strategy for eliminating "losers" and enriching for "winners"

"Selection-oriented approach"

Presently tenable

Advantages

- No a priori knowledge of structure <=> function relationship required
- 2. Function drives emergence of a solution
 - By default, "winner" RNA has the requisite structure for function!

Discovering RNA with novel properties

SELEX

- Systematic Evolution of Ligands by EXponential enrichment
 - A selection-based strategy

Larry Gold (U. Colorado)

Jack Szostak (Harvard U.)

C. Tuerk and L. Gold; *Science*; 249 (4968), 505-510, 1990.A.D. Ellington and J.W. Szostak; *Nature*; 346 (6287), 818-822, 1990.

SELEX: The process (simply)

Materials:

- Target of interest
- RNA library

Need strategies for:

- Exposing target to library
- Eliminating non-binders (partitioning step)
- Recovering binders
- Expanding recovered pool after each round

Conceptualizing SELEX

Target selection

Target selection

Target

- The (mostly) trivial part
- Driven by investigator's interest(s)

RNA binding to protein

T4 DNA polymerase Residues 1-388 (www.rcsb.org)

RNA binding to small molecule organic dyes

Cibracon Blue

C. Tuerk and L. Gold; *Science*; 249 (4968), 505-510, 1990.A.D. Ellington and J.W. Szostak; *Nature*; 346 (6287), 818-822, 1990.

The RNA Library

The RNA Library (abstracted)

- One library per target or one library for all targets
- Balance between "useful" and "useless" library members
- Maximizing "useful" collection within space constraints

- Stability during storage
- Synthesizing library at reasonable costs
- Availability of efficient methods for manipulating library
- Overall, library must be in a technical format compatible with all the steps involved in SELEX

- Stability during storage
 - DNA versus RNA?
 - DNA is more stable than RNA
 - RNA much more susceptible to hydrolysis than DNA;
 - Divalent metal catalyzed
 - RNA highly susceptible to ubiquitous RNases
 - DNA is an excellent long-term form for stably storing library

- Synthesis costs
 - DNA

www.idtdna.com

Custom Oligonucleotide Synthesis

Desalted custom synthesized DNA oligos are shipped lyophilized or hydrated with Lab Ready Oligo Service. Synthesis scales up to 1 µmole are shipped the next business day. 5 µmole and 10 µmole scales are shipped within 5 business days.

Base Pricing							
Synthesis Scale	Price						
25 nmole DNA Oligo	\$0.35 USD / Base	Order					
100 nmole DNA oligo	\$0.55 USD / Base	Order					
250 nmole DNA oligo	\$0.95 USD / Base	Order					
1 µmole DNA oligo	\$1.95 USD / Base	Order					
5 µmole DNA oligo	\$9.50 USD / Base	Order					
10 µmole DNA oligo	\$17.50 USD / Base	Order					

- DNA oligo 100 bases long
- 1 µmol scale

Synthesis costs

Custom RNA Synthesis and Purification

IDT has the expertise to deliver custom-synthesized RNA with the yield and purity that today's researcher demands. RNA is shipped deprotected and desalted in 2-3 business days or deprotected and purified in 4-6 business days. Please inquire for turnaround on 5 µmole and 10 µmole RNA synthesis.

Custom RNA Synthesis Pricing:								
	100 nmole	250 nmole	1 µmole	5 µmole	10 µmole			
RNA bases	\$6.50 USD	\$8.50 USD	\$18.00 USD	\$60.00 USD	\$115.00 USD			

- RNA oligo 100 bases long
- 1 µmol scale

Cost = 100 bases x \$18/base = \$1800

www.idtdna.com

- Stability during storage
 - DNA is an excellent long-term form for stably storing library
- Cost of synthesis
 - DNA is more cost-effective and technically simpler to synthesize than RNA
- Two very compelling technical reasons for choosing DNA as the storage medium for your library!

SELEX: The process (simply)

SELEX: DNA Library --> RNA Library & Back

In vitro transcription

SELEX: The process (simply)

Overall architecture of ds DNA library

Technical constraints dictate this architecture

How do we achieve variability between individual library members?

• Members differ from each other in the variable region

How do you synthesize such a library?

- DNA synthesis is automated
 - Program machine to add a specified base at a specified position
 - How do you build your target library?

Exactly as you thought!

- For fixed regions:
 - Specify a single nucleotide to be added at that position
- In the variable region:
 - Mix the four nucleotides in equal "reactivity" proportions
 - Equal chance of either A, G, T or C being added at that position
 - Many distinct DNA oligonucleotides are being simultaneously synthesized

SELEX: The process (simply)

The RNA Library (abstracted)

- One library per target or one library for all targets
- Balance between "useful" and "useless" library members
- Maximizing "useful" collection within space constraints
- Now, let's think about what we want in our library!

- Stability during storage
- Synthesizing library at reasonable costs
- Availability of efficient methods for manipulating library