Combinatorial Control of MIG1 & MIG2 are Likely Regulators of the Early Cold Response in Yeast (*S. cerevisiae*)

Austin Dias & Leanne Kuwahara March 26, 2019 Biomathematical Modeling (BIOL 388)

Outline

- → Background on cold shock response in yeast
- → Objectives
- → Methods
- → STEM Analysis reveals 7 significant gene clusters
- → Profile 45 associated with RNA and ribosomal regulation & Profile 22 associated with cell recovery
- → GRNmap and GRNsight models illustrate a need for increased data collection
- → Proposed transcription factors involved in regulating cold shock response
- → Future directions

Background: Cold Response in Yeast (S. cerevisiae)

- Environmental stress response (ESR) regulates gene expression when exposed to environmental stress
- Cold response in yeast includes an early and late cold response
 - Late cold response is consistent with ESR transcriptional changes
 - Early cold response shows opposite expression profiles compared to ESR genes from previous findings (Schade et al., 2004)
 - Little known about which transcription factors regulating early cold response
- DNA microarray experiments have been demonstrated to be effective in visualizing and quantifying transcriptional changes

Experimental Purpose

Generate a gene regulatory model for the early cold response in yeast using microarray data

Questions

- 1. What is the relative contribution of each transcription factor to the regulation of gene expression?
- 2. How do in silico alterations affect the accuracy of the model?

Methods

DNA Microarray

Experimental Design and Methods

DNA Microarrays Measure the Expression of Thousands of Genes Simultaneously

Data Analysis

The Bonferroni p-value Resulted in the Least Amount of Genes with a Significant Change in Gene Expression at Any Time-point

ANOVA	ΔGLN3
p < 0.05	2135 (34.5%)
p < 0.01	1204 (19.5%)
p < 0.001	514 (8.31%)
p < 0.0001	180 (2.91%)
B & H p < 0.05	1185 (19.1%)
Bonferroni p < 0.05	45 (0.727%)

Significant Gene Clusters for dGLN3

Clusters ordered based on number of genes and profiles ordered by significance (default)

Significant gene ontology terms for profiles 45 and 22

Profile 45 GO Terms: Ribosome and RNA Regulation	Profile 22 GO Terms: Metabolism and Transport
Ribosome assembly	Amide transport
Ribonucleoprotein complex export from nucleus	Cytoplasmic Vesicle
snRNA metabolic process	Membrane protein complex
Nucleolar metabolic process	Organonitrogen compound metabolic process
Nitrogen compound metabolic process	Phosphorus Metabolic Process
snoRNA binding	

MIG1 as Most Dynamic Gene in Profile 22 Cluster

MIG1 involved in glucose repression (Kayikci & Nielsen, 2015).

Extending Data Points Reveals Gene Behavior During Recovery

MSE WT: 0.606 MSE dGLN3: 0.791 MSE dHAP4: 0.686 B-H p-value: 0.077

MSE WT: 0.741 MSE dGLN3: 0.982 MSE dHAP4: 0.918 B-H p-value: 0.077

MSE WT: 0.432 MSE dGLN3: 0.132 MSE dHAP4: 0.233 B-H p-value: 0.416

MSE WT: 2.235 MSE dGLN3: 0.428

MSE dHAP4: 0.489 B-H p-value: 0.416

Including t90 and t120 Timepoints had Considerable Effect on Optimized Thresholds and Network Weights

Run	LSE:minLSE
t0-t60	1.331
t0-t120	1.436

Extending Data Points Caused Change in Network Relationships

t0-t60 dGLN3

t0-t120 dGLN3

Data May Need to be Collected Prior to 15 minutes for "Full Picture"

MSE WT: 1.493 MSE dGLN3: 1.221 MSE dHAP4: 0.475 MSE dZAP1: 3.373 B-H p-value: 0.233

wt data - wt model

dgln3 data dgln3 model dhap4 data dhap4 mode dzap1 data

dzap1 model

Removal of ZAP1 Had Minimal Effect on Model

Run	LSE:minLSE
Initial	1.551
Without ZAP1 Control	1.505
Without ZAP1	1.450

Transcription Factors Likely to Regulate Cold Response

Profile 45	
ASG1	Most edges
☆ MIG2	High b and P
PDR1	Most repressed, strongest activator

Profile 22	
ADR1	Numerous edges, strongest activator
☆ MIG1	Most dynamic
RAP1	Controls two genes that reverse regulation behavior

Summary & Conclusions

- Genes of profile 22 are largely associated with cell recovery after experiencing cold shock.
 - GO terms suggest that genes of this profile help restore normal metabolic and homeostatic activity after cold shock disruption.
- Including t90 and t120 timepoints did not improve the fit of the model, but helped give a better understanding of how the cell is able to recover.
- Genes of profile 45 are associated with RNA and ribosomal regulation.
- Removing ZAP1 had minimal effects on the model.
- MIG1 & MIG2 are likely regulators of the transcriptional response to cold shock.
 - Effectors in glucose repression--repress transcription of genes involved in metabolism of poor-carbon sources in presence of glucose (Karunanithi & Cullen, 2012)

Future Directions

- Examine other significant profiles
- Collect data for time-points before 15 minutes
- Run models separately
 - t0-t60 versus t90-t120 to compare cold shock and recovery period distinctly

Acknowledgments

We would like to thank:

Dr. Dahlquist and her laboratory

Dr. Fitzpatrick

LMU Department of Biology and Department of Mathematics

References

Karunanithi, S., & Cullen, P. J. (2012). The filamentous growth MAPK pathway responds to glucose starvation through the Mig1/2 transcriptional repressors in Saccharomyces cerevisiae. *Genetics*, *192*(3), 869-887.

Kayikci, Ö., & Nielsen, J. (2015). Glucose repression in Saccharomyces cerevisiae. *FEMS yeast research*, *15*(6), fov068.

Schade, B., Jansen, G., Whiteway, M., Entian, K. D., & Thomas, D. Y. (2004). Cold adaptation in budding yeast. Molecular biology of the cell, 15(12), 5492-5502. DOI: 10.1091/mbc.e04-03-0167

Unweighted regulatory gene networks

Profile 45

Profile 22

Optimized Parameters Differ from Initial Estimations

Run	LSE:minLSE
Initial	1.551

Removal of ZAP1 from the model did not alter the fit

Removal of ZAP1 did not alter the regulatory matrix

Control

-ZAP1