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Background: Cold Response in Yeast (S. cerevisiae)

m Environmental stress response (ESR) regulates gene expression
when exposed to environmental stress
m Cold response in yeast includes an early and late cold response
o Late cold response is consistent with ESR transcriptional changes
o Early cold response shows opposite expression profiles
compared to ESR genes from previous findings (Schade et al.,
2004)
o Little known about which transcription factors regulating early cold
response
m DNA microarray experiments have been demonstrated to be effective
in visualizing and quantifying transcriptional changes




Experimental Purpose

Generate a gene regulatory model for the early cold response
In yeast using microarray data

Questions

1. What is the relative contribution of each transcription factor to the
regulation of gene expression?
2. How do in silico alterations affect the accuracy of the model?
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The Bonferroni p-value Resulted in the Least Amount of
Genes with a Significant Change in Gene Expression at Any
Time-point

ANOVA AGLN3

p <0.05 2135 (34.5%)

p<0.01 1204 (19.5%)

p <0.001 514 (8.31%)

p < 0.0001 180 (2.91%)

B & Hp<0.05 1185 (19.1%)

Bonferroni p < 0.05 45 (0.727%)




Significant Gene Clusters for dGLN3

Clusters ordered based on number of genes and profiles ordered by significance (default)

9 25 22 7 30| [16

e A6 Profile #22:(0,0,0,0,2,1)

9 E(x)pression Change ‘E;(?;)ression Change 81.0 Genes Assigned; 21.2 Genes Expected; p-value = 8.2E-24 (significant)
b | )

406.0 Genes Assigned; 29.9 Genes Expected; p-value = 0.00 (significant)




Significant gene ontology terms for profiles 45 and 22

Profile 45 GO Terms: Ribosome and
RNA Regulation

Profile 22 GO Terms: Metabolism and
Transport

Ribosome assembly

Amide transport

Ribonucleoprotein complex export from nucleus

snRNA metabolic process

Cytoplasmic Vesicle

Nucleolar metabolic process

Membrane protein complex

Nitrogen compound metabolic process

Organonitrogen compound metabolic process

snoRNA binding

Phosphorus Metabolic Process




MIG1 as Most Dynamic Gene in Profile 22 Cluster

Profile #22:(0,0,0,0,2,1)
. MIG1 L\I/E(Bpressmn Change 1.0 Genes Assigned; 21.2 Genes Expected; p-value = 8.2E-24 (significant)
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MIG1 involved in glucose repression
(Kayikci & Nielsen, 2015).




Extending Data Points Reveals Gene Behavior
During Recovery

MIG1
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Including t90 and t120 Timepoints had Considerable

Effect on Opt
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Extending Data Points Caused Change in
Network Relationships

t0-t60 dGLN3 t0-t120 dGLN3




Data May Need to be Collected Prior to

15 minutes for “Full Picture”
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Removal of ZAP1 Had Minimal Effect on Model
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Transcription Factors Likely to Regulate Cold Response

Profile 45 Profile 22
ASG1 Most edges Numerous edges,
ADRT1 strongest activator
SEMIG2 High b and P
*MIG1 Most dynamic
Most repressed,
PDR1 .
strongest activator Controls two genes that
RAP1 reverse regulation
behavior




Summary & Conclusions

Genes of profile 22 are largely associated with cell recovery after
experiencing cold shock.
o GO terms suggest that genes of this profile help restore normal metabolic
and homeostatic activity after cold shock disruption.
Including 190 and t120 timepoints did not improve the fit of the model, but
helped give a better understanding of how the cell is able to recover.
Genes of profile 45 are associated with RNA and ribosomal regulation.
Removing ZAP1 had minimal effects on the model.
MIG1 & MIG2 are likely regulators of the transcriptional response to cold
shock.
o Effectors in glucose repression--repress transcription of genes involved in
metabolism of poor-carbon sources in presence of glucose (Karunanithi
& Cullen, 2012)




Future Directions

e Examine other significant profiles
e Collect data for time-points before 15 minutes
e Run models separately
> 1t0-t60 versus t90-t120 to compare cold shock and
recovery period distinctly
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Unweighted regulatory gene networks

Profile 45 Profile 22




Optimized Parameters
Differ from Initial
Estimations

Run LSE:minLSE

Initial 1.551

Threshold




Removal of ZAP1 from the model did not alter the fit
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Removal of ZAP1 did not alter the regulatory matrix

Control




